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Abstract

Background: The COVID-19 outbreak has revealed a high demand for timely surveillance of pandemic developments. Google
Trends (GT), which provides freely available search volume data, has been proven to be a reliable forecast and nowcast measure
for public health issues. Previous studies have tended to use relative search volumes from GT directly to analyze associations
and predict the progression of pandemic. However, GT’s normalization of the search volumes data and data retrieval restrictions
affect the data resolution in reflecting the actual search behaviors, thus limiting the potential for using GT data to predict disease
outbreaks.

Objective: This study aimed to introduce a merged algorithm that helps recover the resolution and accuracy of the search volume
data extracted from GT over long observation periods. In addition, this study also aimed to demonstrate the extended application
of merged search volumes (MSVs) in combination of network analysis, via tracking the COVID-19 pandemic risk.

Methods: We collected relative search volumes from GT and transformed them into MSVs using our proposed merged algorithm.
The MSVs of the selected coronavirus-related keywords were compiled using the rolling window method. The correlations
between the MSVs were calculated to form a dynamic network. The network statistics, including network density and the global
clustering coefficients between the MSVs, were also calculated.

Results: Our research findings suggested that although GT restricts the search data retrieval into weekly data points over a long
period, our proposed approach could recover the daily search volume over the same investigation period to facilitate subsequent
research analyses. In addition, the dynamic time warping diagrams show that the dynamic networks were capable of predicting
the COVID-19 pandemic trends, in terms of the number of COVID-19 confirmed cases and severity risk scores.

Conclusions: The innovative method for handling GT search data and the application of MSVs and network analysis to broaden
the potential for GT data are useful for predicting the pandemic risk. Further investigation of the GT dynamic network can focus
on noncommunicable diseases, health-related behaviors, and misinformation on the internet.
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Introduction

Background
Since the discovery of the first case of COVID-19 in December
2019, the pandemic has continued to develop and spread
globally for >3 years. With the new wave of COVID-19 that
began in early 2022 owing to the Omicron variant [1], confirmed
cases rose to 540 million and deaths rose to 6.3 million by the
end of June 2022 [2]. To deal with such serious disease
outbreaks, real-time disease surveillance plays a crucial role for
policy makers in their efforts to effectively implement timely
health measures and allocate resources. However, disease
surveillance generally relies on laboratory testing results [3],
which are limited by testing time and capacity [4]. Relevant
clinical data, such as data for mortality, morbidity, and utility
rate of the health system, are regarded as another layer of
reliable population-scale indicators for tracking the spread of a
pandemic [5]. Unfortunately, these official statistics usually lag
behind the infection situation [4,6]. As a result, there is a need
to explore other possible population-scale data as
complementary sources for tracking pandemic risk in real time
without the limitations of the traditional surveillance methods.

Internet use is a common human behavior worldwide, as
reflected in the rapidly growing number of internet users and
social media users globally [7]. In particular, the internet has
become an important source of health care information [8].
Therefore, internet search data are now a valuable
population-level resource for tracking disease development,
complementing the traditional surveillance methods [9].
Consequently, an increasing number of infodemiological studies
have sought to address the need for public health enhancement
by applying internet user–contributed, health-related content.
Investigations of infoveillance, an emerging type of public
health syndromic surveillance that is based on information from
the web [10], have been proposed for tracking various health
issues [11-13].

Google Trends (GT) is a Google website that analyzes the
popularity of search queries and thus provides a platform for
the public’s use in retrieving the real-time search patterns of
internet users worldwide [14]. As an official Google service,
the aggregate GT data range from multiple sources of Google
search engines, including web searches, image searches, news
searches, Google shopping, and YouTube searches. There has
been an upward trend in public health and epidemiological
research on the use of GT in the last decade [15], and GT data
have been proven to be reliable forecast and nowcast measures
for official statistics and social topics, such as unemployment
[16] and waves of pathogenic infections [17,18]. As the data in
the repository are freely available and updated in real time, GT
is considered to be a timely infoveillance tool that can
complement the traditional surveillance methods well [9,19].
In particular, because the impact of an infectious disease will
likely attract the public’s attention, many previous studies have
attempted to investigate the associations between search volumes
of internet queries and disease outbreak trends, such as with the
outbreaks of Ebola [20] and Middle East respiratory syndrome
coronavirus [21]. A methodology framework was also developed

for working with GT data in infodemiology and infoveillance
[22]. However, although web-based data are a good indicator
for predicting changes in human behaviors [23], the application
of GT data to health care research is relatively novel and has
been evolving quickly only recently [24,25].

Although access to GT data is free, there are several limitations
in retrieving the data. GT does not provide the actual number
of searches for a particular topic of interest at a particular time
and in a particular geographic region. Instead, it only shows
“interest over time” by providing relative search volume (RSV)
time series data, normalized to a time and geographic region,
using a scale from 0 to 100. A value of 100 represents the peak
popularity of a particular search interest at a particular time and
location, and a value of 30 indicates that a particular search
interest was 30% as popular as that of the peak search activity.
Therefore, GT data over long time horizons will result in heavily
normalized data with reduced resolution [18], thus rendering
the gathered data noisy and limiting the predictive power of the
data. The normalization of the GT data does offer convenience
in comparison, but it also poses limitations in tracking search
behaviors longitudinally with a high frequency, such as daily
updating of search volumes. Early research on GT data also
indicated that it is a nontrivial endeavor to aggregate information
on GT data from multiple keywords. Therefore, there is a need
to search for an effective method of retrieving GT data that
increases the resolution of RSV to reflect a trend of interest and
that integrates search data from multiple keywords.

Previous studies have tended to use the retrieved GT data of
specified search queries for correlation analyses and modeling
[9,11,19,23,26]. Many previous studies have been conducted
on COVID-19–related keywords [18,27-30] and have
demonstrated the importance of using multiple keywords.
Although the inclusion of multiple search queries can help
provide valuable information for tracking human behavior and
public health issues [11], the linkage among the search queries
remains a challenge for empirical studies seeking to analyze the
data systematically [31]. Furthermore, we cannot ignore the
potential of connectedness among search interests in reflecting
the complexity of information searching behaviors among
internet users. Understanding the complex search behavior will
be crucial when using search data to develop an effective
infoveillance system for infection outbreaks.

Objectives
This study sought to extend the application of GT data in
predicting disease outbreaks by demonstrating the application
of merged internet search volumes and to propose a dynamic
network approach to tracking COVID-19 pandemic risk.
Specifically, we introduced the construction of GT networks
over time, in which the network nodes were represented by
different keywords. Our proposed GT network method can help
incorporate internet search information from multiple keywords
into a network. Using GT network structures and related network
statistics, we were able to study the dependence among
keywords—for example, COVID-19–related words—and learn
topological features of search volumes of different keywords.
We also examined the predictive power of the proposed
application of our GT network method through trend analysis
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and dynamic time warping (DTW). In the case of COVID-19,
which we studied in this research, we investigated the
implications of topological features on the COVID-19 pandemic
risk.

Methods

This section describes the methodology used in this study. A
set of custom Python scripts was used for data acquisition,
cleansing, analysis, and most of the data visualization. Gephi
0.9.7 from Gephi Consortium [32] was used to create the base
network graphs.

