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Abstract

Background: Opioid-related overdose mortality has remained at crisis levels across the United States, increasing 5-fold and
worsened during the COVID-19 pandemic. The ability to provide forecasts of opioid-related mortality at granular geographical
and temporal scales may help guide preemptive public health responses. Current forecasting models focus on prediction on a
large geographical scale, such as states or counties, lacking the spatial granularity that local public health officials desire to guide
policy decisions and resource allocation.

Objective: The overarching objective of our study was to develop Bayesian spatiotemporal dynamic models to predict
opioid-related mortality counts and rates at temporally and geographically granular scales (ie, ZIP Code Tabulation Areas [ZCTAs])
for Massachusetts.

Methods: We obtained decedent data from the Massachusetts Registry of Vital Records and Statistics for 2005 through 2019.
We developed Bayesian spatiotemporal dynamic models to predict opioid-related mortality across Massachusetts’ 537 ZCTAs.
We evaluated the prediction performance of our models using the one-year ahead approach. We investigated the potential
improvement of prediction accuracy by incorporating ZCTA-level demographic and socioeconomic determinants. We identified
ZCTAs with the highest predicted opioid-related mortality in terms of rates and counts and stratified them by rural and urban
areas.

Results: Bayesian dynamic models with the full spatial and temporal dependency performed best. Inclusion of the ZCTA-level
demographic and socioeconomic variables as predictors improved the prediction accuracy, but only in the model that did not
account for the neighborhood-level spatial dependency of the ZCTAs. Predictions were better for urban areas than for rural areas,
which were more sparsely populated. Using the best performing model and the Massachusetts opioid-related mortality data from
2005 through 2019, our models suggested a stabilizing pattern in opioid-related overdose mortality in 2020 and 2021 if there
were no disruptive changes to the trends observed for 2005-2019.
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Conclusions: Our Bayesian spatiotemporal models focused on opioid-related overdose mortality data facilitated prediction
approaches that can inform preemptive public health decision-making and resource allocation. While sparse data from rural and
less populated locales typically pose special challenges in small area predictions, our dynamic Bayesian models, which maximized
information borrowing across geographic areas and time points, were used to provide more accurate predictions for small areas.
Such approaches can be replicated in other jurisdictions and at varying temporal and geographical levels. We encourage the
formation of a modeling consortium for fatal opioid-related overdose predictions, where different modeling techniques could be
ensembled to inform public health policy.

(JMIR Public Health Surveill 2023;9:e41450) doi: 10.2196/41450
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Introduction

Opioid-related overdoses continue to be at crisis levels in
communities across the United States, with more than 75,673
fatal overdoses in the 12-month period ending in April 2021
[1-7], worsening during the COVID-19 pandemic [8].
Opioid-related deaths increased more than 5-fold in
Massachusetts between 2000 and 2016, with more than 2000
per year from 2016 to 2021 [9,10]. Fatal opioid-related overdose
rates above the national level have been ubiquitous across
communities in Massachusetts [11]. Despite this crisis, public
health responses to the opioid overdose epidemic have been
limited by an inability to rapidly identify current fatal overdose
patterns, predict future local clusters, and evaluate the
effectiveness of interventions.

Identification and prediction of local fatal opioid overdoses
require a comprehensive and high-quality surveillance system
that provides data sources to capture granular geographic
information of the fatal opioid overdose cases across space and
time. Ideally, additional information such as individual
demographics, past medical history (particularly mental health
history), local drug supply, and other risk factors should be
included as well to enhance our understanding of the opioid
crisis. Many states have established surveillance systems to
monitor opioid-related morbidity and mortality to inform
planning and evaluate control efforts. Some surveillance systems
include unlinked individual data sources for different
opioid-related reporting (eg, vital records and prescription drug
monitoring programs), and some aim to provide an individually
linked database across various data sources [12]. While the latter
provides much enhanced data capacity for a wide range of
opioid-related research, creating such linked databases takes
substantial time and financial resources.

