
Original Paper

Using Bandit Algorithms to Maximize SARS-CoV-2 Case-Finding:
Evaluation and Feasibility Study

Michael F Rayo1, PhD; Daria Faulkner2, MPH; David Kline3, PhD; Thomas Thornhill IV4, MPH; Samuel Malloy5,

MA; Dante Della Vella1, MSc; Dane A Morey1, PhD; Net Zhang5, BSc; Gregg Gonsalves4, MPhil, PhD
1Department of Integrated Systems Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
2College of Public Health, The Ohio State University, Columbus, OH, United States
3Department of Biostatistics and Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
4Public Health Modeling Unit, Department of the Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
5Battelle Center for Science, Engineering, and Public Policy, John Glenn College of Public Affairs, The Ohio State University, Columbus, OH, United
States

Corresponding Author:
Gregg Gonsalves, MPhil, PhD
Public Health Modeling Unit
Department of the Epidemiology of Microbial Diseases
Yale School of Public Health
350 George Street, 3rd Floor
New Haven, CT, 06511
United States
Phone: 1 2036069149
Email: gregg.gonsalves@yale.edu

Abstract

Background: The Flexible Adaptive Algorithmic Surveillance Testing (FAAST) program represents an innovative approach
for improving the detection of new cases of infectious disease; it is deployed here to screen and diagnose SARS-CoV-2. With
the advent of treatment for COVID-19, finding individuals infected with SARS-CoV-2 is an urgent clinical and public health
priority. While these kinds of Bayesian search algorithms are used widely in other settings (eg, to find downed aircraft, in submarine
recovery, and to aid in oil exploration), this is the first time that Bayesian adaptive approaches have been used for active disease
surveillance in the field.

Objective: This study’s objective was to evaluate a Bayesian search algorithm to target hotspots of SARS-CoV-2 transmission
in the community with the goal of detecting the most cases over time across multiple locations in Columbus, Ohio, from August
to October 2021.

Methods: The algorithm used to direct pop-up SARS-CoV-2 testing for this project is based on Thompson sampling, in which
the aim is to maximize the average number of new cases of SARS-CoV-2 diagnosed among a set of testing locations based on
sampling from prior probability distributions for each testing site. An academic-governmental partnership between Yale University,
The Ohio State University, Wake Forest University, the Ohio Department of Health, the Ohio National Guard, and the Columbus
Metropolitan Libraries conducted a study of bandit algorithms to maximize the detection of new cases of SARS-CoV-2 in this
Ohio city in 2021. The initiative established pop-up COVID-19 testing sites at 13 Columbus locations, including library branches,
recreational and community centers, movie theaters, homeless shelters, family services centers, and community event sites. Our
team conducted between 0 and 56 tests at the 16 testing events, with an overall average of 25.3 tests conducted per event and a
moving average that increased over time. Small incentives—including gift cards and take-home rapid antigen tests—were offered
to those who approached the pop-up sites to encourage their participation.

Results: Over time, as expected, the Bayesian search algorithm directed testing efforts to locations with higher yields of new
diagnoses. Surprisingly, the use of the algorithm also maximized the identification of cases among minority residents of underserved
communities, particularly African Americans, with the pool of participants overrepresenting these people relative to the demographic
profile of the local zip code in which testing sites were located.

Conclusions: This study demonstrated that a pop-up testing strategy using a bandit algorithm can be feasibly deployed in an
urban setting during a pandemic. It is the first real-world use of these kinds of algorithms for disease surveillance and represents
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a key step in evaluating the effectiveness of their use in maximizing the detection of undiagnosed cases of SARS-CoV-2 and
other infections, such as HIV.

(JMIR Public Health Surveill 2023;9:e39754) doi: 10.2196/39754
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Introduction

Background
Columbus, Ohio—like much of the world during the first 3
years of the pandemic—experienced multiple waves of
infections in which the number of SARS-CoV-2 infections
overwhelmed and outstripped the capacity of efforts to detect
new cases [1,2]. In fact, estimates suggest that even at the height
of the Omicron surge, a significant number of infections went
undetected by case-based surveillance systems and the rise of
at-home testing [3]. As the epidemic continues, particularly as
public testing sites are scaled back and closed, the ability to
quickly identify individuals with SARS-CoV-2 and link them
to treatment has become difficult, risking patient and population
health [4,5]. Given the integral role of active surveillance efforts
in identifying cases, linking patients to care, and managing
COVID-19, local public health departments require ways to
maximize the resources they have at their disposal to continue
to find new cases of disease in their jurisdictions even as
resources for these efforts continue to shrink [4,6,7].

