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Abstract

Background: Data anonymization and sharing have become popular topics for individuals, organizations, and countries
worldwide. Open-access sharing of anonymized data containing sensitive information about individuals makes the most sense
whenever the utility of the data can be preserved and the risk of disclosure can be kept below acceptable levels. In this case,
researchers can use the data without access restrictions and limitations.

Objective: This study aimed to highlight the requirements and possible solutions for sharing health surveillance event history
data. The challenges lie in the anonymization of multiple event dates and time-varying variables.

Methods: A sequential approach that adds noise to event dates is proposed. This approach maintains the event order and preserves
the average time between events. In addition, a nosy neighbor distance-based matching approach to estimate the risk is proposed.
Regarding the key variables that change over time, such as educational level or occupation, we make 2 proposals: one based on
limiting the intermediate statuses of the individual and the other to achieve k-anonymity in subsets of the data. The proposed
approaches were applied to the Karonga health and demographic surveillance system (HDSS) core residency data set, which
contains longitudinal data from 1995 to the end of 2016 and includes 280,381 events with time-varying socioeconomic variables
and demographic information.

Results: An anonymized version of the event history data, including longitudinal information on individuals over time, with
high data utility, was created.

Conclusions: The proposed anonymization of event history data comprising static and time-varying variables applied to HDSS
data led to acceptable disclosure risk, preserved utility, and being sharable as public use data. It was found that high utility was
achieved, even with the highest level of noise added to the core event dates. The details are important to ensure consistency or
credibility. Importantly, the sequential noise addition approach presented in this study does not only maintain the event order
recorded in the original data but also maintains the time between events. We proposed an approach that preserves the data utility
well but limits the number of response categories for the time-varying variables. Furthermore, using distance-based neighborhood
matching, we simulated an attack under a nosy neighbor situation and by using a worst-case scenario where attackers have full
information on the original data. We showed that the disclosure risk is very low, even when assuming that the attacker’s database
and information are optimal. The HDSS and medical science research communities in low- and middle-income country settings
will be the primary beneficiaries of the results and methods presented in this paper; however, the results will be useful for anyone
working on anonymizing longitudinal event history data with time-varying variables for the purposes of sharing.
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Introduction

Background
Although health research data sharing has many benefits and
great value [1,2], one of the main concerns is maintaining the
privacy of study participants. The rationale for both data sharing
and privacy is widely recognized. In the field of medical science
research, the issue of privacy is central to good ethical practice.
Anonymization of data provides an opportunity to mitigate this
tension between sharing data and preserving the privacy of those
whose data are shared. However, it is often unclear how data
can be shared without unduly compromising the privacy of the
individuals included in a data set.

A fundamental issue with personal data disclosure is whether
an attacker can learn anything about an individual if the data or
analysis results are provided or predictions are made. On the
one hand, one can ask whether an attacker can successfully
match individuals with the data at their disposal. In addition,
are attackers’ efforts (and related costs) higher than the benefits
of disclosing information? On the other hand, the needs of the
users of data are of high utility, allowing for high-quality
analysis. Data providers are interested in providing such
information without disclosing the identities of the individuals
in the data.

Similar to all other areas of health research, longitudinal
population studies in low- and middle-income countries (LMIC),
such as health and demographic surveillance system (HDSS)
[3], face the challenge of finding the right balance between data
sharing and privacy protection.

The HDSS must take a position that allows the sharing required
by research funders and journal publishers [2,4] while
minimizing the risk of compromising the privacy of individuals
who make their data available for research.

However, the important issue of health data privacy has not
been adequately explored in LMIC in general and HDSSs in
particular. HDSSs currently share data in most cases without
anonymizing them beyond masking direct identifiers [5]. There
is a possibility that attackers may use indirect identifiers such
as education level, sex, and age—in cases where these are shared
[6]—to identify participants and, consequently, their health
status, which they did not intend to share beyond the boundaries
of the research in which they participated. The extent of such
risks has not been fully explored in the HDSS data sets, and
consequently, no measures have been taken to mitigate these
risks; that is, to the best of our knowledge, this has not been
addressed in the literature on health, statistics, and privacy.

Note that for some selected data sets and general anonymization
problems, the World Bank Group, PARIS21 and Organization
for Economic Cooperation and Development, and the
International Household Survey Network supported the
development of the anonymization software sdcMicro [7], and
they all recommend it [8]. sdcMicro is actively used in many

organizations, ranging from statistical offices [9] and social and
political science [10] to the United Nations High Commissioner
for Refugees [11] and health [12-14]. However, there is a need
to justify the use of this software for the specific needs arising
from longitudinal population health data in LMIC.