Accurate identification and prediction of fatal opioid-related
overdose trends also requires sophisticated spatial and predictive
analytical approaches, as noted in a recent review of
methodological approaches for the prediction of opioid
use–related epidemics in the United States [13]. Most published
literature has focused on the identification of community- or
neighborhood-level risk factors for opioid-related overdose. For
example, Bozorgi et al [14] explored different machine learning
and spatial analytical approaches to identify leading contextual
risk factors for drug overdose at the block group level in South
Carolina. A similar study by Schell et al [15] also focused on
identifying new neighborhood-level predictors of opioid-related

overdose deaths in Rhode Island at the census block group level,
using least absolute shrinkage and selection operator and random
forest algorithms. Abell-Hart et al [16] identified counties with
a high number of underserved opioid overdose patients in New
York state. Basak et al [17] detected spatiotemporal hot spots
(ie, counties) at high risk of prescription opioid misuse and
overdose using regression models that relied on Medicare claims
data in Virginia, North Carolina, and West Virginia.

Statistical models or machine learning techniques proposed
specifically for prediction purposes are limited, with most
previous studies performed at the US county or state
level [18,19], lacking the spatial granularity needed to guide
local public health departments for preemptive actions. Bayesian
spatiotemporal models have received substantial attention in
the past several years in opioid-related research, given their
ability to include temporal and spatial correlations and improved
precision in small area estimation [20-22]. Sumetsky et al [20]
for instance, developed a Bayesian logistic growth model for
opioid overdose mortality predictions for 146 counties in North
and South Carolina.

In this study, we developed and validated several Bayesian
spatiotemporal dynamic predictive models designed for small
area forecasting of opioid-related overdose mortality at the ZIP
Code Tabulation Area (ZCTA) level. We investigated the
benefits of including various area-level demographic and
socioeconomic factors in improving the prediction. The
predictive performance was assessed using opioid-related
overdose mortality data from Massachusetts between 2005 and
2019. We identified the top ZCTAs with the highest predicted
fatal opioid overdose rates or counts and by urban and rural
areas. Our prediction results can help inform local public health
departments’ planning and targeting of resource allocations.

Methods

Opioid-Related Mortality Data
Opioid-related mortality data were obtained from the
Massachusetts Department of Public Health’s (MDPH’s)
Registry of Vital Records and Statistics (RVRS) for 2005
through 2019. International Classification of Disease, Tenth
Revision, codes for mortality were used to select from the
underlying cause of death field by RVRS staff and identify
poisonings or overdoses: X40-X44, X60-X64, X85, and
Y10-Y14. All multiple underlying cause of death fields were
then used to define opioid-related death with T40.0, T40.1,
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T40.2, T40.3, T40.4, and T40.6. We excluded opioid-related
deaths for individuals younger than 20 years, since fatal
opioid-related death was rare in this age group (n=191). This
age grouping also allows for comparison of opioid-related
overdose rates with other drug overdose studies [23]. We used
the ZCTA of the reported residential address for decedents at
the time of the fatal overdose and excluded those either with
missing addresses or those with addresses outside of
Massachusetts’ boundaries (n=642). The final analytic sample
included 16,377 fatal opioid-related overdoses from 2005 to
2019. The flowchart for deriving the analytic samples used for
this analysis, summarized by each year, is presented in Figure
S1 in Multimedia Appendix 1. We also developed a web-based
dashboard to present the map and summaries of these data [24].
Requests for the opioid-related decedent data should be made
directly to the MDPH’s RVRS.

ZCTA Demographic and Socioeconomic Factors
ZCTA-level demographic and socioeconomic variables were
obtained from 2005 to 2019 from the American Community
Survey 5-year estimates (2005-2009, 2010-2014, and 2015-2019,
respectively) [25]. We used the total population counts and
characteristics for people aged 20 years or older at the ZCTA
level to account for differences in population size. The
ZCTA-level demographic variables included race or ethnicity
(proportions of White and Hispanic individuals), education
(proportion of individuals with a bachelor’s degree),
employment (proportion of unemployed individuals), poverty
level (proportion of individuals living under the federal poverty
level), income (per capita income in US $), living conditions
(proportion of renters), transportation (proportion of individuals
without vehicles), and English speaking (proportions of
individuals with limited English). A detailed summary of these
covariates, for all ZCTAs and those stratified by urban or rural
areas, is presented in Table S1 in Multimedia Appendix 1. These
covariates were considered from a larger set of community-level
covariates and were selected on the basis of the literature and
our prior research. Following calculation of descriptive statistics
and bivariate analyses, we further narrowed the list to a subset
of population-level measures at the ZCTA level. The final set
of covariates included in this analysis was chosen after fitting
a simple Poisson regression model and selecting those with a
significant association with opioid-related overdose mortality
(see Figure S5 in Multimedia Appendix 1).