Data Acquisition
In this study, the aggregated data from GT were retrieved for
analysis. We used the time series data of “interest over time”
as the RSV. The numerical data, ranging between 0 and 100,
indicated the “search interest relative to the highest point” for
the defined filtering region and the period. However, according
to Google’s own definition, the value of “50” means the search
term is “half as popular,” whereas “0” means low search volume
was recorded for the term (ie, <1% of the searches attributed to
the most searched term in the search list) [33]. This reflects that
the “interest over time” can be regarded as a latent variable of
the actual volume of searching. However, noise may be
introduced through rounding and normalization. Although noise
is unavoidable, we attempted to alleviate the effects of noise
through a shingling technique, as proposed in the Transforming
Multiple RSVs Into a Single MSV section, and to focus on the
analysis of the constructed temporal network.

Discovery of Related Keywords
Many previous studies used “related queries” to widen their
scope of keyword coverage. Although this approach increases
the number of search terms drastically, we opted to use “related
topics” (RTs) because of their unambiguous characteristics and
the inclusion of translations of the same concept into other
languages.

For example, if a researcher is interested in understanding the
search volume for Apple Inc, the computer and smartphone
manufacturing company, when one enters only the word “apple,”
GT will return the results for that exact word, without much
interpretation. Therefore, the resulting data can hypothetically
include a news report for the computer company’s latest product
and the nutritional information for the fruit. Instead, researchers
can search for a “topic” that filters out searches irrelevant to the
computer manufacturer by picking “Apple (Technology
Company).”

However, to the best of our knowledge, GT does not provide a
public repository of the available topics. Yet, when a user enters
certain keywords, GT will recommend a list of related queries
and topics that can be used as our starting seed topics. On the
basis of this method, we entered several queries, namely,
“COVID-19” and “coronavirus,” which yields 3 RTs:
“Coronavirus disease 2019 (Disease),” “Severe acute respiratory
syndrome coronavirus 2 (Virus),” and “Coronavirus (Virus).”
We continuously downloaded the RTs of the 3 seed topics we
yielded in a 7-day sliding window from January 29, 2020, to
March 4, 2022. All the keywords prompted by GT were included
in the pool of keywords.

To remove the regional effects from our results, keywords
related to specific regions were excluded. We determined that
a term was region related if it was categorized by GT as one of
the following: “country,” “state,” “province,” “prefecture,”
“municipality,” “island,” “region,” “county,” “capital,” “city,”
“autonomous community,” and “town.” For example, when we
receive an RT “Stay-at-home order (Topic)” (machine tag:
“/g/11hf9srvdz”) from GT, we will include it in our network,
as it was determined as a “Topic” and is not in our exclusion
category list. In contrast, if we receive an RT “Germany
(Country in Europe)” (machine tag: “/m/0345h”) from GT, we
will discard the topic, as the topic was categorized as “country”
by Google, which is included in our exclusion category list.

After filtering, 228 topics were selected for this research,

referred to as the topic set (see Textbox 1 for the search terms
used).
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Textbox 1. Selected keywords related to the COVID-19 pandemic, used in the construction of our temporal network.

Coronavirus, Vaccine, COVID-19 vaccine, COVID-19 testing, Test, Signs and symptoms, Symptom, Symptoms of COVID-19, Strain, Severe acute
respiratory syndrome coronavirus 2, Worldometers, Statistics, Variant, AZD1222, AstraZeneca, Nasal congestion, Mutation, Emmanuel Macron,
Traffic light, GOV.UK, Bill, Preventive healthcare, Northern Beaches Council, Nueva Cepa, Certificate, Virus, Pfizer, BNT162b2, Side effect, Rapid
antigen test, Bell's palsy, Transmission, Isolation, Ivermectin, Food and Drug Administration, mRNA-1273, Centers for Disease Control and Prevention,
COVID-19 pandemic in New York City, Polymerase chain reaction, Guideline, British Columbia, CVS Pharmacy, Drive-through, CVS Health, Mink,
Regions of Italy, Galicia, TousAntiCovid, contagium, Tier 1 network, Blood type, Tier 2 network, Nasopharyngeal swab, 2020 coronavirus pandemic
in Scotland, Incubation period, Case, Donald Trump, 2019–20 coronavirus pandemic related application, NHS COVID-19, National Health Service,
Dashboard, Common cold, Silvio Berlusconi, Pandemic, Medical test, Departments of France, Serology, Infection prevention and control, Swine
influenza, Herman Cain, Hydroxychloroquine, Provinces of Vietnam, COVID-19 pandemic in Victoria, Sore throat, University of Oxford, COVID-19
party, Jair Bolsonaro, World Health Organization, Airborne transmission, 2020 coronavirus pandemic in Canada, Worldometer COVID-19 Dashboard,
County, COVID-19 pandemic in Texas, Asymptomatic, Disease outbreak, Rapid diagnostic test, Johns Hopkins University, Mortality rate, Antibody,
Maharashtra Police, DG Police Office Mumbai, COVID-19 pandemic in West Bengal expected, Oise, Lysol, Infection, 2019–20 coronavirus pandemic,
Death, Chinese language, Influenza, Pneumonia, China virus, Cruise ship, Cure, 2020 coronavirus pandemic in Singapore, Pangolins, Coronavirus
disease 2019, SARS, Antigen, Immunoglobulin G, Variety, Prefectures of Japan, Coronavirus Alpha variant, Immunity, RNA, RNA virus, Peplomer,
Roche Holding AG, Severe acute respiratory syndrome coronavirus, Roche, Disease cluster, Genome, Yahoo Japan Corporation, Robert Koch Institute,
Medical laboratory, Ebola, Avian influenza, Breaking news, Nucleic acid test, NHK, Municipalities of Japan, Federal Office of Public Health of the
Swiss Confederation, Test method, Immune system, Immunoglobulin M, Falling Number, Südwestrundfunk, interactive map, Subsidy, Remdesivir,
Microscope, Molecular biology, Study group, Oct-04, Bulletin board system, Typhoon, Host, Lockdown, DNA, Hoax, Risk, Dwayne Johnson, 爆サ
イ, Assay, Shinzo Abe, South African Revenue Service, PTT Bulletin Board System, Reverse transcription polymerase chain reaction, Severance
package, Health facility, Dabie bandavirus, Sequela, Inpatient care, Health professional, Go To Campaign, COVID-19 Contact-Confirming Application,
Jul-02, U.S. state, Middle East respiratory syndrome–related coronavirus, Chemical structure, Basic reproduction number, Micrometre, HIV/AIDS,
HIV, Accuracy and precision, Potency, Icelandic language, Interactivity, Wind wave, SARS outbreak, Genetics, Infectious disease, Bats, Patent,
MERS, Spanish flu, Tasuku Honjo, Robert Koch, Kumiko Okae, Ministry of Health, Labour and Welfare of Japan, Website about COVID-19 pandemic
in Vietnam, temporarily closed school, Case fatality rate, Mask, event, biological weapon, Diamond Princess, Vaccination rule, Point-of-care testing,
Stay-at-home order ordinance, Incidence, Tagesschau, Districts of Germany, hot spot, Press conference, Podkarpackie Voivodeship, Dashboard,
National Institute for Public Health and the Environment, Upper Austria, Child benefit, Demonstration, Travel warning, COVID-19 pandemic in Aichi
prefecture, Amitabh Bachchan, Tönnies Holding, Patanjali Ayurved, Mayu Watanabe, Logistics, Public transport, Hygiene, Public health, Emergency
medical services, Statistic, Advice, and News ticker

Downloading Search Volume Data From GT
To systematically retrieve data from GT, we used the library
pytrends [34]. We executed the custom script regularly to collect
the RSV data. Each request that was sent gathered a set of

30-day “interest over time” data :

For example, the RSV data gathered for the “Coronavirus
(virus)” from January 1, 2020, to January 30, 2020

were:

We then repeated the requests to collect data consecutively. We

list all the terms in Textbox 1 (topic set ). Our data collection
period for this research was from January 1, 2020 (t=
2020-01-30) to January 31, 2022 (t= 2022-01-31).

