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Abstract

Background: While many studies evaluated the reliability of digital mobility metrics as a proxy of SARS-CoV-2 transmission
potential, none examined the relationship between dining-out behavior and the superspreading potential of COVID-19.

Objective: We employed the mobility proxy of dining out in eateries to examine this association in Hong Kong with COVID-19
outbreaks highly characterized by superspreading events.

Methods: We retrieved the illness onset date and contact-tracing history of all laboratory-confirmed cases of COVID-19 from
February 16, 2020, to April 30, 2021. We estimated the time-varying reproduction number (Rt) and dispersion parameter (k), a
measure of superspreading potential, and related them to the mobility proxy of dining out in eateries. We compared the relative
contribution to the superspreading potential with other common proxies derived by Google LLC and Apple Inc.

Results: A total of 6391 clusters involving 8375 cases were used in the estimation. A high correlation between dining-out
mobility and superspreading potential was observed. Compared to other mobility proxies derived by Google and Apple, the
mobility of dining-out behavior explained the highest variability of k (ΔR-sq=9.7%, 95% credible interval: 5.7% to 13.2%) and
Rt (ΔR-sq=15.7%, 95% credible interval: 13.6% to 17.7%).

Conclusions: We demonstrated that there was a strong link between dining-out behaviors and the superspreading potential of
COVID-19. The methodological innovation suggests a further development using digital mobility proxies of dining-out patterns
to generate early warnings of superspreading events.

(JMIR Public Health Surveill 2023;9:e44251) doi: 10.2196/44251
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Introduction

The COVID-19 pandemic has caused nearly 300 million
confirmed cases and over 5 million attributable deaths
worldwide during 2020-2021. As human mobility is a key driver

of SARS-CoV-2 transmission [1], nonpharmaceutical
interventions (NPI) aimed at reducing human movements and
contacts, including travel restrictions, case detection, isolation,
quarantine of close contacts, and social distancing, have been
effective in flattening incidence curves and protecting the health
care system from being overwhelmed [2]. Of the human
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activities, indoor dining at eateries exposes people to a high
SARS-CoV-2 infection risk, especially since mask mandate
does not apply in those occasions. Several investigations have
shown that permitting on-premises dining was associated with
increased risk of COVID-19 infections [3,4].

In the current pandemic, digital data encoding human mobility
information have been highly leveraged for purposes of
assessing risk of infectious disease transmission, quantifying
the effectiveness and compliance of NPI, and enabling early
detection early detection of cases to prompt timely interventions.
To facilitate the control of the COVID-19 pandemic, several
multinational companies with GPS-related services released
their mobility data, such as the community mobility reports
from Google LLC [5], mobility trends report from Apple Inc
[6], and the COVID-19 mobility data network from Meta Data
for Good program [7]. There are some more fine-grained digital
proxies applied to construct the COVID-19 mobility networks,
which entailed hourly movements to specific points of interest,
including restaurants [8,9].

As a densely populated metropolitan, Hong Kong was vulnerable
to considerable COVID-19 outbreak risk and has kept
community transmissions at a containable level through case
detection and isolation, intense contact tracing, and quarantine
in the early phases of the pandemic [10,11]. However, the
superspreading events (SSE), where a large number of secondary
cases were generated by a few primary cases, presented
challenges for the effectiveness of these measures. Previous
studies indicated that approximately 20% of cases seeded 80%
of all local transmissions in the first and second wave of
COVID-19 epidemics [12,13]. Similar observations were also
reported in other Asia-Pacific settings such as South Korea [14].
The government has rolled out different levels of measures to
prevent transmissions by restricting capacity, limiting the
number of diners per table, and shortening the dine-in hours.
Eateries were found to be settings where major clusters with
SSE occurred, even though corresponding restriction measures
such as social distancing and limited dine-in hours were in place
[15,16].

