
Original Paper

Impact of Human Mobility on COVID-19 Transmission According
to Mobility Distance, Location, and Demographic Factors in the
Greater Bay Area of China: Population-Based Study

Jizhe Xia1,2, PhD; Kun Yin3, PhD; Yang Yue1,2, PhD; Qingquan Li1,2, PhD; Xiling Wang4, PhD; Dongsheng Hu5,

PhD; Xiong Wang6, PhD; Zhanwei Du7,8, PhD; Ben J Cowling7,8, PhD; Erzhen Chen9, PhD; Ying Zhou9, PhD
1Department of Urban Informatics, Guangdong Key Laboratory for Urban Informatics, Shenzhen University, Shenzhen, China
2Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen, China
3School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
4School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
5School of Public health, Shenzhen University, Shenzhen, China
6Institute for Advanced Study, Shenzhen University, Shenzhen, China
7World Health Organisation Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China (Hong Kong)
8Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong, China (Hong Kong)
9Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Corresponding Author:
Ying Zhou, PhD
Ruijin Hospital
Shanghai Jiao Tong University School of Medicine
Ruijin Second Road 197
HuangPu District
Shanghai, 200000
China
Phone: 86 64370045 ext 600603
Email: zy12941@rjh.com.cn

Abstract

Background: Mobility restriction was one of the primary measures used to restrain the spread of COVID-19 globally.
Governments implemented and relaxed various mobility restriction measures in the absence of evidence for almost 3 years, which
caused severe adverse outcomes in terms of health, society, and economy.

Objective: This study aimed to quantify the impact of mobility reduction on COVID-19 transmission according to mobility
distance, location, and demographic factors in order to identify hotspots of transmission and guide public health policies.

Methods: Large volumes of anonymized aggregated mobile phone position data between January 1 and February 24, 2020,
were collected for 9 megacities in the Greater Bay Area, China. A generalized linear model (GLM) was established to test the
association between mobility volume (number of trips) and COVID-19 transmission. Subgroup analysis was also performed for
sex, age, travel location, and travel distance. Statistical interaction terms were included in a variety of models that express different
relations between involved variables.

Results: The GLM analysis demonstrated a significant association between the COVID-19 growth rate ratio (GR) and mobility
volume. A stratification analysis revealed a higher effect of mobility volume on the COVID-19 GR among people aged 50-59
years (GR decrease of 13.17% per 10% reduction in mobility volume; P<.001) than among other age groups (GR decreases of
7.80%, 10.43%, 7.48%, 8.01%, and 10.43% for those aged ≤18, 19-29, 30-39, 40-49, and ≥60 years, respectively; P=.02 for the
interaction). The impact of mobility reduction on COVID-19 transmission was higher for transit stations and shopping areas
(instantaneous reproduction number [Rt] decreases of 0.67 and 0.53 per 10% reduction in mobility volume, respectively) than
for workplaces, schools, recreation areas, and other locations (Rt decreases of 0.30, 0.37, 0.44, and 0.32, respectively; P=.02 for
the interaction). The association between mobility volume reduction and COVID-19 transmission was lower with decreasing
mobility distance as there was a significant interaction between mobility volume and mobility distance with regard to Rt (P<.001
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for the interaction). Specifically, the percentage decreases in Rt per 10% reduction in mobility volume were 11.97% when mobility
distance increased by 10% (Spring Festival), 6.74% when mobility distance remained unchanged, and 1.52% when mobility
distance declined by 10%.

Conclusions: The association between mobility reduction and COVID-19 transmission significantly varied according to mobility
distance, location, and age. The substantially higher impact of mobility volume on COVID-19 transmission for longer travel
distance, certain age groups, and specific travel locations highlights the potential to optimize the effectiveness of mobility restriction
strategies. The results from our study demonstrate the power of having a mobility network using mobile phone data for surveillance
that can monitor movement at a detailed level to measure the potential impacts of future pandemics.