Longitudinal data include records of different attributes of the
same participants observed and measured at multiple points in
time. Existing theories and software are suitable only for
anonymizing and assessing the disclosure risk of cross-sectional
data. An extension of this theory is needed to quantify and
control the disclosure risk for longitudinal data.

Karonga HDSS
An HDSS is a combination of field and computing procedures
for collecting demographic, health risk, and exposure and
outcome data from a defined population within a defined
geographical area on a longitudinal basis [3,15]. HDSSs are set
up to monitor open or dynamic population cohorts, building
longitudinal databases of this population over time [15]. A
substantial body of literature has considered various HDSS
aspects, including the rationale for their establishment in LMIC
[3,15], the definition of core HDSS concepts and processes
[5,16], and the reference data model [17] among many others.
The data set used for illustration is from an HDSS in Malawi,
the Karonga HDSS. This HDSS has been described in detail
elsewhere [18]. Briefly, its surveillance site is in northern rural
Malawi and has been in operation from its initial census in 2002
to 2004. The Karonga HDSS contains longitudinally linked
health data from the study population.

The Karonga HDSS is part of a collaborative research program
under the Malawi Epidemiology and Intervention Research Unit
[19].

HDSS Core Residency Data
The generic data set structure on which we based this data
anonymization requirements analysis is in the core residency
data format. This standard data set is widely used in HDSS for
data sharing and analysis [19]. An extended version of this data
set is comprehensive enough to cover the considerations that
need to be made in anonymizing HDSS event history data. This
data set essentially comprises the core HDSS events for each
individual under surveillance and attributes relating to the
individual and to the core events. The events occur in a
particular order that defines entry or exit from the study
population. The first event for any individual is one of the
following: a baseline census enumeration, a birth, or an
in-migration. The last event is one of the following: an
out-migration, a death, or the end of observation (censoring).
The intervening events observed for any individual need to be
logical; for example, an individual born within the surveillance
area cannot have in-migration as the next event. The core events
change the residency status of an individual and, thus, the name
of the data set, core residency data [20].
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The basic form of the core residency data includes the following
variables: an individual identifier, date of birth, sex, core event,
and event date. This form contains all the data on the numerators
and person-years of surveillance (exposure) required to calculate
the demographic rates for the HDSS population and perform
event history analyses.

This basic form can be extended to capture other observations
made within the HDSS population. These may include
disaggregation of the migration events by distinguishing between
migration within the surveillance area (internal) and migration
to or from outside the area (external), as well as the inclusion
of attributes that change over time, such as education level,
occupation, and specific disease status (eg, HIV and
tuberculosis).

To elaborate on the anonymization requirements, we distinguish
between three variable groupings that can go into these HDSS
core residency data:

1. Static variables: These are variables in which the
observations on individuals do not change over time, such
as sex and date of birth.

2. Status (time-varying) variables: These are variables in which
the observations on individuals change over time, such as
occupation or education level.

3. Core events variables: These are the variables in which the
observations are specific to the event. The observed event
and the event date fall into this category.

Our approach investigates the requirements for anonymizing
variables falling into these 3 groups.

Karonga Residency Data
The variables in this data set largely overlap with those found
in the publicly available Karonga HDSS core residency data set
on the iSHARE data repository [21]. The extended version used
in this study has status variables on occupation and education
level, in addition to those found in the Karonga core residency
file.

This data set contains information recorded from October 1995
to the end of 2016, comprising 14 variables, 280,381 rows
(events), and 72,935 individuals ever observed since the HDSS’s
inception.

The main variables of the data set for this work are as follows:

• Static variables: sex
• Status variables: occupation with categories not working,

student, unskilled manual, farmer, fisherman, skilled
manual, nonmanual, small trader or business, unskilled
manual, skilled manual, nonmanual, and professional; and
education with categories none, 1 to 3 years primary, 4 to
7 years primary, primary completed, Junior Certificate of
Education completed, Malawi School Certificate of
Education completed, and tertiary

• Core event variables: event code with dates on the baseline,
date of birth, in-migration, out-migration, and date of death

• Household ID, mother’s ID, father’s ID, and polygamy ID

Objective
To contribute toward filling this gap, we propose a set of
requirements for anonymizing the HDSS longitudinal data. Our
proposal customizes and applies traditional methods that work
on the premise of keeping the data quality as high as possible
while slightly altering the data until the disclosure risk is below
a fixed threshold. The main contributions of this study are as
follows:

• We define anonymization requirements peculiar to
longitudinal event history data.

• We propose steps to take to meet these requirements,
including assessing and controlling for disclosure risk for
the static and time-varying variables and core event dates.