Many studies assessed the reliability of different digital mobility
metrics as a proxy of the SARS-CoV-2 transmission [17-21].
For example, Kurita et al [19] demonstrated that Apple mobility
data were useful for the short-term prediction of COVID-19
transmissibility. Nevertheless, to our knowledge, none have
examined the relationship between the trend of dining-out
behaviors and the superspreading potential of COVID-19. A
good understanding of the relationship is essential for informing
and evaluating the effectiveness of NPI. In this work, we aim
to examine the association between the trend of dining-out
behaviors and disease transmissibility in Hong Kong, a setting
with COVID-19 outbreaks characterized by SSE.

Methods

Epidemiological Data
Surveillance data on local COVID-19 cases were provided by
the Centre for Health Protection, Department of Health of the
Government of the Hong Kong Special Administrative Region.

All COVID-19 infections were confirmed by testing with
polymerase chain reaction. We retrieved the illness onset date
and contact-tracing history of the confirmed cases. Based on
the contact history, we reconstructed the transmission clusters,
defined as a number of cases with the same source of infection
(ie, a primary case) or epidemiologically linked [22]. Cases
without source cases that did not have epidemiological linkage
with other confirmed cases were defined as sporadic cases (ie,
cases with untraceable contacts). A sporadic case was considered
as a cluster equal to one. The study period was from February
16, 2020, to April 30, 2021, when the third wave of
transmissions was brought under control.

Digital Mobility Proxy of Dining-Out Patterns
A web crawler was developed to retrieve user comments from
OpenRice, the most commonly used restaurant catalog for
people to search and provide feedback in Hong Kong. The
website covers restaurant information and user comments for
more than 28,000 eateries and is open for public access without
a log-in requirement. We obtained the daily total number of
comments as a proxy of dining out in eateries from February
16, 2020, to April 30, 2021. The daily counts were normalized
using the baseline means of total comments between November
1 and December 31, 2018.

Other Digital Mobility Proxies
We obtained anonymized and aggregated human mobility data
released by Google and Apple during the COVID-19 pandemic
by locations and transport modes [5,6]. The Google COVID-19
community mobility reports included the daily change of visitor
numbers to 6 locations (ie, retail and recreation, grocery and
pharmacy, parks, transit stations, workplaces, and residential)
compared to the median value in baseline days (from January
3, 2020, to February 6, 2020). The commuting information was
collected through GPS linked with the Google Maps app.
Similarly, mobility data from Apple mobility trends were also
obtained, which reports on the daily ratio of trip numbers to the
baseline (January 13, 2020). The data sets were generated from
users’ devices connected to the Apple Maps service for
directions and were categorized by driving and walking.

Estimation of the Time-Varying Reproduction Number
Following Cori et al [23], we estimated the time-varying
reproduction number (Rt) over the study period. In this approach,
the daily number of cases by illness onset date was modeled
through a branching process, where the incidence at time t (ie,

It) is Poisson distributed with the mean given by ,
where ωs is the discretized probability distribution of the serial
interval. Epidemiologically, a serial interval approximated the
infectiousness of a COVID-19 case at time s after the symptom
onset. We assumed the mean and SD of the serial interval during
the study period to be 6.5 and 4.1 days, respectively, based on
a previous study conducted in Hong Kong [24]. As the empirical
serial interval estimates may be biased due to the sampling and
selection bias within the contact-tracing data collected during
an ongoing epidemic [25], we also tested another assumption
of serial interval distribution (mean 4.6, SD 4.9 days) estimated
from a modeling study that corrected for such bias [26] as a
sensitivity analysis. We only considered cases that acquired the
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infection locally in the estimation. The Rt was estimated by
fitting the time-series data to the Poisson distributions in a
sliding window process, assuming the Rt remained constant
within each window.