(JMIR Public Health Surveill 2023;9:e39588) doi: 10.2196/39588
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Introduction

Background
The COVID-19 pandemic had led to over 630 million infections
and 6 million deaths worldwide by November 2022 [1]. Human
mobility is critical to the transmission of airborne diseases.
Reduction in human mobility was considered as one of the main
tools to suppress and mitigate the pandemic, and has been
applied widely and even repeatedly in multiple waves globally
[2]. However, frequent mobility restrictions globally have caused
unprecedented public health, social, and economic challenges.
For example, mobility reduction was associated with indirect
health outcomes, such as increased cerebrovascular excess
deaths [3] and increased mental health issues [4]. Substantial
economic and social burdens of lockdown measures were
reflected in regions with different financial capacities [5]. The
vaccine program may fail to help reach herd immunity, and
easing mobility restrictions should be carefully considered
against the risk of new outbreaks [6]. When variants with higher
transmissibility circulate globally, mobility restriction could be
one of the primary tools to control the pandemic. Therefore, it
is important to determine how to optimize such mobility
restriction measures to balance the indirect adverse outcomes
in the society and economy, and the benefits of controlling
transmission risk for COVID-19.

In almost 3 years of the COVID-19 pandemic, unprecedented
efforts have been made to explore the association between
human mobility and COVID-19 transmission [7]. Mobile-based
mobility data can be used to assess mobility reduction and the
effectiveness of social distancing for mitigating disease spread
[8,9]. Most studies used mobility volume (ie, number of trips)
for investigating the impact of mobility restriction policies on
the transmission of COVID-19, but the correlation between
reductions in mobility volume and COVID-19 transmission
became weaker and even disappeared in the middle stage of the
pandemic according to 2 studies in the United States [10,11].
Another study using the data of 52 countries indicated that the
association between mobility volume and the reproduction
number R changed over time [12]. After public health
interventions were relaxed, the association between mobility
and COVID-19 transmission decoupled in most countries. More
detailed research is needed to better understand such a relation.
Very few studies have explored the association between mobility
distance and COVID-19 transmission [13], and it is unclear

whether the weaker impact of mobility volume was influenced
by a disproportional change in mobility distance. COVID-19
is known to exhibit age-related severity, and exposure rates are
strongly dependent on age [14]. Similar mobility reductions
among <18, 18-64, and ≥65 years age groups were reported in
France [15], but it is unclear whether such reductions in various
age groups have similar effects on COVID-19 transmission.
Governments around the world have different policies for
implementing and easing social distancing measures in various
locations in the absence of evidence. These locations may have
different transmission risks and social benefits [16]. It is critical
to differentiate the impact of mobility reduction for various
locations when making decisions to shut down specific locations.
The impact of mobility reduction on COVID-19 transmission
according to travel distance, location, and demographic factors
is of great importance for understanding mobility restriction
policies, but it has been poorly explored.

Objectives
In this study, we integrated anonymized geolocalized mobile
phone data with census and demographic data in the Greater
Bay Area of China. We aimed to analyze the impact of mobility
reduction on COVID-19 transmission according to travel
distance (long and short), location (workplaces, schools,
recreation areas, shopping areas, transit stations, and other
areas), age (≤18, 19-29, 30-39, 40-49, 50-59, and ≥60 years),
and sex. The coverage rate of mobile phone use among the
population aged 15-65 years was almost 100% [17]. This
analysis could provide evidence to optimize mobility restriction
policies for balancing the adverse outcomes of mobility
reduction and the benefits of limiting community transmission
of COVID-19.