How to optimize resource allocation over time is a well-studied
problem in sequential decision-making and reinforcement
learning. The introduction of a spatial component to these kinds
of dilemmas has been applied in a variety of settings, from
military search and rescue to oil exploration [8]. We have
previously described the use of one set of tools, bandit
algorithms, to address these kinds of problems for detection of
HIV and SARS-CoV-2 in the community [8-10]. Up until now,
these methods have only been evaluated in computer
simulations. The study described here represents the first-ever
real-world implementation that investigates these tools for active
infectious disease surveillance.

An academic-governmental partnership—the Flexible Adaptive
Algorithmic Surveillance Testing (FAAST) program—between
Yale University, Ohio State University (OSU), Wake Forest
University (WFU), the Ohio Department of Health (ODH), the
Ohio National Guard (ONG), and the Columbus Metropolitan
Libraries (CML) conducted a study of bandit algorithms to
maximize the detection of new cases in SARS-CoV-2 in
Columbus in 2021.

This initiative began as the Delta variant of SARS-CoV-2
established itself in Ohio in the summer of 2021, ending a period
of decreasing case numbers in the state. From mid-August to
mid-September, the daily case count rose from over 2000 to
over 9000 [11]. Around the same time, the ODH started
distributing home rapid antigen tests (RATs) for COVID-19 to
allow people to monitor their own health status. These tests
were provided to community-based organizations in Ohio,
including over 246 library locations, which received more than

53,000 rapid tests in late summer 2021 [12]. While the high
demand meant that these libraries quickly ran out of tests to
distribute, the community’s relationship and trust in libraries
as a testing resource for COVID-19 enabled us to partner with
the CML for this study [13]. The strong uptake of RATs is
consistent with evidence that voluntary use of these tests is high
in settings where they have been widely distributed [14], but it
is important to note that decisions to opt in to population-level
voluntary testing programs appear to be influenced by factors
such as socioeconomic status rather than infection risk alone
[15]. Thus, active surveillance has an important role in both
prioritizing limited testing resources and in reaching individuals
not seeking voluntary testing.

Working with our partners, we were able to offer an option to
maximize the effectiveness of the scarce testing resources in
Columbus by feeding our daily testing information into the
bandit algorithm to target the next day’s testing efforts. Our
“learn by doing” method adaptively targeted locations in the
CML system, with tests supplied by ODH and performed by
ONG with student and faculty support from OSU, WFU, and
Yale.

As the COVID-19 pandemic continues, we will further evaluate
the tools in Columbus and the state of Ohio and elsewhere as
opportunities arise. Given the flexibility of these methods, we
can tailor them to identify new cases more efficiently in
underserved communities, which may be at higher risk of
transmission and serious clinical disease either due to
undervaccination and the prevalence of underlying conditions
or due to specific kinds of workplaces and high-risk settings
(eg, skilled nursing facilities). Importantly, the potential utility
of these tools is not limited to SARS-CoV-2. Evaluation of these
tools for HIV, hepatitis C virus, and other sexually transmitted
diseases is also being considered.

Goals of the Study
The purpose of this study was to evaluate the use of bandit
algorithms to maximize the yield of testing for SARS-CoV-2
across multiple community sites in Columbus, Ohio, over a
3-month period from August to October 2021.

We sought to understand (1) if an algorithm-guided site selection
would be operationally feasible for the branches of the CML
system and ONG, since locations could shift from day to day,
requiring staff to be ready and prepared for quick deployment
and setup of testing efforts; (2) if shifting locales would present
difficulties for uptake of testing services by the community,
given the fact that the announcement of testing locations would
only occur a few days in advance; and (3) how algorithm-guided
site selection impacted the recruitment of minority residents of
underserved communities in terms of number of tests conducted
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at each event among key demographic groups, particularly
African-Americans, in Columbus.