Urban and Rural ZCTAs
The Massachusetts State Office of Rural Health uses a composite
scoring system to categorize rurality for each ZCTA. Among
the 537 ZCTAs included in this analysis, 390 (73%) were
classified as urban areas, and the rest as rural areas. A map of
the ZCTAs, color-coded by their urban or rural status, is
provided in Figure S2 in Multimedia Appendix 1.

Statistical Models
Our choice of dynamic spatiotemporal model was motivated
by a previous study of drug overdose rates across US counties,
which showed that the strongest predictor of overdose rates was
overdose rates in nearby counties from the previous year. We
considered the following Bayesian dynamic spatiotemporal

models [26,27]. Yit denotes the number of opioid-related fatal
overdose counts in ZCTA i (i=1, …, I=537) and year t (t=2005,
…, t=2019). We assumed a Poisson distribution with mortality
rate μit; that is, Yit|μit ~ Poisson(Nitμit), with Nit representing the
population size as an offset. The mortality rate μit was then
decomposed using the following models:

Model 1: log (μit) = αi + S(t) + ηt, ηt ~ AR(1),

Model 2: log (μit) = αi + S(t) + ωit, ωit ~ GMRF(τΣAR(1) ⊗ ΣI),
and

Model 3: log (μit) = α + S(t) + ωit, ωit ~ GMRF(τΣAR(1) ⊗ ΣCAR)

In all 3 models, S(t) captured the overall (or marginal) temporal
trend and could be modeled via linear or quadratic terms or
spline functions. The major differences among the 3 models
were how random effects (η or ω) were modeled in the
spatiotemporal interactions. In model 1, αi was the random
effect accounting for the difference of the opioid-related
mortality at the ZCTA level, and ηt was a first-order
autogressive latent effect AR(1) for the temporal trend.
Essentially, model 1 regressed the opioid-related mortality rate
at time t, on the log scale, over the previous time point t–1;
however, instead of running one model for each ZCTA, the
Bayesian framework allowed pooling of the ZCTAs to improve
prediction. In models 2 and 3, α was the overall intercept, and
the ZCTA-level differences of the opioid-related mortality rates
were absorbed in the spatiotemporal interaction term ωit, which
now accounted for the spatial dependency between ZCTAs.
Models 2 and 3 were inseparable spatiotemporal models, where
the interaction term ωit had a Gaussian Markov Random Field
(GMRF) with mean 0 and covariance matrix τΣT⊗ ΣS [28]. The
interaction term was the Kronecker product of the temporal
structure ΣT and the spatial structure ΣS, and τ was the precision
parameter (ie, reciprocal of the variance parameter). We again
used the AR(1) temporal structure in models 2 and 3 but
considered different structures for the spatial dependency. In
model 2, the spatial structure was an I×I identity matrix.
Although the identity matrix may appear to assume
independence of the areas, the hierarchical structure of the model
imposed borrowing information from the neighboring areas. In
model 3, we assumed a conditional autoregressive model
(CAR) [29] as the spatial structure, which assumed that ZCTAs
that were geographically adjacent were more similar than those
that were far away. We note that other spatial or temporal
structures (eg, random walk models) can also be considered in
the proposed model framework.

Models 1, 2, and 3 were referred to as the respective base
models. We then added ZCTA-level demographic and
socioeconomic variables xit and the urban or rural indicator
variable described above, to each of the base models to assess
potential improved prediction performance. All models were
fit in a Bayesian framework, with the priors chosen as the
noninformative priors commonly used in spatiotemporal
models [28]. In our application, it turned out that the interaction
term was sufficient to capture the spatial-temporal variation, so
we dropped the marginal temporal term. We used the posterior
median and 90% credible intervals (CrIs) for inference. The
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90% CrI was preferred over the commonly used 95% CrI, as
the former was better suited for prediction purposes to avoid
overly wide uncertainty. All analyses were performed in
RStudio [30] and R package integrated nested Laplace
approximation [31].