Methods

Data Source

Mobility Data From the Greater Bay Area, China
Large volumes of anonymized aggregated mobile phone position
data between January 1 and February 24, 2020, were collected
for the 9 megacities of Guangzhou, Shenzhen, Foshan, Huizhou,
Dongguan, Zhongshan, Zhaoqing, Zhuhai, and Jiangmen in
Guangdong-Hong Kong-Macao Greater Bay Area, China. The
Greater Bay Area is the most populated and largest urban area,
and is 1 of the 4 largest bay areas in the world. Mobile phone
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data were provided by 1 of the 3 leading mobile phone service
providers. Origin-destination matrices were constructed by
computing the number of people that move between different
locations on an hourly basis, as done previously [18]. The
mobility volume was calculated as the number of trips between
various locations. The mobility distance was determined by
calculating the great circle distance between movement origins
and destinations [19]. Aggregated sex- and age-specific daily
mobility volumes were also obtained. Daily mobility volumes
to various destinations (eg, workplaces, schools, recreation
areas, shopping areas, transit stations, and other areas) were
calculated by integrating the origin-destination matrices with
the land use type of the trip destination (Table S1 in Multimedia
Appendix 1). Official estimates of the total, sex-specific, and
age-specific populations in the Greater Bay Area were retrieved
from relevant government websites [20].

COVID-19 Transmission Data
Daily incidences of COVID-19 were obtained from official
governmental reports in the Greater Bay Area, China [21]. Data
on country-level estimates of the instantaneous reproduction
number (Rt) were obtained from the EpiForecasts project by
the London School of Hygiene & Tropical Medicine (London,
UK) [22], which was calculated based on the daily number of
COVID-19 infections by the European Centre for Disease
Prevention and Control. The timings and details for public health
interventions were taken as published on relevant government
websites in the Greater Bay Area, China [23].

Ethics Approval
We used anonymized and aggregated mobile phone data at the
population level without individual travel patterns for strict
protection of personal privacy. All data were obtained in an
anonymous format without personal identifying information.
This study was approved by the Institutional Review Board of
Shenzhen University, China (review number PN-202300030).

Statistical Analysis
The growth rate ratio (GR) of COVID-19 was computed as the
average number of new cases per day over the previous 3 days
to that over the previous 7 days. The static correlation and
dynamic correlation between the GR and mobility volume were
determined by Pearson correlation and rolling correlation. We
tested the different day lags between the GR and mobility in
the correlation analysis, as there may be a time lag between
reported cases and true community infections. A generalized
linear model (GLM) was established to test the association
between mobility volume and COVID-19 transmission.
Subgroup analysis was also performed for sex, age, travel
location, and travel distance. The statistical interaction terms
were included in a variety of models that express different
relations between the involved variables. The Rt in Shenzhen
by time for real transmission was estimated according to the
likelihood-based estimation method [24].

An interaction analysis was performed by including the
interaction terms of mobility volume ratio (VR) and distance
ratio (DR) in the GLM analysis to determine whether the impact
of mobility volume on COVID-19 transmission differs by
mobility distance in the Greater Bay Area, China. The VR and

DR were defined for each day (t), which quantified the change
in mobility patterns and were similar to previous studies [25].
The baseline dates for the VR and DR were the normal days in
2020, which are here defined as the days before Chunyun
(Spring Festival; January 1-10, 2020; Multimedia Appendix 1)
for the Greater Bay Area, China. The VR is the sum of the total
trips between various locations on a given day divided by the
same measure on the baseline day, which reflects the change in
the number of individual trips made to each area per day. VRit

was calculated as follows:

where Vij
t represents the number of trips between areas i and j

on day t, and t0 represents the baseline measure. Using this
function, VR values of 0, 0.5, and 1.0 indicate no trips, half the
number of trips relative to baseline, and no change compared
with baseline, respectively.

The DR represents the change in the distance of individual trips
made to each area per day, relative to ordinary behavioral
patterns (ie, before COVID-19), which was calculated as
follows:

where Dij
t represents the distance of trips between areas i and j

on day t, and t0 represents the baseline measure. DR values of
0, 0.5, and 1.0 indicate no trips, half of the mobility distance at
baseline, and no change compared with baseline, respectively.
Any value above 1 indicates that the mobility distance increased
from baseline. The Rt ratio was defined as the Rt on a given day
compared to the first Rt at the beginning of the study. ANOVA
was used to evaluate the model with and without the interaction
term. All statistical analyses were performed using R version
3.6.3 (R Foundation for Statistical Computing).

