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Abstract

Background: Community-based telemedicine screening for diabetic retinopathy (DR) has been highly recommended worldwide.
However, evidence from low- and middle-income countries (LMICs) on the choice between artificial intelligence (AI)–based
and manual grading–based telemedicine screening is inadequate for policy making.

Objective: The aim of this study was to test whether the AI model is more worthwhile than manual grading in community-based
telemedicine screening for DR in the context of labor costs in urban China.

Methods: We conducted cost-effectiveness and cost-utility analyses by using decision-analytic Markov models with 30 one-year
cycles from a societal perspective to compare the cost, effectiveness, and utility of 2 scenarios in telemedicine screening for DR:
manual grading and an AI model. Sensitivity analyses were performed. Real-world data were obtained mainly from the Shanghai
Digital Eye Disease Screening Program. The main outcomes were the incremental cost-effectiveness ratio (ICER) and the
incremental cost-utility ratio (ICUR). The ICUR thresholds were set as 1 and 3 times the local gross domestic product per capita.

Results: The total expected costs for a 65-year-old resident were US $3182.50 and US $3265.40, while the total expected years
without blindness were 9.80 years and 9.83 years, and the utilities were 6.748 quality-adjusted life years (QALYs) and 6.753
QALYs in the AI model and manual grading, respectively. The ICER for the AI-assisted model was US $2553.39 per year without
blindness, and the ICUR was US $15,216.96 per QALY, which indicated that AI-assisted model was not cost-effective. The
sensitivity analysis suggested that if there is an increase in compliance with referrals after the adoption of AI by 7.5%, an increase
in on-site screening costs in manual grading by 50%, or a decrease in on-site screening costs in the AI model by 50%, then the
AI model could be the dominant strategy.

Conclusions: Our study may provide a reference for policy making in planning community-based telemedicine screening for
DR in LMICs. Our findings indicate that unless the referral compliance of patients with suspected DR increases, the adoption of
the AI model may not improve the value of telemedicine screening compared to that of manual grading in LMICs. The main
reason is that in the context of the low labor costs in LMICs, the direct health care costs saved by replacing manual grading with
AI are less, and the screening effectiveness (QALYs and years without blindness) decreases. Our study suggests that the magnitude
of the value generated by this technology replacement depends primarily on 2 aspects. The first is the extent of direct health care
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costs reduced by AI, and the second is the change in health care service utilization caused by AI. Therefore, our research can also
provide analytical ideas for other health care sectors in their decision to use AI.

(JMIR Public Health Surveill 2023;9:e41624) doi: 10.2196/41624
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Introduction

Diabetic retinopathy (DR) is a leading cause of blindness
worldwide. It often develops 10-15 years after the onset of
diabetes and can take several forms—all potentially causing
vision loss or blindness, including diabetic macular edema
(DME) due to increased retinal vascular permeability and central
retinal thickening, retinal ischemia resulting in the damage or
death of light-sensing retinal photoreceptors, and proliferative
DR, where the growth of fragile new blood vessels causes
vitreous hemorrhage and retinal detachment [1].

In 2020, the global burden of DR and sight-threatening DR
(STDR) was estimated to be 103 million and 29 million people,
respectively, which will increase to 161 million and 45 million
by 2045 due to the increasing prevalence of diabetes mellitus
(DM) [1,2]. From 1990 to 2010, visual impairment due to DR
increased by 64% and blindness by 27% [1], both of which were
due to the rising DM prevalence in low- and middle-income
countries (LMICs). Several studies have confirmed the benefits
of telemedicine screening for DR [3-6]. Compared to no
screening and traditional face-to-face screening, telemedicine
screening is highly cost-effective in the long term. As a result,
telemedicine screening will become the main form of
community-based eye disease screening [5]. Some recent studies
have suggested that using artificial intelligence (AI) can further
reduce the costs of telemedicine screening [3,7-10]. Studies in
high-income countries such as the United Kingdom and
Singapore have shown that when AI is used in DR screening
programs, screening costs can be reduced by up to
approximately 20% compared with the costs incurred in manual
grading [7-9]. This can be easily understood: from the
perspective of a health economic evaluation, the main difference
between the AI model and manual grading is that technology
costs replace labor costs. Therefore, in settings where labor
costs are high, such as in high-income countries, using AI
instead of manual grading would save a lot of screening costs,
making the screening more cost-effective [10]. However,
because labor costs are low in low-income countries, conclusions
from high-income countries may not be equally suitable, and
evidence from LMICs is inadequate. Therefore, the objective
of our community-based telemedicine screening for DR was to
examine whether the AI model can be more cost-effective than
manual grading in LMICs. We conducted a health economic
evaluation by using real-world data from a large
community-based telemedicine screening program for DR in
Shanghai, China. We expect that this study will provide a
reference for policy making with regard to DR screening in the
context of low labor costs.