In general, we were interested in a better understanding of the
operational performance of the algorithm—as a formal analysis
of the effectiveness of this algorithm-guided site selection
approach to active disease surveillance would require a large
cluster-randomized trial. Specifically, we chose 2 a priori
indicators that the algorithm was homing in on hotspots for
detecting new cases. Our goal was to sustain a testing positivity
rate that was greater than (1) the estimated prevalence of the
surrounding community and (2) the positivity rates of other
types of testing events in the same zip codes. It is important to
clarify that we were not attempting to estimate local prevalence
of disease or positivity rates in this study nor making inferences
about the effectiveness of the algorithm in practice but using
these 2 metrics as a guide as to its basic performance as we
assessed its initial feasibility in this research. The algorithm is
a sequential decision-making tool; in this case, it was designed
to guide resource allocation decisions for SARS-CoV-2 testing
efforts.

Methods

Statistical Approach
The algorithm used to direct pop-up SARS-CoV-2 testing for
this project has been described in detail elsewhere [8-10]. The
algorithm is based on Thompson sampling, which uses a
Bayesian updating process involving iteratively sampling from
prior probability distributions of all potential testing sites—the
set of all locations at which testing is being considered—to
home in on those with the highest probability over the long run
in finding new cases of SARS-CoV-2 [16,17]. Multimedia
Appendix 1 describes Thompson samplng in more detail. This
approach is not being used to estimate the local prevalence or
test positivity at each site in the community but to maximize
success in finding new cases over time. This algorithm is not a
sampling strategy in which we seek to learn about an underlying
population parameter (eg, prevalence) but simply a process by
which we can direct testing efforts most efficiently. In fact, the
reason this algorithm is not designed to estimate local prevalence
is because this metric, while related to testing yield, may be
confounded by other factors at work in a given location. That
is, while testing yield is indeed a function of prevalence in part,
prevalence does not provide a one-to-one proxy for the number
of tests obtainable at a given location. For instance, a given site
may have a lower prevalence than another but be a place in
which more new diagnoses are garnered for other reasons (eg,
higher health-seeking behavior, fewer options for testing in
other settings); thus, this algorithm is designed to maximize
testing yields alone.

Testing sites are determined a priori and serve as a fixed list of
potential locations for deploying testing. Initial prior probability
distributions for each site can be assigned to be noninformative
(ie, uniform), reflecting a lack of information about where yield
might be highest, or informative based on local knowledge of
the pandemic, previous testing efforts, or social and economic

characteristics of a given neighborhood. While informative
priors can aid convergence on hotspots if the information is
accurate, they can delay convergence if the information is
incorrect, so one should use caution when specifying the initial
prior distributions.

For this study, we chose to specify informative prior
distributions for each site based primarily on results from
previous feasibility testing events that we conducted at each
site prior to use of the algorithm, with slight modifications to
account for the current pandemic conditions. To estimate the
baseline values for the parameters for our prior distributions for
each potential testing site, we consulted with experts on the
local epidemiological conditions and considered the prior testing
event results, the reported rate of SARS-CoV-2 infections, and
the vaccination rate in the neighborhoods surrounding each site.
Taken together, this process yielded assumed β distributions
for the positivity rate at each site where the α parameter
represented the assumed number of positive tests and the β
parameter the assumed number of negative tests. The assumed
positivity was α / α + β and the total number of tests (ie, the
sum of the α and β parameters). Details of the derived values
for each site are shown in the Results section. While the true
values of these parameters are unknown, we decided that given
the short duration of our study period and the quality of the
empirical and expert knowledge on these testing sites, estimating
the values for these initial α and β parameters for each location
was a reasonable choice.