Results

The Effect of Mobility Volume on COVID-19
Transmission
The public health interventions in the Greater Bay Area, China
during the study period are illustrated in Multimedia Appendix
2. The population mobility volume decreased by approximately
75%-85% and then was maintained at such a substantially low
level for approximately 2 weeks in January 2020 in the Greater
Bay Area, China (Figure 1A and 1B). The GR gradually
decreased from 2.33 on January 19, 2020, to below 0.50 on
February 20, 2020 (Figure 1C). The static correlation between
the GR and mobility volume was 0.71 (P<.001; Figure 1D),
considering the time lag of 2 days representing the highest
correlation between the GR and mobility volume (Multimedia
Appendix 3). The rolling correlation coefficients were >0.75
from January 24, 2020, to January 31, 2020 (all P<.01) but
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declined in February 2020. The GLM analysis demonstrated a
significant association between the GR and mobility volume,

with a 7.56% decrease in the GR per 10% reduction in mobility
volume (95% CI 6.13%-9.00%; P<.001; Figure 1E).

Figure 1. Relationship between mobility volume and the GR in the Greater Bay Area, China. (A) Average mobility volume based on the mobile phone
position data from January to February 2020 in the Greater Bay Area, China. (B) The change in mobility volume for 9 cities from January to February
2020 (the dots represent the observed data, and the plotted lines are smoothed by a generalized additive model). (C) The GR of COVID-19 from January
to February 2020 (the line represents GLM fit to the data, and the shadow represents the 95% CI). (D) Correlation between mobility volume and the
GR. (E) Association between mobility volume and the GR (the line represents GLM fit to the data, and the shadow represents the 95% CI). The dashed
lines represent the main public health interventions. GLM: generalized linear model; GR: growth rate ratio.

Demographic Disparities in the Impact of a Reduction
in Mobility Volume on COVID-19 Transmission
We next investigated the impact of a reduction in mobility
volume on COVID-19 transmission in various subgroups of sex
and age. Although the mobility volume for females was less
than that for males before, during, and after the COVID-19
pandemic (Figure 2A), a similar magnitude of decrease was
observed (77.4% for females and 77.8% for males during the
pandemic; Multimedia Appendix 4). The sex-specific GR
declined with similar trends for both sexes (Figure 2B). The
slopes of the association between the sex-specific mobility
volume and sex-specific GR (Figure 2C and 2G) were similar
in the GLM analysis for females and males.

Among different age groups, those aged 50-59 and ≥60 years
exhibited the lowest levels of reduction in mobility volume of

72.9% and 67.0%, respectively, during the pandemic. The
percentage reductions in mobility volume were 78.1%, 81.5%,
81.4%, and 77.7% for those aged ≤18, 19-29, 30-39, and 40-49
years, respectively (Figure 2D; Multimedia Appendix 4). The
slopes of the association between the age-specific mobility
volume and age-specific GR were significantly different among
various age groups. The percentage decreases in the GR per
10% reduction in mobility volume were 7.80% for those aged
≤18 years (P<.001), 10.43% for those aged 19-29 years
(P<.001), 7.48% for those aged 30-39 years (P<.001), 8.01%
for those aged 40-49 years (P<.001), 13.17% for those aged
50-59 years (P<.001), and 10.43% for those aged ≥60 years
(P<.001) (P=.02 for the interaction) (Figure 2F and 2G). The
age group of 50-59 years had the highest slope in the GLM
analysis for the age-specific GR and age-specific mobility
volume.
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Figure 2. Relationship between mobility volume and the GR by sex and age. (A) Time series of the daily average mobility volume and (B) the
sex-specific GR for males and females. The dots represent the raw data, while the plotted lines are smoothed by a generalized additive model. (C)
Relationship between the sex-specific GR and sex-specific mobility volume. The line represents GLM fit to the data, and the shadow represents the
95% CI. (D) Time series of the daily average mobility volume and (E) the age-specific GR for various age groups. The dots represent the raw data,
while the plotted lines are smoothed by a generalized additive model. (F) Relationship between the age-specific GR and age-specific mobility volume.
The line represents GLM fit to the data, and the shadow represents the 95% CI. The dashed lines represent the main public health interventions. (G)
The change in the demographic-specific GR per 10% reduction in mobility volume. GLM: generalized linear model; GR: growth rate ratio.