To assess the predictive performance of the models, we used a
one-year ahead approach: assuming we observed data from
2005 to year t, we predicted the opioid-related mortality rates
and counts for year t+1. We started by considering the observed
data from 2005 to 2015, and the prediction was carried out for
2016. Then we considered observed data from 2005 to 2016
and predicted counts and rates were calculated for 2017. The
one-year ahead prediction procedures were carried out for each
year from 2016 to 2019, and the predictions were obtained for
each ZCTA, along with the prediction uncertainty (posterior
90% CrI). We used the following metrics to compare the
predictive performance across different models: mean absolute
error (MAE), root mean square error (RMSE), and the rank
difference (RD). MAE was defined as the average absolute
difference between the predictive and the observed values; that

is, , for count or rate Yit. RMSE was
defined as the average squared difference between the predictive

and the observed values; that is, . RMSE
has the advantage that it was on the same scale as the outcome
variable and was thus easy to interpret. For example, if the
prediction was for the ZCTA-level mortality count (ie, how
many people would die from fatal opioid-related overdose),
then an RMSE of 10 would roughly mean that on average the
prediction was off by 10 mortality cases. Smaller MAE and
RMSE would indicate better performance. The RD was
motivated by the correct classification of opioid mortality by
group membership, where we divided the ZCTAs into quintiles
Q1 to Q5, based on the observed fatal opioid-related overdose
rates and counts, and then compared to the quintiles for the
predicted rates and counts. The RD was then calculated by the
percentage of times when the classification was correct. Higher
values of RD indicated better performance.

Ethical Considerations
This study was reviewed by the Health Sciences institutional
review board at Tufts University and was designated as exempt
from ethics approval (IRB reference number: 13288).

Results

The number of fatal opioid-related overdoses among people
aged 20 years or older increased from 557 in 2005 to 1912 in
2019, corresponding to an increase in rate from 7.95 in 2005 to
34.4 in 2019 per 100,000 population. Out of a total of 16,377
opioid-related fatalities between 2005 and 2019, overall, 91%
occurred in urban ZCTAs. The observed rates at the ZCTA level
were highly variable (Figure S3 in Multimedia Appendix 1),
ranging from 0 to 1316 per 100,000 population. The extreme
values in the observed rates tended to occur in areas with small
populations. The high instability of the observed rates,
commonly known as the small area estimation problem, poses
a special challenge in developing accurate prediction models,
which our Bayesian spatiotemporal models helped address.

Results of the predictive performance among the proposed
candidate models, using the one-year ahead approach, are
presented in Table 1 (for the ZCTA-level fatal opioid-related
overdose count) and Table 2 (for the ZCTA-level fatal
opioid-related overdose rate). Prediction errors were summarized
for all ZCTAs and stratified by rural and urban ZCTAs. Overall,
model 3 with the inseparable spatiotemporal interaction term
of AR(1) and CAR structures performed best for fatal
opioid-related overdose predictions, as indicated by smaller
MAE and RMSE values. The RMSE showed that the predicted
opioid-related death counts, on average, were off only by 2
counts per area. As expected, predictions were better for urban
areas than for rural areas, since most of the deaths occurred in
urban areas. Addition of demographic and socioeconomic
variables generally improved the prediction performance,
particularly for model 1; however, the improvement was
attenuated in models 2 and 3 where we assumed inseparable
spatiotemporal models. The smaller improvement in model 3
was likely because the CAR model already captured the spatial
patterns tied to the demographic and socioeconomic factors and
hence served as a surrogate of the demographic and
socioeconomic variables for predictions. The best performing
model using the rank difference showed a less clear pattern, as
the values were very similar across the different models. This
was particularly true when focusing on the rural ZCTAs, likely
due to their small predicted rates or counts and hence very
narrow ranges for each quintile.
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Table 1. Predictive performance assessment of the ZIP Code Tabulation Area (ZCTA) level opioid-related overdose death count, using the root mean

and rank difference, and one-year ahead prediction starting with 2016a. The smallest root mean square error, mean absolute difference, and highest rank
difference for each row are depicted in italics, indicating the best performing models.

