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Abstract

Background: Surveillance data are essential public health resources for guiding policy and allocation of human and capital
resources. These data often consist of large collections of information based on nonrandom sample designs. Population estimates
based on such data may be impacted by the underlying sample distribution compared to the true population of interest. In this
study, we simulate a population of interest and allow response rates to vary in nonrandom ways to illustrate and measure the
effect this has on population-based estimates of an important public health policy outcome.

Objective: The aim of this study was to illustrate the effect of nonrandom missingness on population-based survey sample
estimation.

Methods: We simulated a population of respondents answering a survey question about their satisfaction with their community’s
policy regarding vaccination mandates for government personnel. We allowed response rates to differ between the generally
satisfied and dissatisfied and considered the effect of common efforts to control for potential bias such as sampling weights,
sample size inflation, and hypothesis tests for determining missingness at random. We compared these conditions via mean
squared errors and sampling variability to characterize the bias in estimation arising under these different approaches.

Results: Sample estimates present clear and quantifiable bias, even in the most favorable response profile. On a 5-point Likert
scale, nonrandom missingness resulted in errors averaging to almost a full point away from the truth. Efforts to mitigate bias
through sample size inflation and sampling weights have negligible effects on the overall results. Additionally, hypothesis testing
for departures from random missingness rarely detect the nonrandom missingness across the widest range of response profiles
considered.

Conclusions: Our results suggest that assuming surveillance data are missing at random during analysis could provide estimates
that are widely different from what we might see in the whole population. Policy decisions based on such potentially biased
estimates could be devastating in terms of community disengagement and health disparities. Alternative approaches to analysis
that move away from broad generalization of a mismeasured population at risk are necessary to identify the marginalized groups,
where overall response may be very different from those observed in measured respondents.
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Introduction

The emergence of COVID-19 in 2019 has given rise to
numerous challenges in global health. Many of those challenges
have been easily observable and measurable. The intervening
months produced countless publications on social distancing
and vaccination measures and their resulting effects on the
spread of the infection. Even now, epidemiological papers
provide current updates on the disease’s differential impact in
high-risk populations compared to susceptible people whose
risk may not be as high. Most of these analyses were conducted
quickly, using available but incomplete data to provide rapid
assessments. A challenge that has not been explored in as much
detail is how the analysis of incomplete data without proper
adjustments may be producing biased results that can lead to
detrimental effects as we try to measure knowledge, attitudes,
and behaviors related to various aspects of COVID-19.

Public health surveillance data are useful for noninvasively
monitoring community health [1]. In some cases, these data are
collected as part of an ongoing protocol with defined data
elements and quality checks [eg, 11]. Increasingly, however,
public health surveillance systems seek to draw conclusions
and understanding from a broader collection of data available
from administrative, commercial, or other sources [eg, 8-10].

Public health surveillance can be used to address a host of
epidemiological questions at a micro level, drilling down to
community clusters to identify the who, where, and when of
disease concentration. A problem arises when the analyst tries
to scale the analysis to the macro level when a nonrandom
sample of individuals is used to try to draw inference to a
population that the data cannot and do not accurately represent
[2-5]. Brick [6] presents a number of potential solutions for
reducing nonresponse bias, but these solutions tend to focus on
improving response rates as well as statistical adjustment
methods for reducing bias in data collections where nonresponse
has occurred. In this paper, we quantify and illustrate the range
and magnitude of problems encountered when we tried to infer
the underlying global properties from an incompletely measured
sample where the missingness of the data varied from random
to nonrandom. In practice, analysts often turn to sampling
weights [6] to control and reduce potential impacts of bias due
to nonresponse [2]. In this study, we also examine when and if
the use of sampling weights achieves this desired goal in public
health surveillance and determine when and if such a strategy
makes sense when considering data from a nonrandom
microlevel sample for making macrolevel decisions.

Many statistical methods for dealing with missing data require
that the data be missing at random (MAR). Investigators turn
to methods like those presented in Cohen and Cohen [7],
Simonoff [8], or Little and Rubin [9], applying statistical tests
to their data to see if they meet this requirement, but these
approaches may not provide sufficient rigor for identifying the
underlying missingness mechanism, especially if the missingness
mechanism is not associated with the auxiliary variables used
in the testing [eg, 10]. These approaches are based on a null
hypothesis that the data are MAR, and a failure to reject does
not provide proof that the null is true. Such approaches also

focus on missingness due to the variables involved in the testing
and may not have strong statistical power to detect nonrandom
missingness due to other reasons [7-9].