Merging of Multiple Short Time Series Trends Into a
Glandular Time Series Over a Longer Period
Inspired by Park et al [35], we devised a range-based merging
algorithm.

Let be an n-day actual search volume time series for a topic

on the days lying in the interval , and let
Xi,t be the actual search volume for a topic i on date t:

Assuming that GT applied the normalization with a common
correction factor Ct to the entire actual search volume time

series, the RSV returned can be considered as :

For any 2 consecutive GT RSV data sets, and , where
v = u + 1 and have the same data collection duration of n days,

based on our previous assumption, and are normalized
with the correction factors Cu and Cv within the interval [u − (n
− 1), u] and [v − (n − 1), v], respectively.

Given X(i,v) = X(i,u+1):

where
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Through the moment estimator of , we can

subsequently obtain the estimate of with respect to the RSV

, :

For example, considering the correction factor of the data point
for the term “Coronavirus (virus)” on January 31, 2020, from
2 RSV series of n=30 is:

Thus, the adjusted data point for “Coronavirus (virus)” on
January 31, 2020, is as follows:

We can thus obtain a 31-day merged search volume (MSV) for
“Coronavirus (virus),” as shown in Table 1.

Through multiple iterations of estimations using a total of p
RSV time series, as shown in Tables 2 and 3, we can finally

obtain an MSV time series for the search term

from t − (n − 1) to t + (p − 1):

Continuing from our previous example, we can eventually obtain
the MSV time series for “Coronavirus (virus)” as follows:

In this study, we opted to use RSV time series data with a length
of 30 days (n=30), and the RSV time series for January 30,
2020, was used as the baseline against which other subsequent
RSV series were calibrated.

Table 1. A sample calculation of the correction factor and adjusted data point of January 31, 2020 , using data sets from January 1,
2020, to January 30, 2020, and from January 2, 2020, to January 31, 2020. Data set keyword: “Coronavirus.”

Merged Google Trends
time series

Correction factor for new data point on

January 31, 2020 

Data downloaded on January
31, 2020

Data downloaded on January
30, 2020

Date

0Out of scopeNot available in the sequence0January 1,
2020

00 / 0 = 1.00000January 2,
2020

00 / 0 = 1.00000January 3,
2020

...............

7575 / 78 = 0.9627875January 27,
2020

9090 / 91 = 0.9899190January 28,
2020

8989 / 88 = 1.0118889January 29,
2020

100100 / 100 = 1.000100100January 30,
2020

100 × 1.003 = 100.3100Not available in the sequenceJanuary 31,
2020
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Table 2. A sample calculation of the correction factor and adjusted data point of February 1, 2020 , using data sets from January 2,
2020, to January 31, 2020, and from January 3, 2020, to February 1, 2020. Data set keyword: “Coronavirus.”

Merged
Google
Trends time
series

Correction factor for new data point on

February 1, 2020 

Data downloaded on February 1,

2020 

Data downloaded on January 31,

2020 

Date

0Out of scopeNot available in the sequence0January 2, 2020

00 / 0 = 1.00000January 3, 2020

...............

7578 / 77 = 1.0137778January 27,
2020

9091 / 91 = 1.0009191January 28,
2020

8988 / 89 = 0.9898988January 29,
2020

100100 / 95 = 1.05395100January 30,
2020

100 × 1.003
= 100.3

100 / 100 = 1.000100100January 31,
2020

72 × 1.008 =
72.60

72Not available in the sequenceFebruary 1,
2020

Table 3. A sample calculation of the correction factor and adjusted data point of February 1, 2022 , using data sets from January 1,
2022, to January 30, 2022, and from January 2, 2022, to January 21, 2022. Data set keyword: “Coronavirus.”

Merged Google
Trends time se-
ries

Correction factor for new data point on

January 31, 2022 

Data downloaded on January 31,

2022 

Data downloaded on January 30,

2022 

Date

76 × 0.3007 =
22.85

Out of scopeNot available in the sequence55January 1,
2022

90 × 0.2764 =
24.88

24.88 / 60 = 0.41466064January 2,
2022

...............

95 × 0.4018 =
38.17

38.17 / 90 = 0.42419094January 26,
2022

88 × 0.4107 =
36.14

36.14 / 87 = 0.41548789January 27,
2022

82 × 0.4107 =
36.14

33.87 / 82 = 0.41308286January 28,
2022

80 × 0.4010 =
33.87

32.08 / 77 = 0.41677783January 29,
2022

79 × 0.4022 =
31.77

31.77 / 76 = 0.41817679January 30,
2022

78 × 0.4149 =
32.36

78Not available in the sequenceJanuary 31,
2022

Construction of Daily Search Volume Networks Using
Merged GT Time Series Data

Let N be the size of the search term set . We
considered the temporal network construction in an R-day rolling
window. To better focus on the changes of MSVs and to ease
the magnitude of differences between MSVs, we followed the
studies by Chu et al [36] and So et al [37] to obtain

square-rooted-differenced data. Thus, the
square-rooted-differenced MSV matrix (Yt) at time t is as
follows:
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A covariance matrix (ρt) of each search term in the
square-rooted-differenced MSV matrix (Yt) can be determined,
where the correlation between the search terms i and j at time

t is .

Using the correlation matrix ρt, we can then construct an
undirected network of search terms with an adjacency matrix
At formation at time t as:

In this study, we used a rolling window length (R) of 30 days
to construct the network.

Calculation of Network Statistics

Network Density
On the basis of the method proposed by Chu et al [36], we
defined the network density (Dt) of a network at time t as
follows:

where Et is the number of edges in the network at time t and Ct

is the number of possible connections between all nodes (ie,
search terms) at time t. Dt assesses the connectedness of the
nodes present at time t. Higher values represent higher
connectedness at a given moment.

Global Clustering Coefficient
As defined by So et al [37], the global clustering coefficient
(GCt) was calculated based on the local clustering coefficients

ci,t of all nodes in the network at the time (ie, ). We first
defined the calculation of the local clustering coefficients for
the search term i as follows:

where ei,t is the “number of connected pairs among the neighbors
of vertex i at time t” and ki,t is the “number of neighbors for
each vertex.”