Methods

Study Setting
This study was conducted in Shanghai, China, wherein the
prevalence of type 2 diabetes among adults was 6.25% between
2016 and 2019 [11]. Since 2010, Shanghai has conducted a
teleophthalmology-based DR screening program under which
residents can undergo fundus photography at community health
service centers. After retinal experts at designated DR diagnosis
centers have made a diagnosis based on these images, screening
results are fed into the community health service center, where
patients are counselled by general practitioners, and medical
advice is offered. By 2017, all 250 community health service
centers in Shanghai were equipped to participate in this program,
and plans had begun to build an AI-assisted DR screening
system [12,13]. A convolutional neural network, a type of deep
learning model [14], was applied to the problem of diagnosing
DR from fundus images, with the aim of replacing retinal experts
in DR diagnosis centers with the AI algorithm on a cloud-based
server. Since 2020, 56 community health service centers have
shifted to an AI-assisted DR screening system. In 2021, these
centers screened approximately 40,000 community residents
for DR by using AI. To maximize the efficiency of the Shanghai
program, community health service centers coordinated
voluntary screening for residents of a given community at a
particular place and time. Those who were diagnosed with DR
at hospitals could still participate in the free annual community
screening to monitor disease progression.

Model Overview
TreeAge Pro (TreeAge Software) was used to build a
decision-analytic Markov model to compare the actual cost,
effectiveness, and utility of manual grading telemedicine
screening and AI-based assessment for DR (Multimedia
Appendices 1-4). The incremental cost-effectiveness ratio
(ICER) and incremental cost-utility ratio (ICUR) were calculated
as the primary results. The effectiveness was defined as years
without blindness per 100,000 people with DM, and the utility
was evaluated by quality-adjusted life years (QALYs). Although
all residents with DM could participate in our community-based
screening, the majority were older people [15,16]; therefore, a
hypothetical cohort of community residents with DM was
followed in the model from the age of 65 years through a total
of 30 one-year Markov cycles [5]. The characteristics of the
simulated cohort were extracted using the Shanghai Digital Eye
Disease Screening Program (Table 1).
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Table 1. Characteristics of the simulated cohort and comparisons between community health centers using artificial intelligence and those using manual
grading.

P valueCHCs using manual gradingCHCs using artificial intelligenceAll CHCsa

Community health center characteristicsb, mean (SD)

.621.2 (0.7)1.1 (0.5)1.1 (0.7)Number of full-time or part-time
ophthalmologists

.546016.2 (5946.4)6774.8 (6238.2)6248.6 (6019.0)Annual numbers of ophthalmolo-
gy outpatients

Screened residents’ characteristicsc

<.00168.8 (7.4)69.8 (6.9)69.3 (7.2)Age (years), mean (SD)

.607807 (45.8)7225 (46.1)15,032 (46.0)Sex (male), n (%)

<.00110.7 (7.3)9.8 (8.0)10.3 (7.7)Duration of diabetes (years),
mean (SD)

<.0010.3 (0.4)0.4 (0.4)0.4 (0.4)Visual acuity of right eye (log-
MAR), mean (SD)

<.0010.3 (0.4)0.4 (0.4)0.4 (0.4)Visual acuity of left eye (log-
MAR), mean (SD)

aCHC: community health center.
bIn 2019, we conducted an investigation of the ophthalmic resources in Shanghai. Out of 250 community health centers, 111 were randomly selected.
After matching with the Shanghai Digital Eye Disease Screening program data, 34 community health centers using artificial intelligence and 77
community health centers using manual grading–based telemedicine screening were investigated. We compared both these groups to see whether the
community health centers’ characteristics were different between those choosing new technology and those who did not.
cA total of 32,695 residents with diabetes were screened in the Shanghai Digital Eye Disease Screening program. Among them, 15,663 residents were
in the community health centers with artificial intelligence, and the rest 17,032 were in the community health centers with manual grading. We compared
the residents’ characteristics in both groups of community health centers. Although some residents’ characteristics were significantly different owing
to the large sample size in the 2 groups, the differences were not clinically meaningful. Therefore, it can be assumed that there is no practical difference
between the 2 groups.