Before assigning a location for a given day’s testing efforts, the
algorithm randomly samples from the probability distributions
of all the potential testing sites. Then, the site which has the
largest realized value from these random draws is selected for
the day’s testing deployment [18]. The data on the number of
tests at that day’s site and the number of new diagnoses among
them is then used to update the prior probability distribution
for the site. The resulting posterior distribution after that day’s
testing then becomes the updated prior distribution for the next
day’s testing deployment. Before the next outing, a random
draw from all the sites’updated probability distributions happens
again. This process is then repeated so the algorithm updates
with each subsequent testing deployment. The entire procedure
is described in Figure 1. The intuition here is that over time,
using the knowledge accrued by each outing’s successes or
failures (positive and negative tests), the algorithm learns the
expected yields at each site and refines the probability
distributions used for the random draws. Though all sites will
have a nonzero chance of being chosen, the Bayesian updating
processes here will be drawn toward sites where successes are
occurring in previous rounds of testing. What is important is
that other sites can still be chosen by chance and offer the
opportunity to keep gathering information on the entire
landscape of testing sites, but through the algorithm, we will
prioritize the ones with the current greatest yields. If a
low-priority site gets picked by random draw and turns out to
have a high yield of positive tests, that site’s probability
distribution now will shift its likelihood of being chosen in
subsequent rounds.
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Figure 1. Steps in the implementation of the Thompson sampling algorithm.

Based on this algorithm, a web app was created for this project
[19]. The underlying code is also available [20]. The app
requires data input from each location where a testing event
took place. Based on the information received, the tool then
suggests testing locations likely to yield the most undetected
positive cases per test for the next event. Views of the app’s
regional and location pages are presented in Figures 2 and 3,
respectively. Figure 2 shows a map of Columbus with pinned

testing locations. After each testing event, data from the outing
were entered into the algorithm in Figure 3 (eg, date and time,
the total number of tests conducted, and number of positives).
The app then integrates this data into the bandit algorithm, which
delivers a new testing location for the next outing. Given
conjugacy of the underlying Bayesian model, the computational
cost of this process is minimal, as it only requires the ability to
generate random draws from a beta distribution.

Figure 2. Regional map page of the web app for targeting SARS-CoV-2 testing with mobile units.
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Figure 3. Locations page of the web app for targeting SARS-CoV-2 testing with mobile units.

Program Design and Implementation Overview
The logic model for program design and implementation is
shown in Textbox 1. The logic model depicts the program events
and expected outcomes through the integration of resources,
the execution of activities, and the participation of communities
and community organizations, resulting in measurable near-term
and long-term outcomes. The inputs include program partners
and the resources they provided to the project. The activities
represent the main programmatic tasks accomplished with the
participation of those tested in underserved communities in
Columbus and with the assistance of local community-based
organizations. The achievements of the program are denoted in
short-term, measurable outcomes and benefits to participants
and the larger community, as well as long-term, large-scale
outcomes and benefits for the city and beyond.

The project team established partnerships with ODH, ONG, the
CML system, and the Columbus Department of Neighborhoods
(CDN). ODH supported the project by providing BinaxNOW
RATs (Abbott), while ONG became a clinical partner who
deployed their clinical staff to the sites to conduct testing. The
neighborhood liaisons from CDN consulted the team regarding
the initial location selection and promoted testing events in their
designated areas of oversight. Finally, CML provided 7 of their
branch locations as sites for pop-up testing and promoted the
testing events through the CML network.

The study lasted 3 months, from August to October 2021. The
duration of each testing event was about 4 hours each day. We
conducted a total of 16 testing events at 13 zip codes. Figure 4
shows dates of testing events, tests conducted, number of
positive SARS-CoV-2 diagnoses, and the site positivity rate.
Multimedia Appendix 2, Table S1 contains information about
the sites and the zip codes where they were located.
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Textbox 1. Logic model for the program and its implementation.

Inputs

• Resources

• Research and statistical design

• Funding

• Staffing

• Mobile van

• Logistics

• Testing sites

• Rapid tests

• Personal protective equipment

• Clinical support

• Partners

• Ohio State University

• Yale University

• Wake Forest University

• Columbus Metropolitan Libraries

• Ohio Department of Health

• Ohio National Guard

Processes

• Activities

• Build the application

• Conduct pop-up COVID-19 testing events

• Distribute COVID-19 home test kits

• Disseminate information about COVID-19

• Participants

• Target population: underserved communities in Columbus

• Community organizations (eg libraries, parks, and recreation centers)

Outcomes

• Near-term

• Consistent detection of undiagnosed cases with the positivity rate being close to the state’s rate

• Increased community access to COVID-19 rapid home tests

• Increased community awareness about COVID-19 testing opportunities

• Long-term

• Convenient and effective testing in low-opportunity areas in Columbus, Ohio

• Prevention of transmission of COVID-19 in Columbus

• Use of bandit approach in other infectious disease surveillance efforts
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Figure 4. Positivity rate (black bars) and tests conducted (grey lines) for each testing session. The letter A is used to indicate testing at a library location.
Starting on September 14, 2021, all testing locations were chosen by the algorithm.