An additional approach favored by investigators interested in
surveillance involves expanding the sample size through the
addition of observations, widening eligibility criteria, or adding
additional questions onto an existing large-scale questionnaire
[eg, 8,11]. In the case of public-use data sets and surveillance
systems, there is often an abundance of observations available
for analysis. Extremely large sample sizes are considered to be
rich data sources and provide an excellent opportunity to “find
something.” Nonprobability samples designed to maximize the
number of respondents may present analysts with a wealth of
data, but the impact of nonrandom missingness may limit the
value of inference drawn from such studies. Although numerous
examples of “spam the list” samples and imperfect censuses
exist in the literature, we prefer to focus on the statistical impact
of such methods rather than calling out our colleagues and peers
in this paper for using such methods [eg, 9,11].

Applications of public health surveillance often focus on the
data at hand rather than general principles of analytic
performance in the presence of nonrandom missingness. In the
sections below, we use simulation to explore and illustrate the
impact of nonrandom missingness on a single survey item. Our
approach allows us to investigate and quantify the error in the
estimation of a mean when the randomness of the missingness
varies from semicomplete to not complete at all. We also provide
an illustration of how increasing the sample size impacts an
estimator when the data are not MAR. Finally, we present the
results of Cohen and Cohen’s approach [7] for missingness at
random for all of our results to assess the performance of this
diagnostic approach in identifying when it may be unsafe to
assume missingness at random in a given public health
surveillance data set. Although it may be well known that, in
theory, nonrandom missingness can influence statistical
inference, our example provides an illustration of the nature
and magnitude of this influence in a simple but realistic setting
and in a simple tool for exploration and discovery by readers,
students, and researchers.

Methods

Overview
A more detailed description of our methods could be seen in
Multimedia Appendix 1. Briefly, we present a simulated
example of item missingness using a Likert-scale outcome with
5 levels, similar to the kinds of questions often collected in
public health surveys. To provide a frame of reference, we
consider the outcome to be the answer to the question “how
satisfied are you with your community’s efforts to mandate
vaccination for local government employees and public
servants?” and simulate answers ranging from 1 to 5, one being
very dissatisfied and 5 being very satisfied. The simulation uses
a discrete random number generator to generate a large
(N=100,000) population of potential respondents, where the
response pattern is allowed to vary. We present some
simulations where an individual’s probability of response is
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generally uniform across the values, some skewed toward the
more satisfied and some skewed toward the less satisfied.

We induce missingness in the data via a uniform random value
for each respondent. In our simulation, we compare the effects
of data missing completely at random (MCAR) to not missing
at random (NMAR) data, where the missingness is not random.
We define mechanism as the reason for the data’s missingness,
as per the study by Little and Rubin [10]. When the mechanism
is completely independent of the survey, then the data are
MCAR. When the mechanism is directly associated with the
missingness, then the data are NMAR. In the case where the
mechanism can be identified and shown to be independent of
the data of interest, then the data are MAR. Identifying the
mechanism of missingness may be easier to do in the case of
item missing data, where nonresponse of certain survey items
may be analyzed using completeness in other items. In the case
of unit nonresponse, it may be impossible to truly identify the
missingness mechanism, as all information on nonrespondents
is unavailable. When a mechanism is identified, it may be
possible to control for it using multivariable modeling
approaches. In this study, we simulate MCAR and NMAR data
for a single survey item. For each simulated observation in the
population, we also have complete data for race and sex. These
demographic items provide auxiliary variables for Cohen and
Cohen’s approach [7]. We implement this approach to
investigate the test’s ability to effectively detect the NMAR
mechanism.

Our simulation replicates 1000 random samples of our overall
population and assigns observed values in the sample. Sampling
weights [6] are introduced to allow the missing observations to
be represented by complete observations.

We quantify the effect of missingness and weighting with the
mean squared error (MSE) [11]. The MSE summarizes how far
away an estimator is from the truth (on average) and summarizes
two components of estimation performance: sampling variability
(or sampling error) and bias. A full discussion of the MSE may
be found in the Multimedia Appendix 1. Our simulation
replicates samples and produces estimator variability, allowing
us to estimate sampling variance as a summary of variation in
estimation error from sample to sample. The square root of the
difference gives us a simulation-based estimate of the
estimator’s bias. In the event of rounding leading to negative

values of bias2, we assign the observed bias a value of zero. In
our simulation, the bias describes how far away, on average,
our sample estimator is away from the true population mean
satisfaction, rating in points on a 5-point Likert scale.