Individuals were enrolled as healthy (free from DR) or unhealthy
(experiencing DR) and could die due to any reason. According
to the English National Screening Program for Diabetic
Retinopathy, a Markov model was constructed that included
non-STDR, STDR, and DME [5,15-17]. The category was
assigned based on the DR grade in the worse eye. During each
1-year cycle, an individual had a risk of progressing to the more
severe stage or staying in the same stage. However, the model
does not allow returning to an earlier stage even with treatment
because of the nature of the disease. Moreover, the treatment
can only decrease the probability of progression to the next
stage. The prevalence of DR, the incidence of DR (including
STDR and DME), transition probabilities, characteristics of DR
screening tests, referral and treatment compliance, utility,
mortality, and other relevant parameters were collected from
published studies specific to Shanghai, other cities in China,
and other Asian regions, as well as unpublished data sources
(eg, Shanghai Digital Eye Disease Screening Program). The
costs of screening, ocular examinations, and treatment were all
derived from a real-world eye disease screening program in
Shanghai and the unified health care service pricing of the
Shanghai Municipal Health Commission. The parameters used
in the basic analysis and the ranges used in the sensitivity
analyses are listed in detail in Multimedia Appendices 1-4.

Overview of the Screening Strategies

Manual Grading–Based Telemedicine Screening
We invited the entire population with DM living in communities
to participate in the DR screening program at local community
health centers. All the participants underwent a series of
screening tests conducted by trained general practitioners,
ophthalmic technicians, optometrists, and ophthalmologists.
The screening included a vision acuity test, refraction
measurement by an autorefractor, and fundus photography using
a non–mydriatic fundus camera. The data were transferred to
the corresponding designated diagnosis center through a
telemedicine platform after the completion of all the tests. After
all the participants in 1 community health center completed the
annual screening, the community health center contacted the
designated diagnosis center, and 2 retinal experts
(ophthalmologists) began to make the diagnosis based on retinal
photography. In 2 weeks, screening results were provided as
feedback to the community health center, where residents could
receive medical advice from the general practitioners. Finally,
patients with suspected STDR were referred to specialized
ophthalmic hospitals or tertiary hospitals for a detailed
re-examination to confirm the diagnosis (Multimedia Appendix
5 shows the screening and referral pathway). Those who were
confirmed to have STDR were assumed to receive appropriate
treatment and routine clinical care according to the severity of
DR.
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AI-Assisted DR Telemedicine Screening
We invited the entire population with DM living in the
community to participate in the DR screening program at the
local community health center. The screening process was the
same as that described for the manual grading–based
telemedicine screening. However, after all the screening tests
were completed, the data were transmitted to the AI algorithm
on a cloud-based server center through the telemedicine
platform. The screening results were provided as feedback
immediately. Further management of patients with suspected
STDR was the same as that described for manual grading–based
telemedicine screening.

Prevalence and Transition Probabilities
Data on the prevalence and incidence of DR, DME, and STDR
were collected from published studies in Shanghai [15,18].
Because Jin et al’s [18] study only reported the 5-year incidence
of STDR and DME, the 1-year incidence was calculated based
on the formula: r = −log (1 − p)/t, where r represents the 1-year
incidence and p represents the cumulative incidence over time
interval t [19]. Other transition probabilities were obtained from
published studies specific to China, and if few data were
available for Chinese patients, data from other Asian regions
were used. We searched PubMed and China National
Knowledge Infrastructure by using the following combinations
of terms: “diabetic retinopathy” AND “progression” OR
“transition” AND “Chinese” OR “China.”