The initial choice of testing sites was derived from a set of
highly trafficked candidate locations based on raw cellphone
data from the UberMedia COVID-19 recovery data set spatially
joined with Loveland Landgrid parcel data to produce indices
of contacts and unique contacts per parcel ranked by volume
[21,22]. From this list, 30 of the most highly trafficked locations
from the data set were selected for further analysis. A team of
volunteers from OSU then visited each location to assess the
viability of each site in terms of the availability of the venue
(whether it was private or public, its accessibility, its hours of
operation, and the availability of onsite parking). The final step
of the selection process was a discussion of each site with the
neighborhood liaisons from the CDN, who shared their insights
about the proposed locations and the potential for attracting
participants to come forward for testing at each site.

Each testing event required the deployment of 2 volunteers from
OSU and 2 ONG staff members. At the start of the study, events

took place 2 to 3 times a week at community centers, movie
theaters, parks, community events, shelters for the homeless,
and libraries. These early weeks were dedicated to exploring
the viability of the sites, constructing prior probability
distributions for the algorithm for each site, and establishing an
efficient operational workflow. In the last 2 weeks of the study,
we deployed the bandit algorithm to choose sites for testing,
restricting our sites to the branches of the CML, which turned
out to be the most suitable sites for SARS-CoV-2 testing in the
previous weeks. In these last weeks, the algorithm chose to send
the team to sites 2, 4, 5, and 7, in that order, from September
16 to October 2, 2021 (site attributes can be found in Table 1).
CML became an active partner in these efforts, promoting the
testing events throughout their system with posters announcing
the upcoming testing events distributed among the libraries in
English, French, and Spanish. Figure 5 shows the location of
the CML branches and underlying demographic information
about these zip codes.

Table 1. Parameters for the assumed prior probability distributions for each testing site.

βαTests, nPositivitySite

546600.1001

51.9753.025550.0552

18.41.6200.0803

36.23.8400.0954

546600.1005

36.43.6400.0906

27.32.7300.0907
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Figure 5. Location and zip codes of final testing sites with percentage of Black or African American residents.

Testing efforts were focused on reaching underserved
communities through strategic selection of potential sites;
however, testing was open to everyone. To invite undocumented
immigrants to be tested as well, participants were not required
to present identification documents. Results of the tests were
entered in SimpleReport—a free tool built by the US Centers
for Disease Control and Prevention that makes it easy for
COVID-19 testing sites to record results for rapid point-of-care
tests and quickly report required data to public health
departments [23].

Ethical Considerations
The Office of Responsible Research Practices and the
institutional review board at the Ohio State University deemed
this project (2021E0496) exempt and not subject to regulations
requiring institutional review board review and approval.

Results

We set a baseline goal of testing approximately 20 people at
each event through consultation with other institutions that have
deployed mobile pop-up testing sites (eg, New York City Health
and Hospitals Corporation, University of Cincinnati Medical
Center). Of 16 testing events conducted, 10 testing events met
the baseline goal of testing over 20 participants. The total
number of people tested over the course of the study was 405
(the mean number of tests conducted at each event was 25.3),

producing 20 positive tests. This gave us an average positivity
rate of 4.9% across all sites, with the highest being 9.5%. The
positivity rates observed at our testing sites were comparable
to or greater than the officially documented positivity rates in
those same areas in central Ohio on the days of our testing
events [24-26]. In particular, the proportion of symptomatic
positive tests in our study exceeded those obtained from other
providers in the state, which prioritized symptomatic individuals
for diagnosis [27]. The rolling 2-week average positivity rate
for all tests conducted in our study ranged from 2.9% (3/105)
to 6.5% (9/138); for asymptomatic individuals, positivity ranged
from 0% to 5% (3/57); and for symptomatic individuals, the
range was from 0% to 21.4% (3/14). In each week of testing,
and in each rolling 2-week period, the positivity of symptomatic
testing was greater than the daily rate range of the surrounding
county. In the final 2 weeks, when the bandit algorithm was
used to select testing event sites, the average positivity rate for
symptomatic testing was 17.4 (4/23)%, which nearly doubled
the highest recorded daily positivity rate in Franklin county at
that time (Table 1) [24-26]. Details are shown in Table 2.