We present summary results for the following three population
conditions:

• Uniform response across categories (ie, no response is more
likely than other).

• Generally satisfied respondents in the population (ie, two
satisfied responses are more likely than unsatisfied
responses).

• Generally dissatisfied respondents in the population (ie,
two dissatisfied responses are more likely than satisfied
responses).

Under these conditions, we presented a constant response rate
of 90% for the generally satisfied respondents (response of three
or higher on the question) and allowed the missingness to vary
from 10% to 90% for the dissatisfied respondents to explore
the impact of nonrandom missingness. We also compared results
for two sample sizes (800 and 8000) to see how this affects the
estimators’ behavior. A sample of 800 was chosen for a margin
of error of approximately 3.5% for estimating the percentage
of those satisfied with the community’s vaccine mandates for
government employees and civil servants. The sample size of
8000 was arbitrarily chosen as an inflation by a factor of 10
without specific statistical justification. The simulation was
written in SAS 9.4 (Cary, NC). Refer to Multimedia Appendix
2 for the full program.

Ethical Considerations
No human subjects were involved in this simulation, so no
institutional review board approval was necessary.

Results

Uniform Response Pattern
We used a uniform response pattern to describe a community
without a particularly strong opinion about their government’s
efforts toward a vaccine mandate. Our response rates are
assigned using a hypothetical convention that people who are
generally supportive of public health practices will be inclined
to respond to the survey and share their positive opinions,
whereas people who are unhappy with the current state of affairs
will decline (at a range of levels) to talk about their concerns
with a stranger. We hold the response rate constant at 90% for
the satisfied members of the community, suggesting their
willingness to participate in the survey. We consider scenarios
wherein the response rate in the dissatisfied group becomes
progressively worse to measure impacts of this differential
response on sampling variability, MSE, and bias, in terms of
points on a 5-point Likert scale. We also report results after
calculating weighted means in an attempt to adjust for
nonresponse for samples from this community.

The first row in Figure 1 compares the performance of the
estimator as the nonresponse rate becomes increasingly worse
in the dissatisfied group. When response rates are similar
between those who are generally satisfied and those who are
generally dissatisfied, we see little evidence of bias; as the gap
widens in response disparity, we can see a clear upward trend
in MSE. Sampling variability appears to be relatively unaffected,
but the sharp increase in bias indicates that although our
estimator has considerable precision, our intervals are not likely
to contain the true satisfaction rating of our full population. At
its worst, the estimated policy satisfaction rating is off almost
an entire scale point compared to the population truth. The first
columns of Table 1 show how often Cohen and Cohen’s
approach [7] correctly identifies a departure from missingness
at random. We see approximately 5% of the samples presenting
with an association between one of the demographic variables
and missingness, but we rarely see evidence to indicate
missingness not at random using this approach, suggesting low
statistical power to detect nonrandom missingness in our setting.
In addition, Table 1 also reveals that the bias appears to be
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considerable even when adjusting for nonrandom missingness
using traditional adjustment weights. That indicates the use of
sampling weights will not remove the underlying problem.

Interestingly, our results remained consistent when we expanded
the sample size (Table 2). Increasing the sample size does not
appear to reduce the bias in the estimator nor does it seem to
have an impact on its overall variability. The inflated sample
size neither reduced nor inflated the inherent bias of the
estimator and had no apparent impact on the power of the Cohen
and Cohens’ approach to detect departures from missingness

at random. Since MSE is a linear combination of variance and

bias2, we see no change in these quantities when the sample
size increases. The sampling variance is improving, but
negligibly so when compared to the impact the bias has on the
quality of the estimator. The missing data contribute to a heavily
biased satisfaction estimate, so the MSE or the average distance
of our sample estimates from the true mean, is driven by the
Bias component. The sample means vary very little between
replicates, whereas they vary greatly from the true mean of the
population.

Figure 1. Mean squared error (MSE), sampling variance, and bias by sample size and response pattern.
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Table 1. Number of samples out of 1000, where Cohen and Cohen’s approach [7] identifies nonrandom missingness using sex and race based on a
sample size of 800.

Generally dissatisfied, nGenerally satisfied, nUniform, nDissatisfied nonresponse rate

BothSexRaceBothSexRaceBothSexRace

35549054413435010%

24959553524524620%

45752455553466230%

66157369543484540%

14737341520484250%

15946140431375160%

35256259465425570%

26151463501475380%

35757253703384990%

Table 2. Number of samples out of 1000, where Cohen and Cohen’s approach [7] identifies nonrandom missingness using sex and race based on a
sample size of 8000.