Screening and Intervention Costs
Our study included both direct and indirect costs and analyzed
them from a societal perspective. Direct medical costs comprised
the charges of screening, examination, and treatment. Direct
nonmedical costs consisted of transportation costs related to
hospital visits, and indirect costs consisted of family members’
time associated with the visits and their wage loss. All costs
were collected in Chinese yuan and then converted into US
dollars at an exchange rate of CNY 6.90 per dollar [20]. All
cost data are listed in Multimedia Appendices 4 and 6-8.

The screening costs were determined based on the Shanghai
Digital Eye Disease Screening Program. The screening costs
consisted of the purchase and maintenance costs of equipment,
labor costs of medical personnel, transportation fees, and income
loss for residents. We calculate the annualized cost for fixed
assets by assuming a life span of 5 years and no salvage value.
The construction and maintenance costs of the telemedicine
platform were based on the Shanghai Digital Eye Disease
Screening Program. Based on our field observations, it took
6.2, 3, 3.3, and 4.8 minutes on average for 1 participant to
complete registration, visual acuity test autorefraction, and
retinal photography, respectively. Theoretically, a team with 4
optometrists could screen approximately 100 participants per
day, but under real-world working conditions, this is nearly 30
per day. As the participants in our model were older than 65
years, we assumed that they did not incur wage loss. Moreover,
we did not include wage loss for the accompanying family
members in the screening costs. Therefore, the total costs per
person for manual grading–based and AI-based telemedicine
screening were US $10.10 and US $9.60, respectively.

Multimedia Appendix 6 shows the detailed composition of the
screening costs.

To calculate the costs of the detailed re-examinations after
referral, direct medical costs consisted of the costs of ocular
examinations and equipment and wages for medical personnel;
direct nonmedical costs comprised transportation fees related
to the visits; and indirect costs included 1 accompanying family
member’s wage loss for time spent and per capita daily income
in Shanghai in 2020. The examination costs were the unified
pricing of the Shanghai Municipal Health Commission. Because
public hospitals are nonprofit institutions, the money from these
fees is mainly used to subsidize the cost of health care services.
Hence, prices in public hospitals can be used to estimate the
direct medical costs. Detailed information on the hospital-based
examination costs is provided in Multimedia Appendix 7. It
was assumed that the wage loss of the accompanying family
member for referral was 0 because the majority of them were
older than 65 years.

For treatment costs, direct medical costs included the costs of
treatment, equipment, and wages for medical personnel; direct
nonmedical costs consisted of costs of transportation related to
the visits; and indirect costs included 1 accompanying family
member’s wage loss based on time spent and per capita daily
income in Shanghai in 2020. In the first year, patients with DME
were assumed to have received 3 antivascular endothelial growth
factor injections. Photocoagulation or vitrectomy was
administered to patients with severe nonproliferative DR or
proliferative DR. In the follow-up years, an average of 1
antivascular endothelial growth factor injection was
administered, and an annual outpatient review was required for
patients with STDR. Direct medical costs were estimated using
the prices of health care services in public hospitals. The total
economic burden for blind patients in the first year was
estimated to be US $8920, which included 53.2% direct medical
costs, 6.4% direct nonmedical costs, and 40.4% indirect costs
(loss of labor resources for family members and low-vision
services costs), and there were only indirect costs in the
follow-up years [5,21]. Detailed information on the treatment
costs is provided in Multimedia Appendix 8.

Utility and QALYs
We estimated the utility values for each DR stage (seen in
Multimedia Appendix 9) to calculate QALYs. Utility values
were based on published studies from China and other Asian
countries [21,22]. Because the residents who participated in the
screening should have diabetes, utility was assumed to be 0.87
but not 1.0 for people without DR, 0.79 for those with
non-STDR, and 0.7 for those with STDR (including severe
nonproliferative DR, proliferative DR, and DME). The utility
value for people with blindness was assumed to be 0.55 [22].
All the values for the base case and sensitivity analyses are
listed in Multimedia Appendix 3.