• We implement the proposed steps and show the results.
• We place our proposal within the larger context of data

anonymization approaches, outlining how our method of
choice contrasts with the alternatives within the LMIC
HDSS context.

Methods

In this section, we outline the methods and procedures for
anonymizing HDSS core residency data.

Different Concepts for Different Needs
Our approach of keeping data quality as high as possible by
modifying data slightly until the disclosure risk is below a
certain threshold does not stand alone but rather is part of a
broader ecosystem of data anonymization methods. We briefly
review this ecosystem and emphasize that the choice of
anonymization approaches depends heavily on the needs of the
user group and the cost of implementing the solution. We briefly
outline 4 important anonymization concepts before discussing
their applicability for sharing HDSS data. They are listed in
ascending order of data analysis potential as follows:
privacy-preserving computation, synthetic data, secure
laboratories, and the approach used in this study (anonymized
individual-level data using methods of statistical disclosure
control [SDC]). With privacy-preserving computation, data
remain on the data owner’s side. This can be extended to a
secure multiparty computation with multiple clients (data
holders). Two popular privacy-preserving computation methods
are differential privacy [22] and federated learning with Private
Aggregation of Teacher Ensembles [23]. However, there are
several limitations, as highlighted in the studies by
Domingo-Ferrer et al [24], Francis et al [25], and Bambauer et
al [26]. Furthermore, the user must trust the predictions without
evaluating the model and the data behind the model. Another
way of providing anonymized data is by generating synthetic
data that exhibit the same characteristics as the original data
[27], usually using machine learning and statistical modeling
methods. Synthetic data typically have very low disclosure but
have also relatively low data utility when the original data
possess complex structures [6]. Synthetic data can also be used
in remote execution environments, whereby registered
researchers work on the synthetic data to develop an analysis
code, and the staff of the data holder finally runs the code on
the original data. The final analysis output is checked for privacy

JMIR Public Health Surveill 2022 | vol. 8 | iss. 9 | e34472 | p. 3https://publichealth.jmir.org/2022/9/e34472
(page number not for citation purposes)

Templ et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


by laboratory staff as this checking can hardly be fully
automated [28-30].

Difficulties in Using Alternative Concepts
For HDSS data, using privacy-preserving computation would
mean first setting up a framework to compute privacy and, for
known users (test data), providing a predictive value for a
meaningful piece of information (eg, the date of migration or
the health status of a person) based on a machine learning
prediction approach. It is evident that these approaches have
some difficulties in providing good predictions for complex
longitudinal data sets. Privacy-preserving computational
approaches are also not sustainable options for health and
survival data for LMIC because of the high cost and the users’
need for detailed data, instead of simply receiving predictions
for sensitive information or working with aggregated data.
Synthetic, close-to-reality data have the potential of being a
viable approach; however, the complexity of longitudinal event
history data from HDSS makes it difficult to model and
represent all relationships and logical conditions adequately.
Remote access to secure laboratories offers the advantage of
working on real data but can only provide access to a small
number of trusted researchers and requires permanent staff to
perform output checks to keep the software on the servers up
to date and the server and access secure.

Methods for SDC
For these reasons, methods of SDC are the most suitable. The
core concept of SDC comprises transforming data in such a way
as to reduce the reidentification risks of the persons represented
in the data. More precisely, the aim of SDC is to reduce the risk
to a level below a predefined threshold on the one hand and to
maintain the data quality and analysis potential and research
questions on the other. This is a complex task that requires the
application and development of complex methods and, in our
particular case, the understanding of specific health population
data sets.

Data Release Types: Public Use Versus Scientific Use
Files
In line with lowering the barriers to data access, as encouraged
by funders [2], and in the interest of implementing sustainable
data sharing models, open data through the sharing of the
so-called public use files [31] would be a typical mechanism
for sharing HDSS data. Public use files require that a potential
user agrees to the terms of use and then get access to the data
without seeking approval from the data custodians. A reason
for this is the resource-efficient publication and distribution of
data. Once distributed, there is no need for further
labor-intensive steps, as is the case with remote execution and
remote access solutions. The next level up would be the
scientific use files [31]. This requires a potential user to go
through a review process by a data access team to confirm that
they are a bona fide researcher from a reputable institution. This
sharing demands that the custodians set aside staff time to
review data access applications, prepare the data for sharing,
customize the shared data to suit the request, and communicate
and supervise the researchers. These demands of staff time are
suboptimal as they will take staff away from their daily work

and are rarely sufficiently funded in LMIC medical science
research projects.