Estimation of Superspreading Potential
Given the stochastic effect of transmissions, the transmission
dynamics can be described by an offspring distribution (ie, the
distribution of the number of secondary cases generated by the
primary case). Following Lloyd et al [27], we assumed a
negative-binomial offspring distribution, which was
parametrized by a reproduction number and a dispersion
parameter (k). When k is sufficiently low (ie, less than 1), SSE
are more likely to occur. Applying the branching process theory,
k could be estimated by fitting the transmission cluster data to
a cluster size distribution [28], which describes the probability
of clusters with a size of z seeded by u primary cases. We only
included transmission clusters that were initiated by local cases.
For an ongoing epidemic, the clusters’ sizes are likely to grow
after the time of estimation. To this end, we also considered
right censoring in the cluster size distributions [22,28,29]. Thus,
the likelihood function is:

Here, Pr(.) is the probability mass function of the cluster size
distribution assuming a negative binomial offspring distribution
following previous studies [22]. The term c is an indicator of
censoring, where c=0 if the cluster is censored and c=1 if the
cluster is considered as self-limited. A cluster is censored if it
has new confirmed cases within 11 days before the day of
estimation [22]. We determined the time-varying k during the
study period in a sliding window process.

The window length was fixed at 30 days, which could cover 4
transmission generations based on the upper bound of the
estimated generation interval of COVID-19 [30]. Within each
window period, we estimated k using the Markov chain Monte
Carlo method. Gamma distribution and half-normal distribution
were used as prior distributions for Rt and k, respectively. For
each Markov chain Monte Carlo chain, we obtained 10,000
thinned posterior samples from 500,000 iterations.

Associations Between Mobility Proxies and
Transmission Dynamics
Time series of the mobility proxies were smoothed by a 7-day
rolling average. The Pearson correlation coefficients (r) between
the mobility proxies and Rt, and between the mobility proxies
and k, were computed, respectively. The R-square was
determined to quantify the proportion of variance explained by
a mobility proxy using linear regression. A full regression model
was built including all the mobility proxies. Rt and k were
log-transformed and negative log-transformed in the regression
models, respectively. To quantify the relative contribution of a
specific mobility proxy in predicting the Rt or k, we determined
the difference in R-squares (ΔR-sq) between a full model and
the model without the proxy [31]. We calculated the means and
95% credible intervals (CrIs) for the estimates by sampling

10,000 times from the posterior distributions of the estimates;
3 and 7 days of lags were tested to examine the lag effects of
mobility on the outcomes of disease transmissibility ensuring
the robustness of the study findings.

The analysis was conducted in R statistical software (version
4.0.3; The R Foundation). The programming code is available
upon request.

Ethics Approval
Ethics approval was obtained from the Survey and Behavioral
Research Ethics Committee, The Chinese University of Hong
Kong (SBRE-20-581). Because this study was a modeling
analysis using secondary data with no personal information, the
requirement for obtaining informed consent was waived.

Results

The relationship between and among social distancing policies,
disease transmission dynamics, and the mobility proxies from
February 16, 2020, to April 30, 2021, is illustrated in Figure 1
and Figure 2. The estimated Rt decreased from 1.94 (95% CrI
1.63 to 2.29) to 0.17 (95% CrI 0.07 to 0.34), from 2.88 (95%
CrI 2.59 to 3.20) to 0.59 (95% CrI 0.55 to 0.63), and from 1.63
(95% CrI 1.29 to 2.01) to 0.72 (95% CrI 0.66 to 0.78) at 3
intervention phases, respectively.