Generally dissatisfied, nGenerally satisfied, nUniform, nDissatisfied nonresponse rate

BothSexRaceBothSexRaceBothSexRace

25243144431383410%

13932337342503620%

24336337392433530%

65237243461404240%

15142358450493450%

13750357404434660%

03648544532503870%

25049243511294280%

15146360602312990%

Generally Satisfied Response Pattern
When the simulated respondents were generally satisfied, we
observed less overall missingness in the data, even as the
nonresponse rate for dissatisfied respondents increased. The
second row in Figure 1 shows the estimator’s behavior under a
favorable response profile. In this population, we see that bias
is considerably reduced because our sample is more
representative of a truly more favorable population. We see that
sampling variability is comparable between response profiles
because the underlying sampling distribution of the estimator
has not changed, so the variation of the estimates from sample
to sample is unaffected. However, since these sample estimators
are closer to the truth, we also see an arrested increase in the
MSE and bias even as the dissatisfied response rate falls. The
simulation also reveals that increasing the sample size had little
impact on the bias in either direction.

Generally Dissatisfied Response Pattern
The third row of Figure 1 illustrates a missingness pattern where
a large part of the population is both disenfranchised and
disinclined to participate in the survey. In this scenario, the
respondents present a much different population estimate than
what is actually true. As with the other scenarios, there is little

sample-to-sample variability. In the generally satisfied
population, this posed a different kind of problem, as the
respondents who were less likely to respond comprised a smaller
part of the population as a whole. In the generally dissatisfied
population, however, the respondent-based estimate was far
removed from the population’s truth; the resulting naive
confidence intervals have no reliable coverage, while providing
the appearance of high precision, suggesting a mostly satisfied
population, even after adjusting with sampling weights. The
estimator becomes biased much more quickly in the generally
dissatisfied population, where nonresponse rates of 40%-50%
result in the same apparent bias as much higher nonresponse
rates in the two other populations considered. As in the previous
case, the simulation results reveal that increasing the sample
size does not appear to make a significant difference in this
effect, and Cohen and Cohens’approach does not reliably result
in a detection of the missingness’ departure from randomness.

Discussion

Principal Findings
Our simulations illustrate the impact nonrandom missing data
can have on population-based estimates even when analyzing
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a fairly simple survey sample. What we present in our examples
indicate that basic diagnostic tests of missingness at random or
the use of sampling weights do not automatically control for
such biases and are not simple guarantees or workarounds to
improve the quality of estimates.

Statistical discussions of missingness tend to focus on reducing
nonresponse in the survey implementation [6] or fixing the data
in the analysis [10]. These methods can be elegant and
applicable to data collected under a specified design. Under
MCAR missingness, a sample is simply reduced but not in a
manner that generates bias. Under NMAR missingness,
however, the “true” observed sample is a combination of the
design (with known probabilities of selection) and the
missingness pattern (typically with unknown probability of
observation).

In surveillance data, particularly in a public health crisis, where
data are needed quickly, existing surveys often are repurposed
for additional data collection, or analysts include convenient
data of unknown (if any) design. In this repurposed use (eg,
through the addition of COVID-19 questions to ongoing
surveys), we may well expect new (and unknown) patterns of
missingness. Adjusting for design alone (via the design-based
weights based on designed probability of selection but not
necessarily probability of response) can adapt estimates for the
anticipated design; however as seen above, important impacts
of new causes of missingness will be missed. Specifically, the
examples in our study illustrate how dissonance between
sampling weights (adjusting for the probability of “selection”)
and patterns of missingness (which changes the probability of
“response”) can result in bias. Such impacts can be mitigated
if the missingness occurs in subpopulations with low weights
(as in our generally satisfied population example) but can be
inflated if the missingness occurs in subpopulations receiving
high sampling weights (as in our generally dissatisfied
population example). Unless we know both the probability of
selection and the probability of response, we cannot see the full
picture and cannot adjust estimates appropriately with traditional
reweighting methods.