Thus, the global clustering coefficient (GCt) can be calculated
as follows:

GCt represents the ratio of the number of established connections
(edges) to the number of possible connections. The higher the
value of the coefficient, the more interconnected the network
nodes are.

Calculation of DTW
DTW is an algorithm for measuring the similarity between 2
time series by determining the shortest total distances between
the 2 series [38]. It is useful to detect the leader-follower
interaction. We used the Python library dtw-python (version
1.1.12) to create the DTW-aligned plots [39]. The algorithm in
the library associates a node from the query time series (in our
case, network statistics, network density, and global clustering
coefficients) to a node from the template time series (confirmed
COVID-19 cases in and severity risk score [SRS]) with the
lowest distances.

Calculation of DTW Metric
To quantify the DTW results, we adopted the DTW-based metric
proposed by Laperre et al [40]. The proposed algorithm
augments the existing DTW algorithm by including a
“forward-looking only” constraint, that is, a latent variable (such
as network density and global clustering coefficient) observed
at time t + p can only be mapped to a historical or the current
observation (such as number of COVID-19 cases or SRSs) from

t to t + p, where the time shift value . A time shift
value of 0 indicates that the latent variable moves in sync with
the observation, whereas a value >0 indicates a leading effect
of the latent variable on the observation.

Calculation of the SRS
Adopted from the study by So et al [37], the SRS represents the
presymptomatic transmission owing to possible interaction
between the susceptible population in one country and currently
infected cases in another country, before the confirmed cases
are identified and force isolated or quarantined. Higher scores
indicate stronger signals that the pandemic is uncontrolled,
which could be regarded as a systematic risk assessment.

Ethical Considerations
Ethics approval is not required as no individually identifiable
information was gathered, processed, or analyzed in this
research.
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Results

Transforming Multiple RSVs Into a Single MSV
To extract a search volume time series to reflect the trend of a
specific search interest, we adopted a data transformation
algorithm to construct MSVs using the rolling window approach.
The primary idea was to produce a long time series of MSVs
that could serve as a proxy for the search volume of keywords.
Thus, the MSV series can be used to draw statistical inferences
and predictions. MSV was produced by aggregating the RSV
data while also exhibiting the trend indicated by the RSVs. With
MSV, we were able to extend the investigation horizon beyond
9 months for daily observations and beyond 270 weeks for
weekly observations, which was of interest because 9 months
and 270 weeks are the longest periods for retrieving daily and
weekly RSV data, respectively, from GT. Therefore, MSVs
could be very helpful for tracking search interests over a long
period in public health studies, such as in following the status
of the COVID-19 pandemic, which has now lasted for >2.5
years.

We focused on “interest over time” as the proxy for the actual
search volumes in Google. In this study, we did not specify any
geographic regions but instead adopted the global web search
data to obtain a more generic and globally inclusive searching
phenomenon. Using these filter settings, the daily RSV data
were extracted from GT for further data transformation,
following the calculation procedure shown in Tables 1-3. Using
the ratio of the “interest over time” data points for the same date
in the 2 consecutive sequences, we calculated the correction
factors for each day that existed in both sequences (as tabulated
in the fourth column in the tables) to obtain the averages of the
factors (as shown in the last cell in the fourth columns). The
newly discovered data points (in this example, the data points
on January 31, 2020; February 1, 2020; and January 31, 2022,
respectively) were multiplied by the appropriate average
correction factors (in this example, 1.003, 1.008, and 0.4149,

respectively) to obtain the adjusted data point in the merged
series. This process was repeated consecutively, as shown in
Tables 1-3.

We further visualized and herein presented the process of
creating the MSV series in Figure 1. Using the GT RSV data
of the COVID-19 pandemic during the first 9 months as a
demonstration, the 30-day “interest over time” data set (shown
as 245 dotted lines) for the dates between January 1, 2020, and
September 30, 2020, was downloaded from GT. We then
calculated the next-day interest based on the data from the
previous 29-day data and replicated the steps to compile the
final MSV series (shown as the blue line in Figure 1) with 274
data points of daily MSV. The daily RSVs shown in the 245
dotted lines produced the relative search interest over a fixed
period of 30 days. Extending the investigation period to longer
than 30 days could reduce the sensitivity of the daily RSV in
reflecting the daily time trend of the search interest. In contrast,
the data directly retrieved from GT between January 1, 2020,
and September 30, 2020, contained only 39 data points of
weekly RSVs (shown by the red line in Figure 1). This reduction
of data points implied that we needed to lower the time interval
of investigation to 1 week, meaning that we could not study a
daily dynamic in the search interest. Owing to the constraints
of GT, we could only retrieve weekly RSVs of an interval of at
most 270 weeks. Using our proposed MSV approach, we merged
the 733 RSV series into one singular, extended MSV time series,
aiming to recover the daily trend of the search interest. In fact,
the patterns of the MSV (the blue line) and the weekly RSV
(the red line) were similar, indicating that the transformation
algorithm for constructing the MSV was reasonable in the sense
that the trend of the search interest revealed by the MSV was
consistent with the trend of the search interest revealed by the
weekly RSV provided by GT. This example shows that although
GT restricts the search data retrieval into weekly data points
over a long period, our proposed approach could recover the
daily search volume over the same investigation period to
facilitate subsequent research analyses.
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Figure 1. An example of the process of creating a merged search volume series (data set keyword: “Coronavirus”; dates: from January 31, 2020, to
September 30, 2020). Dotted lines: the 30-day “interest over time” relative search volume (RSV) data set from Google Trends (GT). Red line: the
weekly RSV series retrieved from GT. Blue line: the daily merged search volume series using our transformation algorithm to merge RSVs through a
rolling window approach.

Selection of Coronavirus-Related Search Keywords
To understand the associations between the search interest and
the pandemic spread, we explored a list of coronavirus-related
keywords based on the metrics of “related topic” provided by
GT. We searched the related keywords for 3 seed topics:
“Coronavirus disease 2019,” “Severe acute respiratory syndrome
coronavirus 2,” and “Coronavirus,” with a 7-day sliding window.

By combining the shorter lists of keywords returned by GT
when searching for the 3 seed terms in each 7-day period over
108 weeks (from January 1, 2020, to January 31, 2022), we
obtained a raw list of keywords. Then, we filtered out the
duplicates and irrelevant keywords and eventually settled on a
keyword set of 228 elements (search topics), which are listed
in Textbox 1. Using the transformation algorithm proposed in
the Transforming Multiple RSVs Into a Single MSV section, the
MSV of each keyword was calculated for dynamic network
analysis, which involved compiling network statistics using
related keywords as network nodes for a pandemic risk
assessment.