Location Disparities in the Impact of a Reduction in
Mobility Volume on COVID-19 Transmission
The distribution of mobility volume at 6 types of locations at
different time periods in the city of Shenzhen (one of the Greater
Bay Area cities) is illustrated in Figure 3A. The mobility volume
for workplaces was notably higher than other locations. The
mobility volume at the 6 types of locations had declined during
the pandemic, with average reductions of 83.8% for workplaces,
75.1% for transit stations, 83.5% for shopping areas, 82.9% for

recreation areas, 83.7% for schools, and 81.8% for other
locations (Figure 3B). The impact of mobility volume on the
Rt was higher for the locations of transit stations and shopping
areas, with the highest slope in the GLM analysis. The decreases
in the Rt per 10% reduction in mobility volume were 0.67 for
transit stations (P<.001), 0.53 for shopping areas (P<.001), 0.30
for workplaces (P<.001), 0.37 for schools (P<.001), 0.44 for
recreation areas (P<.001), and 0.32 for other locations (P<.001)
(P=.02 for the interaction; Figure 3D).

JMIR Public Health Surveill 2023 | vol. 9 | e39588 | p. 5https://publichealth.jmir.org/2023/1/e39588
(page number not for citation purposes)

Xia et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Relationship between mobility volume and COVID-19 transmission by various destinations. (A) The distribution of mobility volume for
various destinations in the city of Shenzhen at different time periods in the Greater Bay Area, China (the peak of 3D bars represents the mobility volume
in the given period), and (B) the time series of mobility volume at these destinations. (C) Time series of the instantaneous reproduction number (Rt) in

Shenzhen. The shadow represents the 95% CI. (D) The change in the Rt per 10% reduction in mobility volume for a certain destination. Adjusted R2

represents the goodness of fit for the models.

Mobility Distance Disparities in the Impact of a
Reduction in Mobility Volume on COVID-19
Transmission
The change in mobility volume occurred earlier and was greater
than the change in distance during the pandemic in the Greater
Bay Area, China (Figure 4A). The population mobility volume
had an average reduction of 76.1% in February compared with
the baseline period of 2020 in the Greater Bay Area, China, and
the mobility distance declined by an average of 18.6% (Figure
4A). The Rt had reduced to <1 by February 8, 2020, in China
(Figure 4B). Exploratory analyses showed statistical evidence
of an interaction between the VR and DR for the COVID-19 Rt

ratio. In the analysis of Chinese cities, the impact of a reduction
in mobility volume on the Rt was lower with a decreasing
mobility distance. The percentage decreases in the Rt per 10%
reduction in mobility volume were 11.97% when the average

mobility distance increased by 10% compared with the baseline
period, such as in the Chunyun period when people travelled
longer distances in the Spring Festival (P<.001), 6.74% when
the average mobility distance remained unchanged (P<.001),
and 1.52% when the distance declined by 10% (P<.001) (P<.001
for the interaction; Figure 4C).

ANOVA showed that removing the interaction did significantly

affect the fit of the model (P<.001). The R2 for the model
without an interaction was 0.65, which was lower than that for
the model with an interaction (0.73 in the China model),
increasing the variance of the dependent variable explained by
the predictors. Finally, we validated the mobile phone mobility
data for the Greater Bay Area, China by comparing it to Baidu
mobility data for the whole country [26]. Here, the trend of
mobility volume reduction was quite similar to the change in
the mobility index from the Baidu Qianxi map (Multimedia
Appendix 5).
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Figure 4. Relationship between mobility volume and COVID-19 transmission by mobility distance. (A) Time series of the VR and DR in the Greater
Bay Area, China. The dots represent the observed data, and the plotted lines are smoothed by a generalized additive model. (B) Time series of the
instantaneous reproduction number (Rt) in the Greater Bay Area, China. The shadow represents the 95% CI. (C) Relationship between the VR and Rt
ratio by different DRs in the Greater Bay Area, China. The line represents GLM fit to the data, and the shadow represents the 95% CI. DR: distance
ratio; GLM: generalized linear model; VR: volume ratio.