A total of 6391 clusters involving 8375 cases were reported
during the study period. Among the identified clusters, there
were 4527 clusters with a size equal to 1 (ie, sporadic cases).
The distribution of the number of secondary cases generated by
the primary cases for the whole study period is showed in
Multimedia Appendix 1. Of the 7194 linked cases, 1096
(15.23%) cases generated at least 2 secondary cases, and 1 case
even initiated a transmission cluster composing 394 cases. The
cluster data were used to estimate k, which was negative
log-transformed, so the larger the value, the higher the
superspreading potential. At the 3 intervention phases, the
negative-log k decreased from 3.49 (95% CrI 3.12 to 3.83) to
2.34 (95% CrI –0.70 to 3.30), from 3.02 (95% CrI 2.63 to 3.37)
to 0.69 (95% CrI 0.28 to 1.06), and from 2.51 (95% CrI 1.61
to 3.17) to 0.68 (95% CrI 0.09 to 1.19), respectively (Figure 2).

Similar decreasing trends were observed for the mobility proxies
(Figure 2 and Table 1). A high correlation between dining-out
behavior and k was observed (r=0.46, 95% CrI 0.32 to 0.56).
While several other mobility proxies were also highly correlated
with k, including visiting retail and recreation (r=0.41, 95% CrI
0.24 to 0.54), parks (r=0.36, 95% CrI 0.17 to 0.51), and
workplaces (r=0.37, 95% CrI 0.24 to 0.46), mobility proxies of
transit stations, driving, and walking had a weaker correlation
with k (r<0.15). Correlations between mobility proxies and Rt

were generally weaker. Only the mobility of dining-out behavior
in eateries (r=0.16, 95% CrI 0.14 to 0.18) and workplace
(r=0.13, 95% CrI 0.10 to 0.16) maintained a larger correlation
with Rt.

The mobility proxies could explain a higher percent of
variability of k than that of Rt. In the full model, including all
the mobility proxies, the R-squares were 54.3% (95% CrI 30.3%
to 75.2%) and 23.7% (95% CrI 21.5% to 25.9%) for regressing
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k and Rt, respectively. We used ΔR-sq to quantify how much
of the variabilities of the k and Rt were explained by each of the
mobility proxies (Figure 3 and Table 1). Among the proxies,
the mobility of dining-out behavior explained the most of
variability of k (ΔR-sq=9.7%, 95% CrI 5.7% to 13.2%) and Rt

(ΔR-sq=15.7%, 95% CrI 13.6% to 17.7%). Other mobility
proxies result in a mean ΔR-sq of less than 5% when regressing
k. For Rt, the proxies of driving and transit stations had a ΔR-sq
of 7.8% (95% CrI 6.3% to 9.3%) and 3.3% (95% CrI 2.3% to
4.5%), respectively. Other mobility proxies had the mean
ΔR-sq<3% when regressing Rt.

We examined the effects of 3-day and 7-day lags of mobility
proxies on k and Rt (Multimedia Appendix 2). In general,
dining-out behavior still explained the highest variance of the
outcomes. The ΔR-sq of a 3-day lag of the metric was 7.8%
(95% CrI 4.2% to 11.4%) and 13.1% (95% CrI 11.1% to 15.2%)
for k and Rt, respectively, whereas that of a 7-day lag of the
metric was 4.1% (95% CrI 2.1% to 6.8%) and 11.7% (95% CrI
9.9% to 13.7%) for k and Rt, respectively. The changes in ΔR-sq
for other mobility proxies were also not apparent when their
lag effects were considered. Apart from that, a change of the
assumed serial interval (mean 4.6, SD 4.9 days) only resulted
in a minor change in the ΔR-sq for Rt with the primary findings
remaining unaffected (Multimedia Appendix 3).