MSVs and COVID-19 Waves
To understand the relationship between internet search interest
and pandemic development, the MSV trends of several selected
keywords were compared in parallel with the newly confirmed
COVID-19 cases (Figures 2 and 3). Owing to the severity of
the COVID-19 pandemic in the United States compared with
other countries, we evaluated the MSV data against the new
COVID-19 cases in the United States in Figure 2, in addition
to the global cases, as shown in Figure 3. We noticed a similar
pattern between MSV data and the number of COVID-19 cases
in the United States and globally. Therefore, we used the
situation with COVID-19 in the United States as a basis for
further discussion, and the peaks of the 5 waves of COVID-19

in the United States were highlighted in different colors as a
reference to illustrate the different stages in the development
of the pandemic. Diverse associations with the waves can be
observed in the trend comparisons. For example, drastic
reactions in MSVs can be observed for the keywords
“Coronavirus,” “Symptom,” “Airborne transmission,” “Travel
warning,” “Hygiene,” and “Emergency medical service” in
Figures 2A-2D, 2F, and 2H before the number of COVID-19
cases reached the first wave peak (highlighted in light blue) in
early April 2020. These abrupt increases in the search interest
of the general pandemic-related keywords provide evidence of
the capabilities of MSVs in the early detection of outbreak risks.

In contrast, the MSV trends for “Vaccine” and “Rapid diagnostic
test” in Figures 2G and 2I show different variations during the
latter waves of the COVID-19 pandemic. Although vaccination
and efficient diagnostic tests are typically developed in the later
phase of an emerging infectious disease, the corresponding
MSV trends still aligned with symbolic milestones in COVID-19
control efforts. This occurred when effective rapid diagnostic
tests and vaccines for COVID-19 became available in the United
States, during and after the third pandemic waves, respectively.
These diverse associations between the search interest of
keywords and pandemic developments also motivated and
supported our approach to investigating the dynamic
connectedness among the coronavirus-related search keywords
through network analysis.

We also compared the MSV trends of the selected keywords
with the number of confirmed new COVID-19 cases worldwide
in Figure 3. In Figure 3, we can draw similar conclusions to
Figure 2. We also noted an increase in confirmed cases of
COVID-19 globally from April to May 2021, which correlated
with the sharp rise in the MSVs of “Airborne transmission” and
“Vaccine.”
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Figure 2. Comparison of US-confirmed new cases (blue line) sourced from the World Health Organization and the merged search volume of selected
keywords, including (A) Coronavirus, (B) Symptom, (C) Airborne transmission, (D) Travel warning, (E) Public transport, (F) Hygiene, (G) Vaccine,
(H) Emergency medical services, and (I) Rapid diagnostic test (red line), constructed by transforming the relative search volume of Google Trends from
January 1, 2020, to February 3, 2022. Highlighted areas: the 5 wave peaks observed in confirmed new cases in the United States.
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Figure 3. Comparison of worldwide confirmed new cases (cyan line) sourced from the World Health Organization and the merged search volume of
selected keywords, including (A) Coronavirus, (B) Symptom, (C) Airborne transmission, (D) Travel warning, (E) Public transport, (F) Hygiene, (G)
Vaccine, (H) Emergency medical services, and (I) Rapid diagnostic test (red line), constructed by transforming the relative search volume of Google
Trends from January 1, 2020, to February 3, 2022. Highlighted areas: the 5 wave peaks observed in confirmed new cases in the United States.

Dynamic GT Network Construction
After computing the MSVs of all the selected keywords, we
constructed a dynamic GT network based on the correlations
between the search volume data of pairs of selected keywords.
In the network analysis terminology, we established an edge (a
connection) between 2 keywords (also known as nodes in a

network) if the corresponding correlation coefficients were
significantly high (when the correlation coefficient is >0.5; the
threshold we adopted) [36,37]. This approach allowed us to
quantify the connectedness of the relevant search queries using
temporal dynamic network statistics.
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As the search volume of keywords from a common topic
(COVID-19, in our case) represents people’s concerns about
the topic, we anticipated that any common trend or comovement
of the COVID-19–related keywords could indicate people’s
interest in the pandemic as they looked for relevant helpful
information through internet searches. An increase in the MSVs
of different keywords simultaneously might indicate an
increasing concern about the common topic associated with the
keywords.

To incorporate common trends in the search interest of multiple
keywords, network analysis is a viable approach [41-45]. A
network is a natural configuration that integrates common trends
of information about multiple keywords together, from which
we can perform a network analysis; for example, based on
network statistics, we can understand the general interest in a
collection of keywords simultaneously. Through the
connectedness of a GT network [43,46-48], we quantified the
coherence of changes in search interest for different keywords
over time and studied the implications of the pandemic risk in
this research. The set of network nodes is represented by the
set of keywords, which is constant over time. However, the set
of edges changes over time to reflect time-varying patterns of
search interests. By construction, the MSV represents a proxy
time series of the search volume, and the correlation of changes
in the MSVs of 2 keywords exceeding a certain threshold can
be interpreted as a strong comovement whose occurrence can
be used to define an edge of the 2 keywords. For example, if
the correlation between changes in the MSV of “Coronavirus”
and “Symptom” at time t is >0.5 (the correlation threshold we
took in this research), we created an edge between the nodes
“Coronavirus” and “Symptom” in the GT network at time t.
This construction mechanism used the same rationale that was
used in the pandemic network constructions in other studies
[43,46,49]; however, instead of using the number of confirmed
COVID-19 cases in regions, we used the MSVs of keywords.

In addition to using 0.5 as the correlation threshold, we used 2
alternating correlation thresholds—0.4 and 0.6 for sensitivity
analysis. A comparison of the network density and the global
clustering coefficient constructed by the 3 different correlation
thresholds at 0.4, 0.5 (the threshold used in this study), and 0.6
is shown in Figure 4. The pattern of the network density plots
with thresholds of 0.4 and 0.6 is very similar to that of the one
with a threshold of 0.5. We also observed a similar phenomenon
in the global clustering coefficient, with an exception in March
2020, where the coefficient with a threshold of 0.6 showed a
marginally narrower peak than those with thresholds of 0.4 and
0.5.

Following the studies by Chu et al [36], So et al [37], and So
et al [46], the correlations of changes in MSV at time t were
calculated using a rolling window approach that was based on
the past R-day (including time t) MSV changes of keywords;
therefore, the topology of the edges in the GT network would
reflect the search interest characteristics of multiple keywords
at time t. Ultimately, we had a constellation of dynamic GT
networks constructed by correlations of changes in MSVs among
keywords. Experience from the early research papers on
COVID-19 revealed that the dynamic GT network, which
summarized the infodemiology of relevant keywords, could

provide an effective visualization of a pandemic situation [46],
early warning signals of the pandemic [36], and pandemic risk
assessments [37,50].

Figure 5 depicts a snapshot of the dynamic GT networks for 4
significant events: “Public Health Emergency of International
Concern” on January 31, 2020, “COVID-19 was declared as a
global pandemic by WHO” on March 11, 2020, “the Delta
variant was named” on May 21, 2021, and “the Omicron variant
was named” on November 26, 2021. Figure 5 also highlights
the nodes with the top 5 most frequently appearing topic types:
diseases (blue nodes), viruses (orange), vaccines (green),
government agencies (red), and pharmaceutical companies
(purple). It is obvious that the nodes related to diseases (blue
nodes) occurred in the central cluster in all 4 snapshots. Several
virus-related nodes (orange nodes), such as another official
name for COVID-19 (“severe acute respiratory syndrome
coronavirus 2” or “SARS-CoV-2”), were also included in the
central clusters in most of the 4 time points we studied. These
2 observations matched our intuition that the general public
seeks unknown information about COVID-19 through the search
engine.