Discussion

Principal Findings
In this study, we found that the impact of reductions in human
mobility on COVID-19 transmission significantly varied by
travel distance, location, and age. There was a significant
positive interaction between mobility volume and mobility
distance regarding COVID-19 transmission, with steeper slopes
for the association (larger coefficient in the regression analysis)
between mobility volume and COVID-19 transmission with
increasing mobility distance. We found a significantly steeper
slope for the association between the reduction in mobility
volume and COVID-19 transmission among persons aged 50-59
years than among other age groups. Furthermore, the slope for
the association was steeper for the locations of transit stations
and shopping areas, compared with workplaces, schools,
recreation areas, and other locations.

Our study indicated that the introduction of mobility restrictions
in the Greater Bay Area, China led to a marked decrease in
COVID-19 transmissibility. The time lag between mobility
reduction and decline in the GR was estimated as 2 days at the

very beginning of the pandemic in this area, which is shorter
than the time of around 2 weeks in a similar study in the United
States reported by Badr et al [11]. Our study also showed that
the Rt in Shenzhen City, one of the megacities in this area, had
declined from >3 to <1 within around 2 weeks, which means
that the public health interventions in this area worked very fast.
Therefore, the shorter time lag of 2 days between mobility
reduction and change in the GR may be possible in the Greater
Bay Area, China. The reduction in mobility volume with longer
travel distances was associated with a greater reduction in
COVID-19 transmission than shorter travel distances in our
study. The decreasing correlations of mobility volume with
COVID-19 transmission observed in our study were consistent
with previous studies in the United States. Badr et al [11] found
a strong correlation between mobility volume and COVID-19
case growth rates in the early stage of March to April 2020, but
a strong linear association was absent after April 2020. Gatalo
et al [10] also identified a strong correlation between March 27,
2020, and April 20, 2020, and only a weak correlation at later
time periods (April 21, 2020, to May 24, 2020). The significant
positive interaction between mobility volume and distance may
provide a possible explanation for the time-driven relationship
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between mobility volume and COVID-19 transmission. The
changes in mobility distance and volume are not necessarily
synchronized. Our study indicated that there is an interaction,
and changes in moving distance may affect the impact of
mobility volume on COVID-19 transmission. This provides
evidence for stricter restrictions in long-distance travel for better
control of COVID-19 transmission. However, the different start
times and levels of reduction in mobility volume and distance
during the pandemic need to be further explored.

The mobility reduction was associated with a greater reduction
in the GR for the age group of 50-59 years than the other age
groups in our study. The slope of the association between
mobility volume and the GR for those aged 50-59 years was
steeper than that for the other age groups. Those aged 50-59
years showed lower mobility reduction than those aged ≤49
years, but were vulnerable to COVID-19 infection with a higher
proportion of underlying chronic diseases compared with young
people [27]. Those aged 50-59 years faced a higher risk of
exposure to SARS-CoV-2 with more traveling for occupational
and behavioral reasons compared with those aged ≥60 years
[28]. These factors may provide possible explanations for the
finding that most infections of COVID-19 in the initial wave
in China were among those aged 50-59 years (22.4%) [29]. The
highest proportion of COVID-19 cases was also among those
aged 50-59 years during the initial wave from January to May
2020, but shifted toward younger people from June to August
2020 in the United States [30]. A similar age shift was observed
in Europe, with the median age of patients with COVID-19
declining from 54 years at the beginning to 39 years in the later
time periods [31]. Whether such an age shift is associated with
a change in the mobility pattern for various age groups at the
different stages of the pandemic needs further exploration. In
addition, our data suggested that the declined magnitude of
mobility volume and the effect of mobility volume on
COVID-19 transmission were quite similar for both males and
females, which is consistent with the conclusion of no sex
variation for COVID-19 infections in China [32].