Figure 1. Number of reported cases and estimated time-varying reproduction number (Rt) in Hong Kong from February 16, 2020, to April 30, 2021.
The number of reported cases is indicated by the gray bars (left axis), and the posterior median estimate of Rt is indicated by the red line, with shading
indicating the 95% credible interval (right axis). The purple shaded areas show the intervention phases at different periods. Phase 1: A table of restaurants
was limited to 4 people, and 6 types of premises must close from 6 PM from March 28, 2020, and bars must close from 6 PM from April 3, 2020. The
measures started to be relaxed from May 5, 2020 (left); Phase 2: Restaurant dine-in services at night were banned, and no more than 2 persons may be
seated together at 1 table in restaurants since July 13, 2020. The measures started to be relaxed since August 28, 2020 (middle). Phase 3: Business hours
of restaurants, bars, and clubs were shortened; the number of people allowed to be seated together at 1 table was reduced; and the number of people
participating in any 1 banquet in catering premises would be limited to 40 since November 16, 2020. Dine-in services at restaurants from 6 PM to 5
AM of the next day were banned, and the number of people participating in a banquet was further limited to 20 since December 10, 2020. The measures
started to be relaxed since February 18, 2021 (right).
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Figure 2. Negative logarithm of dispersion parameter (k) and mobility proxies. A. The negative logarithm of k is indicated by the blue line, with shading
indicating the 95% credible interval (left axis), and the normalized counts of dining-out mobility is indicated by the orange line (right axis). B. The
Google Mobility Index by types. C. The Apple Mobility Index by types.

Table 1. Associations between mobility proxies and transmission dynamicsa.

k cRt
bMobility proxies

ΔR-sq (%)rΔR-sqe (%)r d

9.7 (5.7 to 13.2)0.46 (0.32 to 0.56)15.7 (13.6 to 17.7)0.16 (0.14 to 0.18)Dining-out behavior

3.7 (1.0 to 7.3)0.41 (0.24 to 0.54)0.8 (0.4 to 1.4)0.00 (–0.02 to 0.02)Retail and recreation

1.3 (0.0 to 4.1)–0.23 (–0.36 to –0.042.4 (1.5 to 3.5)–0.01 (–0.04 to 0.03)Grocery and pharmacy

0.4 (0.0 to 1.6)0.36 (0.17 to 0.51)0.8 (0.3 to 1.4)–0.10 (–0.12 to –0.08)Parks

0.7 (0.0 to 2.3)0.16 (0.06 to 0.24)3.3 (2.3 to 4.5)0.02 (–0.01 to 0.04)Transit stations

0.1 (0.0 to 0.5)0.37 (0.24 to 0.46)1.3 (0.8 to 1.9)0.13 (0.10 to 0.16)Workplaces

1.0 (0.2 to 2.0)–0.21 (–0.29 to –0.11)0.1 (0.0 to 0.2)–0.03 (–0.05 to –0.01)Residential

0.4 (0.0 to 1.8)0.11 (–0.01 to 0.22)7.8 (6.3 to 9.3)0.02 (0.00 to 0.05)Driving

2.7 (1.0 to 4.7)0.01 (–0.08 to 0.08)0.0 (0.0 to 0.1)–0.05 (–0.08 to –0.03)Walking

aThe results were presented using means and 95% credible intervals of the estimates from the posterior distributions. Proxy of dining-out behavior was
retrieved from OpenRice. Proxies of retail and recreation, grocery and pharmacy, parks, transit stations, workplaces, and residential were retrieved from
Google COVID-19 community mobility reports. Proxies of driving and walking were retrieved from Apple mobility trends.
bRt: time-varying reproduction number.
ck: dispersion parameter of superspreading potential.
dr: Pearson correlation coefficient.
eΔR-sq: difference in R-squares between a full model and the model without the proxy.
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Figure 3. Relative contributions of the mobility proxies in predicting dispersion parameter (k) and time-varying reproduction number (Rt). A, B: The
relative contributions of each of the mobility proxies, including eateries, retail and recreation, grocery and pharmacy, parks, transit stations, workplaces,
residential, driving, and walking, in predicting (A) k and (B) Rt were quantified by the differences in R-squares (ΔR-sq). The black dot indicates the
mean estimate of ΔR-sq interpolated with an SD.