It was found that the vaccine-related nodes (green nodes) had
a high degree of connectedness on all sampling days, even
before any COVID-19 vaccine was approved for administration.
In Figures 5C and 5D, disease-related and virus-related nodes
drifted away from the cluster center, whereas nodes related to
vaccines and pharmaceutical industry companies moved toward
the center of the cluster.

To study the network macroscopically, we computed 2 network
statistics over time—the network density and the global
clustering coefficient—by using a 30-day rolling window. The
network density is a measure of the node connectedness of a
network, whereas the global clustering coefficient represents
the ratio of the number of established connections (edges) to
the number of possible connections. The higher their values,
the more interconnected the network nodes are. Figure 6 presents
a time series of the GT network density (blue line) and a time
series of the GT network clustering coefficient (green line). In
Figure 6, we also mark the 4 time points from Figure 5 to assess
the relationships among the 2 network statistics, network density
and global clustering coefficient, and the propagation of
COVID-19. In the very early stage of COVID-19, on January
31, 2020, both the network density and global clustering
coefficient were in the middle level of approximately 0.2 for
the network density and 0.12 for the global clustering coefficient
(the maximum value is 1.0). Probably because of the warnings
of an emerging public health concern and because some
keywords are not directly related to the pandemic, the search
interest intensity was already quite high in January 2020. Both
network statistics climbed to a peak of approximately 0.35,
which alerted people to the severity of the disease’s spread, thus
inducing more search interest for the keywords at the same time.
Subsequently, the network density remained at a relatively low
level of approximately 0.15, even when the Delta variant was
named on May 31, 2021. This reflects a relatively lower
attention to the pandemic among the general public owing to
people’s adaptation to and fatigue from the long-term
antipandemic living environment. What is particularly alarming
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is the occurrence of another peak in the 2 network statistics
during October to early November 2021, before the Omicron
variant was named. The GT network density and global
clustering coefficients show a substantial increase in the public’s

interest in searching for keywords, probably indicating growing
public awareness about and panic toward the next phase of the
pandemic. Not long after that, in early 2022, the Omicron variant
had a great impact on many countries.

Figure 4. A comparison of network density and clustering coefficient constructed by 3 different correlation thresholds at 0.4, 0.5 (the threshold used
in the study) and 0.6.
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Figure 5. Snapshots of the dynamic Google Trends network. Snapshots were taken of the network on (A) January 31, 2020, (B) March 11, 2020, (C)
April 31, 2021, and (D) November 26, 2021. Nodes are highlighted with different colors to represent the top 5 categories: diseases (blue), viruses
(orange), vaccines (green), government agencies (red), and pharmaceutical companies (purple).

Figure 6. Network density and global clustering coefficients of the merged Google Trends network over time. The occurrences of significant events
are marked with dotted lines. The 4 significant events marked are as follows: (1) COVID-19 was declared a “Public Health Emergency of International
Concern” (on January 31, 2020), (2) COVID-19 was declared a pandemic (on March 11, 2020), (3) the Delta variant was named (on April 31, 2021),
and (4) the Omicron variant was named (on November 26, 2021).
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Comparing Network Statistics and SRSs Using DTW
Figures 7 and 8 illustrate the association between network
statistics and the COVID-19 pandemic propagation in multiple
directions. As mentioned in the MSVs and COVID-19 Waves
section, the waves of COVID-19 cases represent the progression
of the pandemic. As Figure 7 shows, there was an upward trend
and peak in the dynamic network before every peak of the
COVID-19 pandemic wave (highlighted in yellow). This shows
that the dynamic networks of related keywords were capable
of providing an early signal of not only the first outbreak but
all 5 outbreaks throughout the COVID-19 pandemic (as shown
in Figures 7A and 7B).

We further examined the predictive power of the dynamic
network for the coronavirus-related keywords using the DTW
algorithm [38,39]. By evaluating the similarity between the
network and the newly confirmed cases in the United States,
the resulting paths (the dotted lines) connect the 2 series of data

and show an asymmetric step pattern. The consistently
backslashed direction of the dotted lines suggests the lag-lead
relationship between the dynamic network and the variation in
the daily confirmed cases.

To evaluate the pandemic predictive capability of the dynamic
network among the selected keywords in multiple layers, we
also computed the DTW scores between the network and SRSs).
The SRS, adopted from the studies by So et al [37,50], is
regarded as a systematic measure that assesses the risk of the
COVID-19 outbreak worldwide. A higher SRS represents a
stronger signal, indicating that the global pandemic is
uncontrolled. The DTW diagram in Figure 8 shows the lead-lag
relationship of the SRSs throughout the entire observation period
of the COVID-19 pandemic. These findings indicate that the
dynamic network of related search keywords can predict the
severity of the global risks of a pandemic. If regional search
data are used, the predictability of the regional pandemic risk
is also possible.

Figure 7. The 2-way dynamic time warping diagrams of the confirmed new COVID-19 cases in the United States (blue line) and the network statistics
(black line) of the selected keywords in Google Trends: (A) network density trend versus confirmed new cases in the United States and (B) trend of the
global clustering coefficient versus confirmed new cases in the United States. Yellow highlighted areas mark the 5 wave peaks observed in confirmed
new cases in the United States.

Figure 8. An illustrative evaluation of dynamic time warping (DTW) connections of the severity risk scores (SRSs) of the COVID-19 pandemic in the
United States and the network statistics. Top: the 2-way DTW diagrams of the SRSs of the COVID-19 pandemic in the United States (blue line) and
the network statistics (black line) of the selected keywords in Google Trends: (A) network density trend versus SRSs and (B) trend of global clustering
coefficients versus SRSs. Bottom: (C) The summary plot of the time shifts (p) in each connection in (A), drawn with orange line, and (B), drawn with
blue line. The data points at time shift p = 0 are muted in the plot.
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Quantify the Asynchronous Movement of Statistics
We further quantify our observations in the 2-way DTW plots
in Figures 8A and 8B by tabulating the portion of different time
shift values, which shows the equivalently compelling result.
As shown in Figure 8C, most of the connections between the
SRS series and the network statistics series were on days 0 and
21.

We are not particularly interested in non–time-shifted DTW
connections. Owing to the design of the DTW algorithm, the
start and end of the pair of latent variables and observations
will often warp to each other one-on-one, without any time shift,
resulting in a nontrivial portion of the connections between any
2 time series defaults to P= 0 (ie, no time shift). Thus, we can
safely assume that there is an insignificant amount of
information in these connections, and we also masked the
corresponding points in Figure 8C.

In contrast, the substantial portion of 21-day-forward-shifted
connections offers an interesting insight. As many of the DTW
connections detected have some form of forward time shift, the
connections indicate that the movement of summary network
statistics has a certain leading effect on the COVID-19 observed
statistics. On the basis of our visual inspection and the DTW
metric, the potential of summary network statistics in predicting
real-life COVID-19 events is quite evident.