Model 3Model 2Model 1ZCTA typeCount year

Add SDOHBase ModelAdd SDOHBase ModelAdd SDOHbBase Model

Root mean square error

2.402.352.852.982.632.56All2016

1.942.042.202.291.982.06All2017

2.442.472.562.722.472.53All2018

2.182.192.432.572.332.38All2019

2.702.653.223.382.982.90Urban2016

2.202.302.502.622.252.34Urban2017

2.712.762.843.042.752.83Urban2018

2.452.462.702.872.592.65Urban2019

1.281.201.431.421.321.26Rural2016

0.981.031.031.030.970.98Rural2017

1.481.431.621.621.451.45Rural2018

1.161.151.471.461.411.42Rural2019

Mean absolute difference

0.740.671.321.430.980.92All2016

0.200.260.500.610.020.01All2017

0.370.320.730.820.560.55All2018

0.060.000.510.580.190.17All2019

0.910.851.601.771.211.15Urban2016

0.220.290.630.790.060.04Urban2017

0.350.300.780.910.600.61Urban2018

0.040.030.520.640.140.13Urban2019

0.280.220.550.520.360.30Rural2016

0.130.190.160.130.080.14Rural2017

0.430.380.600.580.440.40Rural2018

0.120.060.480.430.330.29Rural2019

Rank difference

0.530.520.490.500.510.50All2016

0.520.510.480.490.500.50All2017

0.520.490.520.500.510.50All2018

0.510.500.500.490.510.51All2019

0.550.570.540.550.540.54Urban2016

0.520.520.520.510.530.53Urban2017

0.540.540.560.550.550.54Urban2018

0.620.610.570.540.600.58Urban2019

0.350.370.380.400.390.40Rural2016

0.400.410.410.390.420.43Rural2017

0.370.370.360.340.370.38Rural2018

0.380.370.340.330.370.34Rural2019
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aFor example, using data from 2005 to 2015, we predicted the fatal opioid-related overdose count in year 2016 for each of the 537 ZIP Code Tabulation
Areas (ZCTAs) in Massachusetts, and compared them to the observed data to assess performance. Similarly, for 2017, we used data from 2006 to 2016,
and predicted for 2017. The prediction error was assessed for counts for all ZCTAs and stratified by rural and urban status. Base model refers to Bayesian
dynamic spatiotemporal models without any covariates; model results with added covariates of area-level contextual factors are included in the column
“Add SDOH.”
bSDOH: Social determinants of health.

Since our 1-year prediction assessments suggested that the best
performing model was model 3 with the included demographic
and socioeconomic variables, we used this model for 2020 and
2021 predictions based on the opioid-related mortality data for
2005-2019. We assumed that ZCTA-level population size and
demographic and socioeconomic variables had the same values
in 2020 and 2021 as those in 2019. We carried out the prediction
for each ZCTA and at the state level. Figure 1 presents the fitted
temporal trends of opioid-related mortality in Massachusetts
between 2005 and 2019, with predictions carried out for 2020
and 2021 (the gray shaded area), both as the rate per 100,000
population (panel A) and total counts (panel B). Each line
represents an individual ZCTA, color-coded by urban or rural
status. Figure 2 presents the maps of the predicted opioid-related
mortality rates and counts for 2020 and 2021. At the
ZCTA-level, the predicted opioid-related mortality rate ranged
from 6.11 to 162 per 100,000 population for 2020, and 6.05 to
158 per 100,000 population in 2021. Note that because of the
“smoothing” effect in Bayesian models, the estimated or
predicted rate could be very close to 0 but would never be
exactly 0. Therefore, for ZCTAs that may have zero observed
deaths, the predicted rate would not be zero but would be
skewed toward the average rate. In addition, any ZCTAs that
may have low observed rates but were “surrounded” by ZCTAs
with high rates would have higher predicted rates, reflecting
how the spatial models borrow information from neighboring
ZCTAs. Because of the large variation in population size by
ZCTA, the spatial patterns seen in the maps in Figure 2 for
predicted rate and counts are quite different, where the latter

are generally centered around highly populated areas. The
predicted count ranges from close to 0 (after rounding up to
integers) to 30 (90% CrI 21-41) for 2020, and 29 (90% CrI
19-44) for 2021. We also identified the top 5 ZCTAs with the
highest predicted counts, by urban or rural classifications, and
presented the prediction results in Figure 3. The urban ZCTAs
were located within cities with high fatal opioid-related overdose
risks: Lawrence, Lynn, Quincy, Brockton, and New Bedford
(Figure 3C). The rural ZCTAs were located in municipalities
that were known to have high risks for fatal opioid-related
overdoses, including Pittsfield, North Adams, Greenfield,
Westfield, and Billerica (Figure 3D).