Discussion

Principal Findings
Digital data on human mobility play an important role in
tracking public compliance with NPI as well as monitoring
infectious disease dynamics. While many studies evaluated the
reliability of different digital mobility metrics as a proxy of the
SARS-CoV-2 transmission [17-21], none have examined the
relationship between the trend of dining-out behaviors and the
superspreading potential of COVID-19. In this study, we
evaluated the reliability of dining-out activities at eateries as a
proxy for SARS-CoV-2 transmission risk in Hong Kong with
outbreak highly characterized by SSE. According to our results,
dining out activities were associated with the change in disease
transmissibility as well as the superspreading potential of
COVID-19. This finding is consistent with the fact that eatery
venues were high-risk settings for frequent virus exposure and
superspreading, as they tend to be indoors, populated, and
without the mandate of mask wearing, having the highest
proportion of COVID-19 infection counts than other places
[32,33]. According to the COVID-19 spread pattern in Hong
Kong, as characterized by previous research, eateries had a
higher outbreak potential of unlinked cases than other settings
and accounted for the second highest number of linked

transmissions after the households [15,16], as dining-out
activities gather individuals that are not socially connected in
adjacent and common areas of the restaurant, widening the
dispersion of infected persons and subsequently sustaining case
clusters propagated across different settings. Similar to our
results, the county-level COVID-19 growth in the United States
increased from 1.1% to 1.2% when dining-out restrictions were
removed, and a 55% decline in new COVID-19 cases was found
after imposing bans on indoor on-premises dining [3,4].

During the COVID-19 epidemic, Hong Kong did not impose
any stringent measures on eatery settings (eg, compulsory
banning of indoor dining and closures of eatery venues), which
has been adopted in a number of countries such as the United
Kingdom and Singapore, before the availability of COVID-19
vaccines [34,35]. Nevertheless, as demonstrated in this study,
less stringent measures such as shortening the business hours
and restricting the capacity of eateries were still able to decrease
the related mobility as well as the superspreading potential,
particularly in the second and the third intervention phases. The
finding supports the effectiveness of these measures, even
though the related effect on transmission has been questioned
[36]. However, we cannot factor in the effects of other social
distancing measures implemented, although by including other
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mobility proxies in our analyses, we have adjusted for some
secular effects from the other measures.

Of the mobility proxies, mobile device data including the
community mobility reports from Google LLC and mobility
trend reports from Apple Inc have been well studied as proxies
for changes in human activities and SARS-CoV-2
transmissibility [17-19]. For instance, a Japanese investigation
demonstrated that Apple mobility data were reliable for a
short-term prediction of COVID-19 transmission [19], whereas
an Italian investigation showed the changes in transmissibility
of SARS-CoV-2 were associated with both social distancing
measures and Google mobility [18]. While the studies assured
the reliability of these metrics, we showed that dining-out
behavior had a greater contribution to the COVID-19
transmissibility compared with the digital proxies generated by
Google and Apple, likely because their data are not specific to
eateries. Nevertheless, our analysis showed that the movement
metrics including driving and transit stations still accounted for
a certain proportion of variability of the community
transmission. This observation echoes a previous study in Hong
Kong using digital transactions in public transport and social
mixing data to forecast the COVID-19 epidemics [20]. Similar
movement metrics provided by Baidu Huiyan were also well
demonstrated as useful data to improve the temporal and spatial
resolution of COVID-19 transmissions [20,21].

In this study, estimating superspreading potential required
comprehensive data of rapid contact tracing. In the Omicron
epidemic, public health resources for conventional contact
tracing were overwhelmed in Hong Kong due to a rapid and
huge surge in infections. With insufficient data on case linkages,
the superspreading potential cannot be determined during the
Omicron period. It suggests a need for novel digital tools for
contact tracing, for example, by app-based tools that can notify
users instantaneously when their contacts are confirmed positive
[37,38]. The deployment of app-based tools at a population
level not only improves the timeliness of tracing but also avoids
the recall bias in contact tracing. While digital contact tracing
is common in many places [39], residents in Hong Kong were
skeptical of this type of app due to ethical and privacy concerns
[40]. As long as the digital data are available with a large
population coverage and adequate compliance, they could be
incorporated in our analytical framework that requires
comprehensive contact tracing data.