Dynamic Property of the MSV Network in the
Pandemic Progression
In addition to the magnitude of the dynamic network, we
explored the pattern alterations during the progression of the
pandemic. In Figure 9, the construction of the networks on
March 11, 2020, and October 23, 2021, are depicted, where the
MSV network peaks are observable before the first and the fifth
COVID-19 outbreaks, respectively. In addition to network

density, the global clustering coefficients for these 2 dates also
form peaks, indicating high clustering coefficients in the network
of the selected coronavirus-related keywords during those
periods.

On March 11, 2020, the dense network was represented by
noticeable clusters in Figure 9A, although a small separation
was found between the 2 clusters. Although the nodes of search
queries “Travel warning,” “Airborne transmission,” and
“Vaccine” are connected within the cluster, the nodes for “rapid
diagnostic test” are located farther away from it.

Comparatively, we observe a single large cluster in Figure 9B,
which shows a generally high connectedness among the
coronavirus-related keywords. Moreover, the indicated node
“rapid diagnostic test” has shifted into the main cluster with
another node, “vaccine.” This may reflect the increasing
importance and availability of effective rapid diagnostic tests
for COVID-19 worldwide in the latter phase of the pandemic’s
progression. Conversely, the nodes “Travel warning” and
“Airborne transmission” are located outside the main cluster,
as shown in Figure 9B. This change in their position may imply
a reduced focus in the community owing to a relatively sufficient
understanding of COVID-19 transmission and control. This
finding suggests that the proposed approach to a dynamic MSV
network is a possible infoveillance application that would allow
nonstationary patterns of search interests during the progression
of a pandemic.

We also included the square root of the SRS [37,50] in Figure
10 for comparison. The pandemic network statistics showed an
upward trend that aligned with the variations in SRSs. The GT
network statistics even provided a sensible signal in late 2021,
alerting to the latter peak of SRS, which probably reflected the
notable impact of the Omicron variant worldwide.
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Figure 9. Visualization of the network construction using selected dates: (A) snapshot on March 11, 2020, and (B) snapshot on October 23, 2021.
Highlighted nodes: search queries “rapid diagnostic test,” “vaccine,” “airborne transmission,” and “travel warning.” Large red and blue circles: observable
clusters.
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Figure 10. Two network statistics of the merged Google Trends (GT) network and the pandemic network, compared against the square roots of the
severity risk scores (SRSs): (A) comparison with the GT network density and (B) comparison with the GT global clustering coefficient.

Discussion

Principal Findings
This study introduced an innovative method for handling GT
search data in research analysis, including an algorithm for
constructing an MSV series and a dynamic GT network.

The original data extracted from GT have several limitations
that affected the analysis in this study. First, the search volume
data available in GT are normalized to the specified time and
region [33]. The time series data of “interest over time” of a
particular keyword only indicate the search interest relative to
the highest point for a defined region and period. The resulting
search data were also rescaled as integers ranging from 0 to 100
[33]. The normalization and rounding processes may lead to
data inaccuracy in representing the search interest. In addition,
GT restricts the availability of data over a long period. When
one requests search data over a long duration, only weekly or
monthly data will be returned, rather than daily data [25]. This
restriction greatly reduces the resolution of the search data and
affects further investigation [31,51]. Therefore, this study
introduced a merged algorithm that helps recover the resolution
and accuracy of the search volume data extracted from GT over
long observation periods. The suggested MSVs can broaden
the potential value of GT data in long-term surveillance of health
phenomena.

Strengths and Limitations
Using our novel merged algorithm, we observed similar
phenomena in search volumes, which have been suggested in
previous work, such as certain search terms correlated with

COVID-19–confirmed cases [9], and there were increasing or
decreasing searches for some keywords before major COVID-19
events [51]. However, unlike other previous infoveillance studies
using GT [9,15-21,23-31,52-54], which often have to either
sacrifice data resolution or data time horizon, we are able to use
higher-resolution data with shorter delays for prolonged periods.

In addition to the merged algorithm, we demonstrated the
potential of network analysis as a useful tool for infodemiology
and infoveillance. Network analysis offers not only an integrated
perspective of multiple time series but also cross-sectional
visualization. In this study, we illustrated the cross-sectional
network constructions at different timestamps in Figure 5 to
investigate the clustering effect and associations of various
keywords at different moments. We further presented an overall
view of a temporal network via 2 summary statistics, namely,
network density and global clustering coefficient, and revealed
the lead-lag relationships between the official COVID-19
statistics and the summary statistics. The promising findings
suggest that network analysis could be an important component
for developing new predictive models.

Interestingly, the vaccine-related nodes (green nodes) in Figure
5 had a high degree of connectedness on all sampling days, even
before any COVID-19 vaccine was approved for administration.
It may be inferred that before the start of the pandemic, the
public, health experts, and researchers searched for information
about the coronavirus and its vaccines, resulting in a high
number of correlations at the early stage, as shown in Figure
5A. Later, as the pandemic hit harder and the public began to
understand more about COVID-19, people sought information
more targeted at recovering from the COVID-19 pandemic,
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such as information on vaccinations and medications, as
demonstrated in Figures 5C and 5D. In Figures 5C and 5D,
disease-related and virus-related nodes drifted away from the
cluster center, whereas nodes related to vaccines and
pharmaceutical industry companies moved toward the center
of the cluster.

Organizations such as government agencies and pharmaceutical
companies were also on the radar of public awareness. At the
beginning of the COVID-19 pandemic, members of the public
understandably sought information on preventive measures and
guidance from their government. As the pandemic continued,
the public became familiar with social distancing and testing
measures, and their attention shifted to vaccinations. As a result,
the vaccines and the manufacturers of COVID-19 vaccines thus
became part of the focal points, as illustrated in Figures 5C and
5D, where vaccine-related nodes (green) and nodes of
pharmaceutical companies (purple) move toward the center of
the cluster.

Our findings also revealed the capability of MSVs for the early
detection of outbreak risk of emerging infectious diseases. Early
signals are critical in controlling an emerging infection outbreak,
as they allow policy makers and governments to impose rapid
measures to curb the propagation of the disease. On the basis
of our study findings, the MSVs of the generic keywords, such
as the name of the infectious disease, symptoms, and
transmission method, can provide an early signal of the risk of
a potentially serious outbreak. This early detection may be
related to self-diagnosis or information-seeking behaviors
conducted via the internet, similar to the findings by Mangono
et al [51]. Previous studies have raised the issue that a growing
number of people will search the internet for health information
about emerging diseases and their bodily changes and will make
self-diagnoses [53] and seek preventive measures [23]. This
causes the popularity of the related keywords to increase rapidly
before an actual outbreak. In contrast, public transportation is
considered as a factor in the spread of infectious diseases during
the early stage of a pandemic. Therefore, the related keywords
(eg, “travel warning” and “public transport” in Figures 2D and
2E) could be an indicator of citizens’ mobility intentions and
provide useful information for predicting the spread of a
pandemic.

In addition to discovering the early detection capability, we also
revealed that different related keywords could have increased
in popularity in search engines based on their roles at different
stages of pandemic development. In the 5 observable waves of
the COVID-19 pandemic in the United States since January
2020, each wave consisted of unique epidemiologic
characteristics and caused the US government to take diverse
actions to respond to the outbreaks [55,56]. Unlike other chronic
diseases, the continual evolution of a pandemic and policy
making may drastically vary the association between the public’s
search interests and the progression of a disease of concern. Lu
and Reis [19] also elaborated that the association between some
search keywords and a disease’s progression may not be stable
and persistent in the later waves of an outbreak because of
increased public education about the particular disease.