At the state level, the predicted opioid-related mortality rate for
the population aged 20 years and older was 35.79 per 100,000
population (90% CrI 29.4-43.4) for 2020, and 35.81 (90% CrI
26.9-46.0) for 2021. For urban areas, the predicted rate was
36.0 (90% CrI 29.2-43.7) in 2020, and 35.5 (90% CrI 26.8-46.1)
in 2021. For rural areas, the predicted rate was 33.9 (90% CrI
26.6-43.3) in 2020, and 34.6 (90% CrI 25.2-53.4) in 2021. The
CrIs for the prediction were wider in 2021 than in 2020 and in
rural areas than in urban areas. This was expected as the further
ahead we attempted to predict outcomes, the less certainty we
would have. Our prediction suggested that the opioid-related
overdose death counts for 2020 would be 1887 (90% CrI
1549-2285) for the whole state, with 1682 (90% CrI 1364-2041)
in urban ZCTAs, and 203 (90% CrI 160-260) in rural ZCTAs,
and those for 2021 would be 1888 (90% CrI 1419-2426) for the
whole state with 1656 (90% CrI 1253-2149) in urban ZCTAs,
and 208 (90% CrI 151-320) in rural ZCTAs.
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Table 2. Predictive performance assessment of the ZIP Code Tabulation Area (ZCTA) level opioid-related overdose death rate, using the root mean

and rank difference, and one-year ahead prediction starting with 2016a. The smallest root mean square error, mean absolute difference, and highest rank
difference for each row are depicted in italics, indicating the best performing models.

Model 3Model 2Model 1ZCTA typeRate year

Add SDOHBase ModelAdd SDOHBase ModelAdd SDOHbBase Model

Root mean square error

38.9540.2841.9442.8440.2741.18All2016

29.8228.6330.2429.0130.1829.21All2017

40.6540.4741.8342.6340.2240.54All2018

75.3973.2676.0375.7575.6474.80All2019

41.6543.5745.4546.5243.3944.53Urban2016

31.1329.6332.3030.7531.7630.31Urban2017

38.2438.1739.7140.8237.6738.30Urban2018

84.1381.5984.7484.4884.4283.48Urban2019

30.6229.7930.7430.9830.4530.50Rural2016

26.0225.8023.9123.7625.5326.08Rural2017

46.4746.0447.0347.1046.3346.00Rural2018

44.3843.9945.3144.9044.4944.05Rural2019

Mean absolute difference

4.954.9112.4413.737.277.29All2016

5.835.872.814.314.013.70All2017

4.054.109.2610.595.365.89All2018

1.571.608.8310.074.014.47All2019

7.017.2514.4116.379.4110.02Urban2016

5.245.093.565.693.092.11Urban2017

2.833.018.1510.054.615.72Urban2018

1.912.078.2410.023.644.60Urban2019

0.551.317.206.681.570.00Rural2016

7.407.930.840.646.447.94Rural2017

7.296.9812.2312.047.396.34Rural2018

0.680.3510.4010.225.024.13Rural2019

Rank difference

0.320.310.330.310.340.30All2016

0.350.340.370.320.360.32All2017

0.340.310.300.310.310.29All2018

0.320.340.350.340.340.33All2019

0.380.330.370.310.380.32Urban2016

0.380.370.350.350.380.34Urban2017

0.340.330.330.300.340.32Urban2018

0.360.380.370.360.360.36Urban2019

0.260.290.240.300.240.28Rural2016

0.230.220.270.300.210.19Rural2017

0.260.260.240.240.260.21Rural2018

0.280.270.260.250.250.28Rural2019
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aFor example, using data from 2005 to 2015, we predicted the fatal opioid-related overdose rate in 2016 for each of the 537 ZIP Code Tabulation Areas
(ZCTAs) in Massachusetts, and compared the predicted rates to the observed rates to assess prediction performance. Similarly, for 2017, we used data
from 2006 to 2016 and predicted for 2017. The prediction error was assessed for rates for all ZCTAs and stratified by rural and urban status. Base model
refers to Bayesian dynamic spatiotemporal models without any covariates; model results with added covariates of area-level contextual factors are
included in the column labeled “Add SDOH.”
bSDOH: Social determinants of health.