As our simple example illustrates, the application of design
weights should not be considered as a panacea for the challenges
of extending survey designs for surveillance purposes. A closer
look at Figure 1 reveals evidence as to why caution is necessary
when applying weights in practice, particularly in settings where
probabilities of response are unknown. In our simulation
examples, while the MSE and bias trend upward as the
dissatisfied response rate decreases, the sampling variability
remains constant. The sampling variability is the essential
statistic for producing confidence intervals and evaluating
hypothesis tests—two broad statistical applications of inferential
methods. We can see that confidence intervals produced from
surveillance data may have the desired width determined by the
sample size calculation, but the bias (due to nonrandom
missingness) will result in a precise interval around the wrong
number, potentially leading to very poor decisions, policies,
and their consequences. Since sampling variability does not
fully account for deviation from the truth the way the MSE does,
in practice, we may never truly know how far away our sample’s
estimate is from the true but unknown population value. If we

assume that the missingness is completely at random and
produce biased estimates, our reported estimates may (and most
likely will) lead to incorrect decisions with potentially
long-standing public health implications.

A larger problem comes from the intention to use surveillance
data to make global statements about a community.
Extrapolation is often mentioned as a concern in modeling but
rarely translated to estimators drawn from a nonrandom sample
inferring parameters of a larger population. Our simulator shows
that as the response rate becomes increasingly worse in a
population subgroup, the sample’s effectiveness at representing
the larger community abates, in many cases rather drastically.
Using data from a sample with unknown probabilities of
observation, particularly survey data where the data may not be
MAR, is a clear example of extrapolation. Ultimately, a failure
to adequately represent a marginalized population may lead to
political and social unrest. Policy decisions based on such data
could result in creating or widening disparities already
detrimental to social justice and health equity outcomes.

The simulations we showed in our study illustrate that estimates
from survey samples have the potential to be heavily biased
when extended beyond their design, especially in the presence
of differential missingness due to imbalanced probability of
response. Although the potential of such bias is known in theory,
our simulations provide a basic but practical illustration of the
potential magnitude of the problem. We note that these
simulations represent a simplified (but perhaps not rare)
illustration of the problem; the direction and magnitude of the
bias can and likely will vary considerably as the relationship
missingness shares with the survey changes. We contend that
surveys with missing data will rarely (if ever) be random to
some extent in surveillance settings and recommend
considerable caution when applying survey weights based on
sampling plans alone without consideration of potential
differential missingness. In particular, we recommend that
thoughtful summaries of potential biases accompany analyses
and interpretation, especially those drawing from multiple
available data sources. We recommend that, rather than using
the survey data to look upward to the community, analysts
should be encouraged to consider looking down to the observed
population, instead.

Although it makes analytical sense to assume the data are MAR,
this decision may come with a sizable cost. If we assume
missingness at random in error, we reach conclusions that are
far from the truth and could lead to devastating social
consequences. If we assume that the missingness is not random
in error, we make more cautious conclusions and open avenues
to better identify and understand potentially underserved sections
of our population of interest. Erring on the side of nonrandom
missingness leads to a more socially responsible analysis of all
the available information.

One limitation of our study is that we applied simple random
sampling to simulate the survey experience where most
surveillance data sets are multistage cluster designs. We note
that a more complex design typically would likely lead to an
inflation in the sampling variability but would not reduce the
mean squared error or bias inherent in the differential response.
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In our examples, we also only considered three response patterns
and arbitrarily assigned the population responses based on our
own characterization of stronger satisfaction and dissatisfaction
propensity. Our simulator is available to readers (See
Multimedia Appendix 2) and is easily reprogrammed for more
complex population response profiles. The simulator can also
be modified to measure other kinds of response types (eg,
continuous or binary) in addition to our Likert scale example.
We limited our analysis to a basic survey design and response
because the setting clearly illustrates our point and mirrors a
very common setting when analyzing surveillance data.

Conclusions
Surveillance is an essential component of public health practice.
Surveillance data allow us to produce useful descriptive

measures to characterize the movement of disease through a
population at risk. The current pandemic has produced vast
amounts of data, much of which come from nonrandom samples
or are drawn from surveys where data missingness patterns can
obscure original sampling plans to the point that traditional
sampling weights alone cannot provide proper adjustments to
estimates. Our examples suggest an opportunity to develop new
methods that move away from classical design-only approaches
and move toward methods that explore designs for data
collection and adjustment for patterns in data completeness that
let us use the information more effectively for making better
public health decisions for the entire population.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Full description of methods.
[DOCX File , 16 KB-Multimedia Appendix 1]

Multimedia Appendix 2
SAS Simulation Macro.
[DOCX File , 21 KB-Multimedia Appendix 2]
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