By aligning the trends of MSVs with the COVID-19 pandemic
waves, we discovered the dynamic property of multiple search
queries when associated with the pandemic’s progression. This
dynamic search pattern may be related to a shift in the public’s
search interests regarding the same aspect of the pandemic. For
example, personal hygiene was a crucial precautionary measure
promoted during the first wave of the COVID-19 outbreak [54].
With appropriate health education and promotion, the public
then developed a fundamental understanding of the measures,
such as handwashing and mask wearing. With the 3 waves of
COVID-19, people raised the demand for vaccines as an
effective precaution against the disease [52]. As can be seen in
our findings (Figures 2F and 2G), there was a shift of public
search interests in precautionary measures from “hygiene” to
“vaccine” after the third wave. Similarly, people with
COVID-19 symptoms apparently considered “emergency
medical service” during the early phases of the pandemic [57],
but with the available “rapid diagnostic test” in 2021, those with
symptoms tended to conduct the rapid tests before seeking
medical services [58]. This yielded an observable shift in public
search interests in diagnostic procedures from “emergency
medical service” to “rapid diagnostic test” during the third wave.
The shifting search interest may have been owing to changes
in information-seeking behaviors before public policy
implementation [51].

As the dynamic relationship between the internet data and the
pandemic trends in the long run limited the potential of the
conventional predictive models using search volumes as
predictors [31], we mitigated this problem by considering the
connectedness of the keywords, which could reflect the actual
linkages of public concerns and human information-seeking
behaviors. In this study, we provided an innovative application
of network statistics that quantified the connectedness of MSV
data in processing the prediction. Although multiple COVID-19
variants occurred that varied the pandemic’s development and
the corresponding implementation of health measures [54], the
resulting network trends could still be longitudinally associated
with the 5 COVID-19 waves in the United States. By using
DTW, the dynamic network of the MSVs was further justified
as a leader of the trend of US-confirmed cases and of the
severity of the global pandemic risk. Although previous studies
revealed that linkages and patterns existed among the search
queries specific to the pandemic [19,51], our proposed method
took the nonstationary pattern among the relevant search queries
into account during pandemic predictions. The method was able
to demonstrate that the network of the merged GT volumes can
be considered as a new form of official web-based data, not
only associated with the pandemic but also capable of predicting
its development.

This study’s approach using network analysis is innovative in
the field of health and epidemiology research. Our early ground
research provided a comprehensive empirical foundation for
applying network statistics to investigate diverse
pandemic-related issues, including infection topology [37],
travel restrictions [43,47,49], and financial impacts [36,45,48].
In particular, pandemic networks using COVID-19 confirmed
cases have proved their capability in tracking and providing
early warnings of infection outbreaks [44,46]. We adapted the
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construction of a pandemic network to an infodemiological
setting by investigating the dynamic GT network. In Figure 10,
we compare our GT network statistics with the corresponding
pandemic network statistics proposed in multiple relevant studies
[36,37,44,46,47,49]. The pandemic network density and global
clustering coefficients were shown to provide early warning
signals of the COVID-19 pandemic [36,37,43]. Interestingly,
both the GT network density and global clustering coefficients
behaved similarly with the pandemic network statistics at the
early stage of COVID-19 progression. On the basis of this
comparison, we anticipate that both sets of network statistics
can convey and deliver useful measures for pandemic risk and
progression. As search data are considered to be complementary
infoveillance measures, our proposed methodology of GT
network analysis provides an important scientific discovery of
the potential usefulness of search volume data in
infodemiological research.

In addition to data analysis, the importance of keyword selection
in infodemiology research has also been emphasized in the
literature [59]. The procedure of excluding noisy queries is
known to be important in ensuring the validity of research
findings. However, there is a lack of a suitable framework for
research on internet searching patterns during a pandemic. To
prevent a stringent keyword selection by excluding potential
keywords, we adopted a novel keyword selection approach
based on relatively explicit data for “related topics” in GT.
Although this approach helped us discover the keywords
relevant to the pandemic and facilitated our interpretation of
the findings, future studies in infodemiology could also adopt
this approach to strengthen their selection of search queries.

We realize that our network consisted of regional topics
associated with countries that have significantly higher than
average internet coverage, such as Switzerland (internet
penetration rate [IPR]: 98%), the United Kingdom (IPR: 98%),
Japan (IPR: 94%), and the United States (IPR: 92%) [7].
Furthermore, IPR is skewed by the level of development of a
country. However, because the proportion of those topics is as
large as other nonregional terms, it is safe to assume that the
network highlighted the interests of internet users in those
regions, but the impact of the regional topics was nonsignificant
and marginal.

Furthermore, we intentionally included most of the keywords
we obtained from GT, as our research focuses on the worldwide
public behavioral pattern during the COVID-19 epidemic.
Despite the seeming irrelevance of some keywords, all the
keywords collectively indicate the information the public

received, with various levels of trustworthiness. Although only
keywords for GT categories associated with regional effects
were excluded in our study, future studies can examine the
determined GT categories and exclude the keywords that are
pathologically, psychosocially, or epidemiologically unrelated
to their specific health concerns. In addition to the time and
labor involved, researchers should consider the objectivity and
validity of manually including or excluding certain keywords
to develop the most rigorous data sets in their research.

Conclusions
As the growth of the epidemic in the United States generally
relates to the transmission across multiple countries, our research
investigates the linkage between worldwide public behavioral
patterns and the COVID-19 pandemic in the United States.
Future studies should further investigate the association between
regional GT data and noncommunicable diseases.

Although we did not focus on investigating the spread of
misinformation during COVID-19, research has shown that
receiving accurate and inaccurate information is inversely
correlated with individuals’ compliance with COVID-19 health
guidelines [60-63]. Our data also show that the public may
actively seek information on misinformation, as evidenced by
the noninsignificant search interest in the term
“hydroxychloroquine” (Textbox 1). Owing to the nature of GT,
we cannot confirm whether the users were searching for
misinformation out of their beliefs in certain misinformation,
the inclusion of users’ interest in the information of different
trustworthiness [60-62] and users’ interest in those who
propagate said information [40] is critical to a comprehensive
infoveillance instrument.

To the best of our knowledge, this study is the first of its kind
to use a rolling window ensemble method [45,64] to recover
data resolution in GT. This is also the first study to investigate
the network statistics of GT data for predicting the development
of a pandemic. The results also provide insights for researchers
in further investigating the patterns of web-based searching
behaviors, which is an important focus in infodemiological
research. With the ongoing rapid growth of internet use, people
will rely increasingly more on web-based information for
decision-making. As the search volume data are freely available
on the GT platform, it is expected that GT will become more
common as a complementary, free, and timely data resource
for traditional surveillance methods of health-related events.
Future studies can focus on expanding the dynamic networks
of search keywords to investigate noncommunicable diseases,
health-related behaviors, and misinformation on the internet.
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