Figure 1. Fitted temporal trends for opioid-related overdose (OD) mortality in Massachusetts between 2005 and 2019, with predictions for 2020 and
2021 (in gray shade). Each line represents a ZIP Code Tabulation Area (ZCTA) color-coded by its urban or rural status. Opioid-related mortality data
were obtained from the Massachusetts Registry for Vital Records and Statistics, and predictions were made on the fatal opioid-related overdose rates
per 100,000 population (panel A) and count (panel B). These results are from the Bayesian dynamic spatiotemporal Model 3 with ZCTA level demographic
and socioeconomic variables.
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Figure 2. Maps of the predicted ZIP Code Tabulation Area (ZCTA)–level fatal opioid-related overdose (OD) rates (per 100,000 population) and counts
for 2020 (A and B) and 2021 (C and D). Data were obtained from Massachusetts Registry for Vital Records and Statistics for 2005 to 2019 and used
to predict for 2020 and 2021. These predictions were obtained from the proposed Bayesian dynamic spatiotemporal Model 3 with ZCTA level demographic
and socioeconomic variables. In each panel, the embedded histograms present the distribution of the predicted fatal opioid-related overdose rates or
counts for that year.
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Figure 3. Five selected ZIP Code Tabulation Areas (ZCTAs) with the highest predicted fatal opioid-related overdose (OD) rates or counts for urban
(A, C) and rural (B, D) areas. The vertical bars in panels A and B present the 90% posterior credible intervals (CrIs) of the predictions for years 2020
and 2021. Maps (C, D) present the corresponding locations of the identified ZCTAs. Predictions were performed using the proposed Bayesian dynamic
spatiotemporal model 3 with ZCTA level demographic and socioeconomic variables and fatal opioid-related overdose data from 2005 to 2019 in
Massachusetts.

Discussion

In this analysis, we developed and compared several Bayesian
spatiotemporal dynamic models for predicting small area
opioid-related mortality. The prediction performance was
evaluated with data from the MDPH RVRS for 2005 through
2019 using the one-year ahead approach, with and without
ZCTA-level demographic and socioeconomic variables. Using
data from 2005 through 2019 and the best performing model,
we also predicted the fatal opioid-related death rates and counts
for 2020 and 2021, respectively, along with uncertainty
assessments. We also identified the ZCTAs—by urban and rural
status—that had the highest predicted opioid-related mortality,
both by rates and by counts.

Our prediction showed that, if there was no interruptive change
to the trends observed for 2005-2019, we would observe a
stabling trend of the fatal opioid-related overdose in
Massachusetts for 2020 and 2021. The stabling trend would be
applicable to the entire state (ie, the state-level total fatal
opioid-related overdose) as well as for most ZCTAs in
Massachusetts. Our prediction also identified the ZCTAs
deviating from this stabilizing trend, with continually increasing
rates above the state average. Identifying ZCTAs with the
predicted high risks allows for the possibility of preemptive and
geo-targeted public health interventions. The prediction models

presented here allowed for a more granular depiction of existing
and expected trends in opioid-related overdose deaths over
spatially granular units, which differed from other existing
models developed for predication at larger geographical scales
(eg, state or county). Such predictions are instrumental for state
and local public health departments’ planning to identify and
address potential service gaps for deploying harm reduction and
treatment interventions. Local data are largely limited both in
type and quantity; drug seizure data, for example, are often not
available at more granular levels than the state, limiting input
information in predictive modeling. However, up-to-date data
at the local scale are instrumental to developing the prediction
models and engaging communities in designing and
implementing data-driven responses to reduce opioid-related
harms [32].

At the time of this analysis, we only obtained the fatal
opioid-related overdose data for Massachusetts from 2005 to
2019 and partial data in 2020 (incomplete data with only the
first 6 months). We designed our analysis and prediction
evaluation on the basis of the data available to us, but we lacked
the official statistics for 2020 and 2021 to assess the prediction
accuracy for those years. The latest Massachusetts opioid-related
overdose data brief released in December 2022 [33] reported
the confirmed opioid-related overdose deaths among
Massachusetts residents for 2020 and 2021. Although the data

JMIR Public Health Surveill 2023 | vol. 9 | e41450 | p. 10https://publichealth.jmir.org/2023/1/e41450
(page number not for citation purposes)