The mobility reduction for transit stations and shopping centers
was associated with a greater reduction in COVID-19
transmission in the whole city compared with the findings for
workplaces, schools, and recreation areas. The slopes for the
association between mobility to transit stations and shopping
centers and the Rt were steeper than the slopes for the
association involving other locations. These high-contact
environments are more crowded and therefore have a higher
risk. However, the mobility reduction for transit stations was
less than that for other locations. Many governments applied
various policies for mobility restriction at specific locations,
since there was not enough evidence available regarding which
locations should be closed or which locations should remain
open. Our study provides evidence that controlling mobility to
a small number of locations could reduce transmission in the
entire city. Therefore, location-specific mobility restrictions
should be taken into consideration for precise interventions and
reopening strategies with substantially lower economic costs
[33].

Strengths and Limitations
Our results have public health and policy implications. First,
we analyzed the relationship between mobility responses and
COVID-19 transmission using mobility data of only a certain
travel destination, travel distance, or demographic subgroup
(age and sex groups) to gain more insightful knowledge. Our
study provides evidence to identify hotspots of transmission
and guide policy interventions for specific age groups or
mobility patterns associated with higher risks of mobility-related
COVID-19 transmission. Second, mobile phone data at fine
spatial and temporal resolutions provide strong added value for
explaining variations in COVID-19 transmission. The results
from our study demonstrate the power of having mobility
networks using mobile phone data that monitor movement at a
detailed level across cities to measure the potential impacts of
public health events. The network can be regularly updated and
used to identify populations and travel characteristics at risk of
adverse impacts during future pandemics or other crises. It is
also suggested to set up a national mobility network that captures
human mobility habits, which can form the basis for longitudinal
studies.

It is important to note that our study has several limitations.
First, we illustrated the detailed structural change in mobility
patterns using mobile phone data from users in the Greater Bay
Area, China, and these patterns may not be fully representative
of other locations in China. However, the mobility change in
the Greater Bay Area based on the mobile phone was quite
similar to the change in the Baidu mobility index for the whole
country, owing to nationally unified public health interventions.
We believe that this analysis for the Greater Bay Area is an
intuitive and representative estimate of the structural change in
mobility patterns in China, but future extension of this analysis
for the whole country should be further explored. Second, we
focused on quantifying the relationship between mobility
patterns and COVID-19 transmission; there is extensive
evidence indicating that population-wide social distancing and
other potential mitigating factors (eg, wearing face masks and
washing hands) all contribute to achieving control of the
COVID-19 pandemic [34,35]. Further studies are needed to
evaluate the synergistic effect of other public health
interventions along with mobility change in the environment
confounded by climate, urban space, and other potential factors
[36]. Third, our mobility estimates may also be biased toward
the populations included in the mobile phone data, as the
consumer location history feature is only available for
smartphone users (young infants or very old people may be
excluded from the data). However, despite these limitations,
our fine-grained study facilitates a step toward using multiple
data sets to capture population-level mobility patterns and
provides important insights into the complex effects of mobility
reduction for policymakers and future research.

Conclusions
The COVID-19 pandemic was the first time in human history
that human mobility showed a large-scale decline after mobility
restrictions to prevent and control the infectious disease. Our
study demonstrated that the impact of reductions in human
mobility on COVID-19 transmission was significantly modified
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by travel distance, travel location, and age. The higher impact
of mobility reduction on COVID-19 transmission for longer
distances, certain age groups, and specific locations highlights
the potential to optimize mobility restriction policies to balance
adverse health, society, and economic outcomes and the benefits

of controlling the spread of COVID-19. It is of great significance
to understand the impact of mobility reduction on the spread of
infectious diseases in detail, and it provides evidence for the
prevention and control of future pandemics.
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