Underrepresented communities were reached at testing events
at rates higher than or near their proportion of the population
in the zip codes we tested in. The percentage of Black or African
American people tested was larger than the corresponding
percentage of African Americans in 3 of 5 zip codes in which
our testing sites were located [28]. Details are shown in Table
3.
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Table 2. Study positivity rates compared to tests conducted by other providers in Franklin County, Ohio.

Positivity for rolling 2-week periods in 2021

TotalSept 23-OctaSept 16-29Sept 9-22Sept 2-15Aug 26-Sept 8Aug 19-Sept 1Aug 12-25

Flexible Adaptive Algorithmic Surveillance Testing clinic , n/N (%)

22/408
(5.4)

6/106 (5.7)3/105 (2.9)9/138 (6.5)8/146 (5.5)4/99 (4)5/96 (5.2)3/65 (5)All tests

9/330 (2.7)2/83 (2.4)0/78 (0)3/105 (2.7)3/116 (2.6)1/85 (1.2)4/82 (4.9)3/57 (5)Asymptomatic individu-
als

13/78
(16.7)

4/23 (17.4)3/27 (11.1)6/33 (18.2)5/30 (16.7)3/14 (21.4)1/14 (7.1)0/8 (0)Symptomatic individuals

5.5-10.48.9-109.3-10.49.5-10.49.5-10.27-9.95.5-95.5-7.2Franklin County daily rateb

(%), range

aTime period when bandit algorithm was used to select testing event sites.
bAbsolute numbers were not available for county daily rate.

Table 3. Study representation of Black or African American people by zip code.

Zip code, n/N (%)

4321343068432074312543227

13/28 (46)13/29 (45)8/31 (26)17/31 (55)18/24 (75)Black or African American participants in Flexible
Adaptive Algorithmic Surveillance Testing clinics

18,205/35,954
(50.6)

20,658/58,426
(35.4)

13,936/46,308
(30.3)

3429/13,756 (24.9)16,740/24,779 (67.6)Black or African American population of Franklin
county (US Census; 2021 American Community Sur-
vey 5-year data)

Throughout the study, 55% (156/284) of the population tested
identified themselves as African American, and 36% (103/284)
self-identified as White. Almost half of the population tested
(105/227, 46%) stated their level of education was high school
or below, and 47% (106/225) stated they worked full-time. Data
about vaccination status against COVID-19 was collected as
well: 56% (126/224) were vaccinated, compared to the
vaccination rate in Franklin County of 54% [29].

Our survey results indicate that 27% (41/153) of those who
attended our testing events found out about the testing event
from others, 22% (34/153) by communicating with the library,
and 29% (45/153) by walking or driving by.

Discussion

Principal Findings
This study demonstrated that a pop-up testing strategy using a
bandit algorithm can be feasibly deployed in an urban setting
during a pandemic. Although this was a limited roll-out of the
strategy, positivity rates in this feasibility study were comparable
or greater to those obtained by other testing initiatives primarily
targeted at symptomatic individuals at the same time in these
same areas of central Ohio on the days of our testing events,
even though the bulk of those tested at our sites were
asymptomatic, providing encouraging, though only preliminary,
evidence that this bandit algorithm may be useful in improving
case detection efforts [24-26]. It is the first real-world use of
these kinds of algorithms for disease surveillance and represents
the first step in evaluating the effectiveness of their use in
maximizing the detection of undiagnosed cases of SARS-CoV-2

and other infections, such as HIV. In addition, the study showed
that a simple, scaled-down testing approach with a total budget
of under US $10,000 could carry out a program that could test
up to 60 people in a single 4-hour event during its 3-month run.
This shows that a flexible, adaptive approach to SARS-CoV-2
surveillance can be run efficiently with support for basic supplies
(eg, tents, chairs, tables), and partnerships with organizations
who could supply the tests (ODH) and carry them out (ONG)
[30].