Bauer et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


brief reported the total number and rate including all ages, which
was different from the adult population we focused on, it was
clear that we underpredicted the total number of fatal
opioid-related overdose in Massachusetts for 2020 and 2021.
The data brief also noted a 9% increase in the opioid-related
overdose death rate in Massachusetts for 2021 over 2020.
However, since the brief only reported the total opioid overdose
death counts at the state level and not by ZCTAs, we were not
able to assess the underprediction at a more granular spatial
level. The sharp increase in the fatal opioid-related overdose
was likely due to the substantive impact of the COVID-19
pandemic [8,34], which disrupted any established trends prior
to 2020 that informed our prediction modeling. The time lag in
the drug overdose database had been identified as a main barrier
to developing fatal overdose predictive models, as reported by
Borquez and Martin [35]. Our future work, in collaboration
with the MDPH, plans to use the statewide Public Health Data
warehouse [36] to obtain timelier and rich data sources with
local information in order to improve predictive performance
in small areas.

It is important to consider the limitations inherent in the
highlighted analyses, and recommendations that should be
considered when developing future opioid-related overdose
prediction models. First, the spatial units of ZCTAs used in our
study may not be the ideal spatial unit for prediction, as the
population size within ZCTAs vary substantially, compared to
other spatial units of analysis (eg, census tracts) where, by
design, the population sizes are much more homogenous. In
addition, ZCTAs may not be sufficiently granular, from a spatial
perspective, to identify local hot spots. However, they are
extensively used in spatial analysis as they are most readily
available in many aggregated data sources (eg, surveillance or
insurance claims databases). ZCTAs provide useful geospatial
information for analyses while often also satisfying data privacy
concerns. Second, a better understanding of the contributing
factors to local opioid overdose trends and patterns, with reliable
measures representing such factors, would clearly improve
prediction power and accuracy. For example, toxicology data
would have helped us to include the appearance of fentanyl in
the local drug supply, to aid the prediction in the shifting
“waves” in opioid-related fatal overdose [37]. Third, we used
the ZCTA of the decedents’ residences, rather than the injury
addresses or the locations where the fatal opioid overdoses were
recorded. Injury data generally have a high level of missingness
(~50% in MA), and the recorded death location, if not at the

decedent’s place of residence, is often recorded at a hospital,
even though the injury (ie, overdose event) typically occurred
elsewhere. Finally, and perhaps most challenging, is to
incorporate the impact of emerging phenomena such as the
COVID-19 pandemic into predictions of opioid-related overdose
trends, which was not possible for our analyses given the data
availability at the time of analyses. This task requires the
real-time data inputs and requires a joint effort among
researchers and practitioners from multiple agencies, institutions,
and sectors. We have seen a lot of progress made on this front
during the COVID-19 pandemic, and we hope to see more
progress in the drug overdose research in the future.

Despite the abovementioned data source and methodological
limitations, our models showed promise in providing reasonable
1-year forecasts of opioid-related mortality in MA with
geographic granularity using existing data, as the short-term
point estimates for the number of overdoses tended to be close
to the true value. Our Bayesian spatiotemporal models further
demonstrated the advantages of incorporating inseparable
spatiotemporal dependencies over the simpler regression models
without such dependence. Since the assumed spatial dependency
structure captured the spatial patterns tied to many demographic
and socioeconomic factors, such models do not rely on the
knowledge of the future measures of these factors in predicting
opioid-related mortality. Prediction is a challenging problem in
general, and though many models have been developed in
various contexts, it is almost impossible to find one single model
or approach that universally performs best [38]. Although our
analysis could not investigate all possible predictive models for
fatal opioid-related overdoses, we provided a novel approach
to forecasting overdose events for small geographic areas.
Compared to other predictive approaches, Bayesian models
provide a natural framework where the prediction can be
conveniently included in the model fitting process, by treating
predictions as missing values. Our findings demonstrated the
utility of sophisticated Bayesian spatiotemporal dynamic models
in supporting state and local opioid surveillance and the ability
to provide prediction at a granular geographic level, offering a
unique opportunity for preemptive public health and policy
interventions, replacing reactionary public health responses.
Echoing Borquez and Martin [35], we encourage the field to
consider a modeling consortium for opioid-related prediction
models, where different modeling techniques could be
ensembled.
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