Pseudoanonymization
In pseudoanonymization, a string—the exact name of a person
or any other direct identification feature (eg, social security
number)—is replaced by a pseudonym, usually a 256-bit hash
code produced by a cryptography hash function from a salted
string [32,33]. The pseudoanonymization of the HDSS core
residency data on the iSHARE data repository is performed in
a simplified manner. An ascending ID is assigned per person
instead of listing their names or identifiers used in the dynamic
HDSS databases. Note that as more data with complex
interrelationships are shared through platforms such as the
Implementation Network for Sharing Population Information
from Research Entities (INSPIRE) data, more elaborate
pseudoanonymization will become necessary. However,
pseudoanonymization does not solve the data protection problem
as it only prevents attacks on direct identifiers.

Identifying Key Variables—the Disclosure Scenario
The key question here is what information does an attacker have
access to that they could match with the data to be released to
identify individuals? Before the key variables (also often called
quasi-identifiers) are identified, a check is made to see what
other existing data a potential attacker could access and use to
link to the current data and identify individuals. This is called
the (archive) disclosure scenario [34]. Existing data may include
census, voters’ roll, population surveys, or administrative data
held by government departments and national statistical offices.
In most LMIC, not many data sets are available for broad access,
and hence, this should not be a major problem.

The biggest challenge may be that an attacker has additional
knowledge of some information pertaining to an individual in
the data being released. This is often called the nosy neighbor
scenario in the literature [34]. An attacker can potentially use
this information to identify individuals.

In general, defining these scenarios requires input from subject
matter experts who work with the data being released and who
are also aware of other common data.

Anonymization Methods for Static and Status
Variables
Traditional anonymization of population data uses the concept
of uniqueness. By combining several variables (quasi-identifiers
from the Identifying Key Variables—the Disclosure Scenario
section), an individual can be uniquely identified in the data. A
key is unique if its frequency is 1, and thus, only one person
has the combination of characteristics defined by the key. For
example, the key postcode 8404, citizenship Austria, sex male,
and age 45 are unique in a demographic population data set of
Switzerland. A commonly used concept for measuring
uniqueness and “almost uniques” is k-anonymity. A data set is
k-anonymous if each key (ie, combination of key variables)
belongs to at least k observations. An approach that also
evaluates subsets of key variables is called the special uniques
detection algorithm [35,36]. This approach allows for a more
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detailed analysis and evaluation of uniques in subsets of key
variables.

To achieve k-anonymity and low special uniques detection
algorithm scores, the first step typically involves use
case–specific recoding of the categorical key variables into
broader categories [6]. With recoding, the risk can be
significantly reduced. If some individuals still have an increased
risk and further recoding would lead to an excessive loss of
quality of data, local suppression is typically considered next
[6]. This suppresses certain values to guarantee, for example,
k-anonymity. The aim is to find specific patterns in categorical
key variables and replace these patterns with missing values.
(heuristic) optimization methods must be applied to find a
minimal suppression pattern [7].

If the number of categorical key variables is large or many of
these variables have many categories, the number of keys in a
data set is large, and many keys will be unique. In this case,
recoding and local suppression would significantly change the
data to achieve, for example, k-anonymity. Applying the
postrandomization method (PRAM) [37] to a subset of key
variables would be a good alternative to recoding and
suppressing all key variables. In the PRAM, values are
exchanged between the categories of a variable with certain
transition probabilities. An attacker can never be sure whether
a value is true or has been swapped.

Handling Static and Status Variables With Varying
Status of a Person Over Time
Cross-sectional data sets typically contain observations for a
single time point, and the application of anonymization methods
is generally straightforward (eg, using the guidelines presented
by Templ et al [6]).

In the following paragraphs, the extension to longitudinal
information, in particular to status variables (eg, occupation or
education), for which the observed values (can) change over
time, is discussed. Table 1 shows the problem of using a toy
data set with 2 individuals in a simplified manner. It can be
easily seen that for person 1, both educational level and
occupational have improved over time. When only the baseline
status in 2010 is considered, both individuals share the same
level of education and occupation category; thus, they are not
unique in the data set. If only 2015 were considered, the 2
individuals would not be unique. If only the latest status of a
person is considered, both individuals would be unique in this
toy data set, considering the key variables of occupation and
education level. Moreover, if each status is reported each year,
the 2 individuals would also be unique.

A number of alternative representations could be used to
anonymize the status variables, each of which has its own
advantages and disadvantages.

If only the initial status of a person is reported, the variable
would no longer be considered a status variable that changes
over time, which simplifies anonymization. The disadvantage
is that we can no longer see the progress, for example, in the
person’s occupational and educational level over time.