Compliance
Compliance with referral to specialized ophthalmic hospitals
or tertiary hospitals for a full examination among patients
screened for signs of STDR was assumed to be 50.4% for
manual grading–based telemedicine screening, according to our
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investigation in Shanghai [23]. However, compliance with
AI-based telemedicine screening was unclear. Because only 1
published study suggested that adopting an AI-assisted diagnosis
model in DR screening may impact the participants’ adherence
to ophthalmic care [24], the evidence is insufficient. Therefore,
we assumed that compliance with referral in AI-based
telemedicine screening was the same as that in manual
grading–based telemedicine screening, while we set a wide
range (±25%) for sensitivity analysis (Multimedia Appendix
3).

Screening Accuracy
The accuracy of AI-based telemedicine screening was extracted
from published studies specific to the AI-assisted screening
model conducted in Shanghai based on the current dominant
architecture of convolutional neural networks (Multimedia
Appendix 10) [25]. Briefly, the sensitivity was 80.47% (95%
CI 75.07%-85.14%) and the specificity was 97.96% (95% CI
96.75%-98.81%) for STDR [25]. In our screening program, 2
experienced ophthalmologists were employed to make the
diagnoses based on the retinal images. Furthermore, the accuracy
of the manual grading–based telemedicine screening was
assumed to be 100%, which was in accordance with the DR
diagnosis criteria [8,9,26,27]. However, as described in some
other studies, since trained graders instead of ophthalmologists
performed the grading and diagnosis [5,7] in the sensitivity
analysis, we adopted the accuracy range of the manual grading
based on the Singaporean study (Multimedia Appendix 3) [7].

Other Parameters
The natural age-specific mortality rates of the general Chinese
population reported by Zhang and Wei [28] were used in this
study. Increased odds of mortality were assumed for people
without DR but with DM, non-STDR, STDR, and blindness
(Multimedia Appendix 3) [29,30]. Both costs and health state
utilities were discounted at a 3.5% annual rate in the base
analysis, following the National Institute for Health and Care
Excellence recommendations [31]. For the cost-effectiveness
threshold, 2 thresholds representing cost-effectiveness and high
cost-effectiveness were used according to the World Health
Organization recommendations [5,21]. Among the interventions
improving the patients’ utilities, those that cost less than the
gross domestic product (GDP) per capita are defined as highly
cost-effective, those that cost 1-3 times the GDP per capita are
defined as cost-effective, and those that cost more than 3 times
the GDP per capita are determined as not cost-effective [32].
On the contrary, among the interventions reducing the
participants’ utilities, among those saving costs higher than 3
times, the GDP per capita was defined as highly cost-effective;
among those saving between 1 and 3 times, the GDP per capita
was defined as cost-effective; and those costing less than the
GDP per capita were determined as not cost-effective [32]. As
the GDP per capita in Shanghai in 2020 was reported to be US
$22,600, the thresholds in this study were defined as US $22,600
and US $67,800 [33].

Outcomes
The ICER and ICUR were calculated as the difference in the
total costs between the AI-assisted and manual grading
telemedicine screening divided by the difference in the total
years without blindness and the QALYs between the 2
conditions, respectively. Values for the AI-assisted screening
cohort minus those for the manual grading screening cohort,
which were set as the baseline, were calculated as the
differences.

Sensitivity Analysis
Extensive 1-way deterministic and probabilistic sensitivity
analyses were performed to calculate the uncertainties of the
base-case results. A variation of 10% was adopted because
probability-related statistics (ie, utility, prevalence, sensitivity,
specificity, transition probability, and compliance) were mainly
derived from previously published studies. For the influence of
AI use on compliance with referral, a range of 25% was used.
A large floating range of 50% was adopted for these costs. In
addition, we adopted the accuracy range for manual grading
according to the Singaporean study (Multimedia Appendix 3)
to account for the influence of trained graders performing the
grading and diagnosis instead of retinal experts [7]. A
probabilistic sensitivity analysis was conducted using Monte
Carlo simulation for 10,000 simulations to assess the robustness
of the base case analysis. Beta distributions were adopted for
probability-related data and utility values, gamma distributions
were used for costs, and log-normal distributions were used for
odds ratios. The methods and results conformed to the
Consolidated Health Economic Evaluation Reporting Standards
(2022) (Multimedia Appendix 11).