The program’s ability to reach underserved communities is
especially notable for several reasons. The quick-pivot nature
of the program required that we give communities very little
notice of upcoming events, potentially taxing their ability to
hear about and be able to travel to locations to participate.
Accessibility and transportation are barriers to health services
in some of these communities [31,32]. In addition, there have
been nationwide and state-wide trends of COVID-19 resources
being allocated inequitably toward wealthier, predominantly
White communities [33]. This is particularly troubling as both
general determinants of health as well as the specific impact of
COVID-19 make communities of color and other underserved
communities more vulnerable to COVID-19 infection and the
morbidity and mortality associated with the disease [34,35].

Libraries are important resources for communities in the context
of population health [36,37]. A novel discovery during the study
was the importance of the CML system in our active disease
surveillance efforts. We learned that the CML is known and
trusted by the communities of the city as a source of information
and a site for social services. Subsequent studies in Columbus
will now be done in partnership with the CML, as it excels at
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community outreach, has a network of facilities strategically
placed in targeted neighborhoods, communicates well within
its network, and is eager to work with public health partners.
Our testing partner, ONG, was suitable for this study, but
because of other commitments, we could not deploy the
algorithm on less than 3 days’ notice with them, and we are
seeking out partners (a local federally-qualified health center)
for the next phase of this work that have greater flexibility and
can be available on short notice. While a major strength of our
approach is its ability to deploy testing teams to locations based
on emerging data in real time, it requires an operational
nimbleness from partners, which may not be possible for some.

This study uses a novel approach to implementation science in
that it addresses feasibility and acceptability of a new strategy
for active surveillance of infectious diseases as a precursor to
additional evaluation of the effectiveness of these algorithms
in the field. Randomized controlled trials (RCTs) are expensive
to mount and time consuming for both researchers and
participants—this kind of preliminary research on
implementation challenges is critical to understand the
contextual factors that might present difficulties for the conduct
of RCTs or real-world use of the intervention under study [38].

Limitations
This study has a number of limitations. First, it was conducted
over a comparatively short period of time at a specific point of
increasing concern in the pandemic. As such, the engagement
of the community and the effectiveness of the algorithm must
be set within that context. In addition, this study was only
conducted in one midsized Midwestern city and may not be
generalizable to other settings.

Conclusions
Through the implementation of a bandit algorithm in this study,
we demonstrated the feasibility of such approaches to guide
community testing for SARS-CoV-2. In addition, we established
an efficient workflow and operational plan that can be extended
to other organizations conducting mobile testing. In particular,
we were pleased that the program appears to be well-suited to
reach historically underserved communities in Columbus. As
the COVID-19 pandemic persists in the United States, using
our approach not only for active surveillance but as a core
component of “test-to-treat” or “test-to-vaccinate” efforts
targeted at the communities most at risk of the disease should
be considered as well [39,40]. Finally, this algorithmic approach
is pathogen-agnostic—it can be used for other infectious disease
efforts. It was initially developed for maximizing the yield of
undiagnosed HIV infections but could be used similarly for
other infections to maximize case detection in the community
(eg, for sexually transmitted diseases) or as an adjunct to other
efforts, beginning with case identification (eg, test-to-treat for
SARS-COV-2, HIV, hepatitis C virus, and sexually transmitted
infections). The important next step is to evaluate the
effectiveness of this algorithm in its ability to maximize the
number of cases of disease detected in comparison to standard
operating procedures for such deployment by public health
practitioners. As an interim step, we have established a new
partnership with a public health department in one of the largest
US cities and will be evaluating the performance of Thompson
sampling using historical data provided by it to compare how
yields of testing using this algorithm would have differed from
the actual number of positive tests collected for SARS-CoV-2
over the past 3 years with their fleet of mobile health vans.
Depending on the outcome of this analysis, we will pursue
funding for a prospective study of our approach in the context
of a cluster randomized trial.
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