If only the first and last statuses of a person in a record are
reported, all events in between must either be deleted or replaced
by the first stage or the last status.

Another very strict alternative would be to delete the link of a
person from one year to the other; that is, for each person,
another ID is provided from one year to another. However, this
makes a longitudinal analysis difficult; thus, the data utility
would suffer significantly.

Postrandomization could be an option, although the order and
consistency of educational and occupational levels are either
lost or biased to higher levels. For example, it makes no sense
to lower a person’s education level over time; therefore, with
realistic swapping probabilities in the PRAM, the education
level would randomly increase but never decrease.

Another approach would be to apply traditional anonymization
methods to patterns or subsets of the data, whereby individuals
with the same pattern of event occurrence are considered as a
subset to be anonymized. For example, the 2 individuals in
Table 1 do not have the same pattern as they have a different
number of events. This approach leads to a potentially large
oversuppression but reduces the disclosure risk heavily. Studies
aimed at analyzing the education and occupation of individuals
over time might be possible, especially when data analysts
impute the suppressed information.

Before deciding on one of these or even other alternative
approaches, one has to think about the disclosure scenario. How
likely is it that an attacker can merge their database with the
anonymized data set provided to match and identify individuals?
How likely is a nosy neighbor scenario and to what extent?

For an archive scenario, the following assumptions regarding
the attacker’s knowledge are made:

• Only the last status of education of a person is known to
the attacker, assuming that the attacker’s database is more
or less an up-to-date archive containing the current
educational level of a person used for matching. Here, it is
neglected that the attacker has access to the historical
sociodemographic status data of individuals.

• Only the last occupational status is known by an attacker,
provided that the attacker’s database is more or less an
up-to-date archive containing the current profession of a
person used for matching.

• The attacker has knowledge of the static variables of sex
and birth date.

• The attacker does not know the reason for in- and
out-migration but knows the birth date, the start date, and
the stop date.

For a nosy neighbor scenario, the following assumptions about
the attacker’s knowledge are made:

• The (changing status) of the education of a person is known
to the attacker over time, assuming that the attacker has
individual knowledge of the historical development of the
educational and occupational levels of a few individuals.

• The attacker has knowledge of the static variables of sex
and birth date.
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• The attacker may know the reason for in- and out-migration
for certain individuals and the corresponding event time,
and they may have knowledge about the birth date of certain
individuals.

As the data go public as an open-access data set, a nosy neighbor
scenario is possible and, thus, in focus. Therefore, we use the

approach in which only the first and last observed statuses of a
person are reported. This is a solution in which the change in a
person’s status is reported without their intermediate
improvements, whereas local suppression results in a low
number of suppressions as not all stages are reported.

Table 1. Toy data set supporting a simple explanation to the problem to deal with time-varying information on status variables.

Education levelOccupation(Event) yearPerson ID

2220101

2220111

2320121

2320131

2320141

3320151

3420161

2220102

3320152

3320162

Handling Event History Dates

General Considerations
To prevent (exact) record linkage and closest distance–based
neighborhood matching, we suggest adding random noise to
the event dates. An adequate obvious choice is to add
approximately 100 days randomly. This prevents an attacker
from successfully applying record linkage and is likely to
prevent distance-based matching.

However, care must be taken to ensure that the order of events
is maintained. For example, if a person has a birth date of May
15, 2009, and we hypothetically assume that this person
out-migrated on June 5, 2009, in-migrated on July 6, and died
on August 1, 2009, then a random noise of +40 or –40 to +60
or –60 days will completely upset the event order.

Thus, we need to modify the event data by adding or subtracting
a sufficient number of days so that the individual cannot be
identified, although the data utility and event order of the data
are retained. More specifically, the addition of noise must be
performed with the following constraints: (1) the order of events
must be maintained; (2) the time span between events should
remain the same as much as possible, naturally fulfilled by
adding noise; (3) attacks with record linkage should not be
successful; and (4) the number of events per person should
remain unchanged.

This leads to a sequential approach that adds noise for each
person, event by event, under certain restrictions, explained in
more detail in the following paragraphs. Of course, the main
parameter—the level of noise—must be determined on a use
case and data set–specific basis.

Add Noise to One Event Date
For simplicity, equation 1 shows the case for 3 events, whereby
noise is added for 1 person for event 2. Figure 1 shows this case
with 3 event dates t1, t2, and t3, and the time span between events
1 and 2 (∆2;1) and events 2 and 3 (∆3;2).

It should be noted that extension to any number of events per
person is possible and straightforward to implement, although
the notation becomes more complicated.