Ethics Approval
This study was mainly based on the secondary analyses of
published data. Written informed consent was obtained from
all the participants. All the study data were anonymous. There
were no compensation fees for the participants. This study was
approved by the Institutional Review Board of the Shanghai
General Hospital (2022SQ272) and Shanghai Eye Diseases
Prevention and Treatment Center (2022SQ007).

Results

The cost-effectiveness and cost-utility analyses showed that
AI-based telemedicine screening was dominated by manual
grading–based telemedicine screening in Shanghai (Table 2).
In the manual grading–based telemedicine screening, a
community resident with DM would incur a total cost of US
$3265.40, including screening, hospital referral for confirmation,
and treatment as needed, with 9.83 years without blindness and
6.753 QALYs. In the AI-based telemedicine screening, a
community resident with DM would incur a total cost of US
$3182.50, with 9.80 years without blindness and 6.748 QALYs.
Therefore, compared with the cost of manual grading–based
telemedicine screening, that of the AI-based telemedicine
screening model was 2.5% lower, while the years without
blindness was 0.3% less, and the QALYs were 0.1% less.
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Table 2. Base-case cost-effectiveness and cost-utility resultsa.

ICURd (USD)ICERc

(USD)

Incremental quality-
adjusted life years per
100,000 people
screened

QALYb

per

person

Incremental
years without
blindness per
100,000 people
screened

Years with-
out blindness
per person

Incremental costs
per 100,000 people
screened (USD)

Costs per
person
(USD)

15,216.962553.39–544.786.748–3121.329.80–8,289,840.653182.47AIe-assisted
model

N/AN/AN/A6.753N/A9.83N/Af3265.37Manual grading

aCosts, years without blindness, and quality-adjusted life years are lifetime values per person, whereas incremental costs, incremental years without
blindness, incremental cost-effectiveness ratio, incremental quality-adjusted life years, and incremental cost-utility ratio are calculated against the manual
grading–based telemedicine screening scenario per 100,000 people screened.
bQALY: quality-adjusted life year.
cICER: incremental cost-effectiveness ratio.
dICUR: incremental cost-utility ratio.
eAI: artificial intelligence.
fN/A: not applicable.

Our results showed that by replacing manual grading–based
telemedicine screening with AI-based telemedicine screening,
1 participant could save US $15,216.96 but needed to lose 1
more QALY (ICUR=US $15,216.96), indicating that AI-based
telemedicine screening was not cost-effective as in Shanghai
in 2020; at least US $22,600 (GDP per capita) should be saved
if 1 more QALY is lost due to the shift in interventions. A 1-way
deterministic sensitivity analysis of cost-effectiveness and
cost-utility analyses indicated that the impact of the adoption
of AI on compliance with referral, costs of on-site screening in
manual grading–based telemedicine screening, costs of on-site
screening in AI-based telemedicine screening, treatment costs
for the follow-up of patients with DME, and treatment costs for
the follow-up of patients with severe nonproliferative DR and
proliferative DR were the 5 most influential variables. In

particular, according to the cost-utility analysis, if the adoption
of AI could improve compliance with referrals by 7.5%, the
AI-assisted model might be cost-effective; if compliance was
improved by 17.5%, the AI-assisted model might be highly
cost-effective; and if compliance was improved by 25%, the
AI-assisted model might be the absolutely dominant strategy,
as it could save costs and increase the years without blindness
and QALYs (Multimedia Appendix 12). Moreover, the increase
in the costs of on-site screening in manual grading–based
telemedicine screening and the decrease in the costs of on-site
screening in AI-based telemedicine screening might help the
AI-based telemedicine screening to be cost-effective (Figure
1). The detailed sensitivity analysis results of the other
parameters are shown in Multimedia Appendices 13 and 14.

JMIR Public Health Surveill 2023 | vol. 9 | e41624 | p. 6https://publichealth.jmir.org/2023/1/e41624
(page number not for citation purposes)

Lin et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. One-way deterministic sensitivity analysis (Tornado diagram). A. One-way sensitivity analysis of cost-effectiveness. B. One-way sensitivity
analysis of cost-utility. Since negative values of incremental cost-effectiveness ratio or incremental cost-utility ratio might occur due to the change of
compliance with referral after the adoption of artificial intelligence (multiplier), detailed results have been shown in Multimedia Appendix 12 separately.
Therefore, in this Tornado diagram, the impact of the change of compliance with referral after the adoption of artificial intelligence (multiplier) is not
shown. AI: artificial intelligence; DME: diabetic macular edema; ICER: incremental cost-effectiveness ratio; ICUR: incremental cost-utility ratio;
NPDR: nonproliferative diabetic retinopathy; PDR: proliferative diabetic retinopathy.