With the comprehensive information of rapid contact tracing
before an Omicron outbreak in Hong Kong, the major strength
of this study is the capability of using the corresponding data
for the estimation of time-varying superspreading potential,

which were unlikely to be available in other settings without
intense contact tracing during the COVID-19 pandemic. In
addition, while a majority of studies related the mobility proxies
to reproduction numbers [17,19], our study is the first
investigation that linked the mobility pattern to disease
superspreading, especially for the COVID-19 transmission,
which was found to be highly heterogeneous [12-14,28,41].

Limitations
Nonetheless, this study had several limitations. First,
individual-level data on demographics, duration of indoor
dining, and the number of people dining together were not
available, thus lowering the resolution of transmission risk
imposed on the individual in an eatery. Still, the aggregated
information provided a simple, inexpensive, and readily
available data source for informing decisions for pandemic
control and predicting the superspreading potential. Second,
dining-out behavior may be different by geographic locations
given the differential distributions of eateries. Due to a lack of
the geographic information of the mobility proxies, the modeling
analysis was unable to account the spatial variation, and the
study findings may thus suffer from bias. Third, our study did
not intend to develop a forecast model given limited mobility
and social mixing data [20]. We expect that an increased
coverage of app-based tools would offer high-resolution data
for further development of a prediction model. Fourth, a single
data source of proxy for the dining-out behavior was used for
this study. While OpenRice was the most common web page
for commenting and rating different eateries, we were unable
to include diners who preferred using other web page or apps
such as Facebook.

Conclusion
In conclusion, we demonstrated that there was a strong link
between dining-out behaviors and the superspreading potential
of COVID-19, and the metric was more reliable than other
common mobility data derived by Google and Apple Inc. The
findings suggest that the mobility proxy of dining-out behavior
is able to help health officials for monitoring the public
compliance of social distancing measures as well as the cluster
outbreak potential. For example, officials could adjust the
intensity of social distancing measures (eg, restriction of the
maximum number of seats in a restaurant and mandatory closure
of eateries) based on the disease transmissibility inferred by the
mobility proxies. In addition, our methodological innovation
recommends a further development of using digital mobility
proxies of dining-out patterns to generate early warnings of
SSE, thereby assisting in resource planning on corresponding
measures.
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Multimedia Appendix 1
The observed offspring distribution with fitted curve for the transmission chains, February 16, 2020, to April 30, 2021. Dotted
dark blue curve is the estimated probability density function of the negative binomial distribution.
[PDF File (Adobe PDF File), 56 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Relative contributions of (A, B) 3-day and (C, D) 7-day lag effects of mobility proxies in predicting dispersion parameter (k) and
time-varying reproduction number (Rt). The relative contributions of each of the mobility proxies, including eateries, retail and
recreation, grocery and pharmacy, parks, transit stations, workplaces, residential, driving, and walking, in predicting (A, C) k and
(B, D) Rt were quantified by the differences in R-squares (ΔR-sq). The black dot indicates the mean estimate of ΔR-sq interpolated
with an SD.
[PDF File (Adobe PDF File), 159 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Relative contributions of the mobility proxies in predicting time-varying reproduction number (Rt) when the mean and SD of the
assumed serial interval distribution were changed to 4.6 and 4.9 days, respectively. The relative contributions of each of the
mobility proxies, including eateries, retail and recreation, grocery and pharmacy, parks, transit stations, workplaces, residential,
driving, and walking, in predicting Rt were quantified by the differences in R-squares (ΔR-sq). The black dot indicates the mean
estimate of ΔR-sq interpolated with an SD.
[PDF File (Adobe PDF File), 46 KB-Multimedia Appendix 3]
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