With s, a Bernoulli random values∈{–1, 1} with P=.50 for
random addition or subtraction of the event date, and u ~ U[ min;
 max], which controls the number of noise (in days), a new

(anonymized) event date t2
* is calculated using the following:

t2
* = t2 + u · s , if ∆2,1 >  max ∧ ∆3,2 >  max t2

* = t2 + u

, if ∆2,1 ≤  max ∧ ∆3,2 >  max t2
* = t2 – u , if ∆2,1 >  max

∧ ∆3,2 ≤  max t2
* = t2 – u – (∆2,1 – 1) , if ∆2,1 >  max ∧

∆3,2 ≤  max ∧ min(∆2,1, ∆3,2) = ∆2,1

This ensures that the event order is preserved for t1, t2, and t3.
Except for the first case, restrictions were applied as the distance
between event data was smaller than the specified minimum
noise range.

An alternative noise addition method is to draw u ~ N(µ, σ2)
and round it to the next integer value.
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Figure 1. Schematic overview of 3 event history dates for one person and corresponding time span between the events.

Add Noise Sequentially Event by Event
The extension of equation 1 to all events of a person is achieved
by the sequential application of noise to each event of a person.
First, all recorded data of one person are stored, and the number
of events of this individual, as well as the distance between all
events, are recorded. For the first event, date t1 noise is either
randomly subtracted or added; more precisely, it is subtracted
without any restrictions and added less than the distance to the
second event. Subsequently, for all other events recorded, in an
additional loop considering one event date at the time, noise is
added, as described above (equation 1) according to a predefined
noise level (see Disclosure Risk and Data Utility section for
further discussion on the level of noise). Therefore, first, for t1,

noise is added leading to t1
*, and then, noise is added to t2,

considering possible restrictions from t3 and t1
* to not change

the event order. Subsequently, noise is added to t3 considering

t2
* and t4,..., until the last event date. Using this sequential

approach, preservation of the event order is guaranteed.

Restrictions may occur if 3 consecutive events are very close
to each other. If the maximal noise of the respective noise level

is larger than the difference between t2
* and t3 and t3 and t4, it

proceeds as follows. If the minimum of the event difference
min(∆2;1;∆3;2) is larger than the predefined minimum noise, then
take minimum=minimum noise and maximum noise=∆2;1 and
∆3;2, respectively, and sample at random. If the minimum of
event difference min(∆2;1;∆3;2) is smaller than the minimum
noise, then sample from a univariate distribution U(0; ∆2;1);
same with ∆3;2 in the respective sampling direction as maximum
or minimum noise. In the case of normal distribution while
(noise < ∆2;1 ∧ noise > ∆3;2), draw a new value from N(μ=0;
σ=50) until a valid noise is obtained.

Furthermore, we would like to briefly point out that it is
necessary to consider the special data structure. It has already
been mentioned that the event history dates cannot ideally be

represented in columns, as there are different numbers of events
and different events per person. Therefore, a separate row for
each event in the data set is used to store the event code and
date for a person; that is, individuals are represented in multiple
rows. If a person was born within the observation period, he or
she has an additional entry as an event in addition to the actual
date of birth. Thus, if no birth date is registered under event
dates, as the individual was born before data collection, then
only one number is randomly added to the date of birth of a
person in all rows of this person. If birth is also represented as
event date information, the same noise (used to noise the event
date on birth) has to be taken as for the column holding the birth
date of the person; that is, the information on birth date and the
event birth date is linked and must be considered adequately
and consistently.

In the Results section, the noise level chosen for the HDSS core
data set is presented, and further insights into the choice of noise
level are provided.

Putting It All Together
The event data are particularly important as they are numerical
information that can be used for record linkage if the attacker
has a database of exact event data. However, an attacker might
only know the year of birth and death and then use this
information for matching. In addition to the event history dates,
variables with varying statuses over time must also be
considered. Therefore, the changes in education and
occupational levels are limited by indicating only the first and
last status (Textbox 1).

For certain studies, for example, on fertility by educational level,
the full history of event dates and changes in the educational
level is needed. This is also true for various studies on the
occupational level of individuals over time (eg, answering the
question of whether well-educated individuals change their
occupational levels quicker). In this case, the entire history of
event data might be needed, and the previous procedure has to
be adapted, in this case, for example, by anonymizing the
patterns, as outlined previously.
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Textbox 1. Steps of putting it together.

Step 1

• Add random noise to event dates for each person sequentially, as described in the Handling Event History Dates section. This prevents record
linkage and nearest-neighbor matching with an external database containing exact event dates and preserves the order of events.