Probabilistic sensitivity analysis showed that the base-case ICER
and ICUR were robust to randomly distributed parameters
(Figure 2). We obtained cost-effectiveness acceptability curves
by taking 10,000 random draws (Figure 3). This means that
when both AI-based and manual grading–based telemedicine

screening were available, manual grading–based telemedicine
screening was the dominant strategy in 60.6% of the simulations
under the threshold of GDP per capita (US $22,600) and in
84.5% of the simulations under the threshold of 3 times the
GDP per capita (US $67,800).
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Figure 2. Probabilistic sensitivity analysis. A. Probabilistic sensitivity analysis of cost-effectiveness. B. Probabilistic sensitivity analysis of cost-utility.
GDP: gross domestic product.
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Figure 3. Cost-effectiveness acceptability curves. AI: artificial intelligence; GDP: gross domestic product.

Discussion

Principal Findings
This study presents one of the first health economic evaluations
in the context of low labor costs in an LMIC setting of
competing telemedicine models for community-based DR
screening using manual grading and AI models. In line with
previous studies [7,8], our analysis was based on an established
telemedicine screening program. We showed that, in this
context, the value of AI-based telemedicine DR screening
depended heavily on the referral compliance of patients with
suspected STDR. If this compliance did not increase, AI-based
telemedicine DR screening would not be more cost-effective
than manual grading–based telemedicine DR screening because
it would decrease the long-term screening effectiveness and
individuals’ health utility and not save enough costs.

Prior studies in Singapore and the United Kingdom [7,8] showed
that replacing manual grading with an AI model for DR
screening led to a 12%-20% cost reduction. A study in Scotland
reported an even greater cost reduction of 46.7% [9]. These
studies were conducted in high-income countries in the context
of high labor costs. However, China’s national conditions differ
from those in high-income countries. One of the most important
differences is that the labor costs of the medical staff are much
lower in China. For example, in Singapore, the labor cost for
DR grading is US $26 per participant [7], which is over 20 times
that of the labor cost for manual grading in Shanghai.
Consequently, in the context of low labor costs, a reduction in
screening costs resulting from the use of AI solutions is limited
in China.

In the Shanghai program, the on-site screening cost for 1
participant, including screening examinations and diagnosis,
was US $10.10 in the manual grading model and US $9.60 in
the AI-assisted model—a reduction of only 5%. Moreover, the
labor costs of the medical staff in our screening program were
among the highest in China. For example, according to the
Wenzhou ophthalmologic screening program, the labor cost for
on-site screening examinations and diagnosis of glaucoma was
US $1.70 per participant, which was about a quarter of the labor
costs in our Shanghai program (US $7.20 per participant for
manual grading–based telemedicine screening, Multimedia
Appendix 6) [21], and according to the Finance Department
and Procurement Center of Beijing Tongren Hospital, Beijing
Tongren Eye Centre Ocular Reading Centre, and China
Intelligent Ophthalmology Big Data Research Center, the labor
costs for on-site screening examinations and diagnosis were US
$1.75 per participant for traditional face-to-face screening and
US $0.80 per participant for manual grading–based telemedicine
screening [5], which is only one-ninth of the labor costs in our
Shanghai program (US $7.20 per participant for manual
grading–based telemedicine screening, Multimedia Appendix
6). Because the main difference between the cost components
of the AI-assisted model and those of the manual grading model
is that equipment and telemedicine platform costs replace labor
costs, in settings where labor costs are extremely low, cost
reduction via the adoption of AI is expected to be even lesser.
Therefore, AI-assisted DR screening is less cost-effective in
other urban areas of China.