Step 2

• Aggregate data (ie, from long to wide representation, where each line represents a person) so that each row contains the information of a person
for the static variables (such as sex and birth date), first and latest education, and first and latest occupation and build new variables containing
the year of birth, year of death, and number of events of a person.

Step 3

• Perform k-anonymity using local suppression using the implemented methods in sdcMicro [7] using the variables mentioned in step 2 to avoid
uniques and prevent successful matching. If the year of the earliest or latest event or the year of birth is suppressed, the noised year and noised
event date should also be suppressed. It should be noted that this was hardly the case as the importance was set such that the year of birth, year
of death, and number of events of a person are the most important variables; thus, the suppression algorithm uses the remaining variables to make
local suppressions.

Step 4

• Disaggregate the anonymized aggregated data (from wide to long representation, where each line represents an event). The data set now includes
only the anonymized information on sex and the earliest and latest occupational and educational codes of a person.

Estimation of the Disclosure Risk
The theory for estimating disclosure risk in a cross-sectional
data set is well implemented, for example, in the R package
sdcMicro [6,7]. In fact, for survey sample data, the approach of
Franconi et al [38] or, for example, Skinner et al [27,39] can be
used, or, for population data, the concepts of k-anonymity
[40,41] or sample uniqueness [35,36]. We introduce an extension
of this theory that provides a practical tool for quantifying
disclosure risk for event history data.

Typically in anonymization, methods differ when continuous
or categorical information is anonymized [6]. In addition, we
distinguish between 2 scenarios—the matching of event dates
(continuous measurements) and an attack on categorical key
variables.

Event data are considered continuous measurements as there
are multiple records for each person on a time scale.

As k-anonymity is already ensured (step 3) and population data
are used, there is no need to quantify the disclosure risk for
categorical key variables.

For continuous event dates, a neighborhood distance-based
approach is proposed. Neighborhood matching, as introduced
here and further introduced and applied in the Results section,
assumes that the attacker has a database with exact event dates,
which represents a worst-case scenario. For each individual in
the anonymized data set, the nearest 3 individuals in the original
nonanonymized data are determined by using Euclidean
distances between event dates in the original and anonymized
files. This is performed with replacement, meaning that the
nearest neighbors are available to match for another individual
in the data set. In case 1 of the 3 nearest neighbors is the correct
match, we identify this observation to be of high risk. The

number of risky observations is reported. The Results section
shows the specific settings for our application.

Results

Anonymization of the Karonga HDSS Core Residency
Data Set
First, it should be noted that the data set obviously cannot be
spread into columns of events as migration and other event
codes have possibly >1 entry, and the number of events differs
between individuals. This makes it difficult to anonymize the
data as the individuals have different events and different
numbers of the same events at different times.

The key (identifying) variables are listed in Table 2.

Experiments with the HDSS core residency data set have shown
that an additional identifying variable, the ID of the mother of
a child, ID of the father and of the household, and the reason
for in-migration and out-migration (reasons are marriage,
divorce, start or end of work or education, and others) could
potentially enlarge possible matches to approximately 10% of
the original possible matches or individuals. Polygamy
identifiers are not considered in this study. The usual approach
for handling cluster information (eg, persons in households) for
risk estimation of (enlarged) risk is, for example, described in
Templ et al [6] and implemented in sdcMicro under the term
of hierarchical risk estimation. However, as no further household
information is available in this data set, this approach can be
neglected. This is because household information can be used
to identify individuals more easily; however, such additional
household information is not available in our data set.

Other socioeconomic or sensible variables (eg, health status)
were not included in the open-access data set.
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Table 2. Key (identifying) variables of the health and demographic surveillance system core residency data set.

KindKey variable

Static variableBiological sex

Static variableYear of birth

Static variableYear of death

Core event dateaExact event date

Status variableEducation

Status variableOccupation

Static variableNumber of events per person

aContains dates at which the observed core events occurred (birth, death, in-migration, or out-migration).

Anonymization of Event Dates (Details Related to Step
1)
According to the random principle, a drawn number of days is
randomly added to or subtracted from the event dates of birth,
death, in-migration, and out-migration (equation 1; Add Noise
to One Event Date section).

Four levels of noise were considered. In 3 scenarios, integer
numbers (noise in days denoted by ε) for each event of a person
(with E being the number of events of a person) were drawn
with equal probability from the following intervals—depending
on the noise level. In addition, a fourth scenario with normally
distributed random noise is considered:

1. Noise level 1: εmin=46; εmax=62
2. Noise level 2: εmin=76; εmax=93
3. Noise level 3: εmin=106; εmax=124
4. Noise level 4: u ~ N(µ=0; σ=50)

As described previously, random noise is added sequentially to
the birth date, in-migration and out-migration dates, and death
date to prevent record linkage and nearest-neighbor matching,
with an external database containing exact event dates and
information on sex, number of events, year of birth, year of
death, occupational status, and educational level.