Our sensitivity analysis confirmed these results. The on-site
screening costs of both manual grading and AI-assisted models
are among the most influential variables. An increase in the
on-site screening costs of manual grading by 50% or a decrease
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in the on-site screening costs of the AI-assisted model by 50%
may help AI-based telemedicine screening be cost-effective. In
other words, the gap between the on-site screening costs of the
manual grading model and the AI-assisted model is the key
point. Moreover, the cost of AI software was only 7% of the
on-site costs in AI-based telemedicine screening (Multimedia
Appendix 6). Therefore, even if the AI software were completely
free, a 50% reduction in the on-site screening costs of the
AI-assisted model would not be achieved. As a result, unless
the labor costs of medical staff increase dramatically in the
future, the AI-assisted model will be hardly cost-effective in
Shanghai, holding all the other conditions constant.

However, there was one exception to this. Our sensitivity
analysis shows that if the referral compliance of patients with
suspected STDR increased after the adoption of AI even to a
small extent, then the AI-assisted model would be cost-effective.
A study in Missouri [24] suggested that after the adoption of
the automated retinal image assessment system, which is based
on AI, the rates of completed referral eye examinations at 3, 6,
and 12 months after screening increased from 9.4% to 32.6%,
from 13.4% to 46.7%, and from 18.7% to 55.4%, respectively
[24]. However, relevant evidence is still inadequate; therefore,
it is difficult to determine whether this improvement is an
isolated case. Previously, we implemented a discrete choice
experiment in Shanghai to measure individuals’preferences for
AI-based screening [34]. The results suggested that the impact
of the adoption of AI on individuals’ preferences may be
bidirectional. On the one hand, algorithm aversion should be
noted, which means that compared to manual grading, the
residents were in disfavor of the AI-assisted screening
technology [34,35]. On the other hand, the immediate feedback
of retinal screening results by the adoption of AI could increase
the individuals’ preferences and have profound effects on
participants’ follow-up behavior [24,34]. Nevertheless, there is
still a lack of empirical studies on the association between the
results of feedback efficiency and residents’ referral compliance.

This study has several strengths. This study may provide a
reference for policy making in planning community-based DR
screening in LMICs by modelling 2 practical telemedicine
screening models for DR by using real-world data from an
ongoing program in urban China. In addition, we conducted a
sensitivity analysis of our models within wide ranges and
identified the most influential variables affecting the decision
to use AI and manual grading in telemedicine screening.
Therefore, our conclusions provide practical value in the

policy-making process regarding when to deploy AI-assisted
diagnostic technology.

Limitations
Our study had several limitations despite its numerous strengths.
Most notably, we only compared the models for centralized
screening. Other models must also be considered going forward.
For example, in Shanghai, some community health service
centers are beginning to provide DR screening as part of their
outpatient services for patients with diabetes. This change in
the model may impact both the costs and patients’ compliance,
thus altering the results of health economic evaluations such as
ours. Second, our comparison is based on the premise that both
human- and AI-based models are available and affordable.
However, in some remote regions, due to the lack of human
resources, manual screening for eye disease may be impractical,
and AI-based screening, if available, may be the only option.
Third, our study is mainly based on empirical data from
Shanghai; therefore, it cannot be representative of the whole of
China because of the huge regional and medical care differences
between urban and rural areas. Therefore, there is an urgent
need for more extensive and in-depth studies. However, as we
have discussed above, the labor costs of medical staff in
Shanghai are among the highest in China, and AI-based
telemedicine screening will become even more less
cost-effective if the labor cost of medical staff is further reduced.
Therefore, our findings can be extrapolated within the Chinese
context.

Conclusion
Our study may provide a reference for policy making in planning
community-based telemedicine screening for DR in LMICs.
Our findings indicate that unless the referral compliance of
patients with suspected STDR increases, the adoption of the AI
model may not further improve the value of telemedicine
screening compared to that of manual grading in LMICs. The
main reason is that in the context of low labor costs, the direct
health care costs saved by replacing manual grading with AI
are limited, and screening effectiveness will decrease. In
conclusion, our study suggests that the magnitude of the value
generated by this technology replacement depends mainly on
2 aspects. The first is the extent of direct health care costs
reduced by using AI, and the second is the change in health care
service utilization caused by using AI. Therefore, our research
also provides analytical ideas for other health care sectors in
addition to eye care when deciding whether to use AI.
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