Anonymization of Static and Status Key Variables
(Details to Steps 2 to 3)
To prevent successful matching, we achieved 3-anonymity
through global recoding and local suppression using the heuristic
implemented in the R package sdcMicro [6,7].

New variables are built for the year of birth, year of death, and
year of the first change of educational and occupational status
and used as key variables along with the sex of a person and
the number of events of a person. Intermediate changes in
educational and occupational levels are dropped. K-anonymity
is then achieved by local suppression using the implemented
methods in sdcMicro [7]. If the year of the latest event or the
year of birth is suppressed, the noised year and noised event
date are also suppressed. The number of events and the year of
birth and death are set to the highest importance so that the
implemented (weighted) local suppression algorithm in Templ
et al [7] likely does not include missing values in these variables.
Note that one suppression in a variable with high importance

would increase the loss (function) in utility for >1 suppression
in a variable with low importance (see Templ et al [7] for
details).

After event date anonymization and status variable
anonymization, the data are again matched to transform them
into their original shape.

Disclosure Risk
To assess whether a data set was successfully anonymized, we
quantified the disclosure risk. It must be reported only for event
dates as, for the categorical key variables, k-anonymity is
achieved, which satisfies our need to prevent successful
matching.

The disclosure risk is calculated by matching each individual
of the raw data set with the 3 nearest neighbors of the
anonymized data with replacement using distance-based
matching. In addition, an individual is matched with individuals
who are born, died, or migrated within plus minus the same
year as the true match, respectively, having the same (final)
education, the same (final) occupation, and the same sex. If an
individual has a missing value for one of these variables because
of local suppression, that person is still considered a possible
match if the rest of the variables meet the requirement.

If the match is correct, we assume that the attack was successful,
and an individual can be reidentified. This means that if a person
is in 3 of the nearest distances, we consider it unsafe.
False-positive matches are not taken into account.

Table 3 reports the absolute and relative disclosure risk (in
percentage) of the anonymized Karonga data set for all 4
scenarios, considering only individuals as possible matches who
were born or had died or migrated in the range of +1 or –1 year
of the date of birth, death, or migration, respectively, of the real
match. We can observe that the risk is very low and that an
attacker can hardly reidentify individuals. Note that the
disclosure risk is already based on a worst-case scenario with
3 neighbors and by assuming the attacker uses the original
nonanonymized data for matching. The low risk can also be
explained by the fact that we choose εmin to be relatively large;
for example, for noise level 1 it is 46, meaning that for each
event, the date is changed within at least 46 days. However, for
death and birth, the risk increases as death is more unique than
any of the other variables. The highest risk is connected with
normal noise.
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The computation time for neighborhood-based risk
measurement, as proposed here, is high, and an implementation
that uses parallel computing is preferable. Currently, the
anonymization runs for 4 hours on a single-core Intel(R) Core

i7-6700HQ central processing unit (CPU) with 2.60 GHz, and
8 days are spent for the risk assessment on all 4 noise levels on
the HDSS core residency data set using 32 CPUs, Intel Xeon(R)
Gold 5218 CPU with 2.30 GHz.

Table 3. Counts on successfully matched individuals and relative disclosure risk (in percentage; number of risky individuals divided by the number of
individuals times 100) of the anonymized Karonga data set for all 4 levels of noises based on the matching scenario.

OMGb (number of success-
ful matches)

IMGa (number of successful
matches)

Death (number of successful
matches)

Birth (number of successful
matches)

Scenario

Absolute risk

3942201771669U(46;62)

3882221541452U(76;93)

3831781511271U(106;124)

2421976191513N(μ=0; σ=50)

Relative risk (%)

0.80.55.02.3U(46;62)

0.80.54.32.0U(76;93)

0.80.44.21.7U(106;124)

0.50.417.32.1N(μ=0; σ=50)

aIMG: in-migration.
bOMG: out-migration.

Utility
Utility measures specialized in a particular field should always
be preferred to general measures ([42]; eg, as implemented in
sdcMicro). To check the data utility after anonymization, visual
comparisons of the original nonanonymized and anonymized
data sets, as well as chi-square tests comparing contingency
tables obtained from original and anonymized data, are shown.

Figure 2 shows the distribution of the date of birth from the
original data and the noised data sets. The original data show a
heaping in 1925, 1937, and 1945, which is still visible in the
modified versions of the data set. This is not surprising as the
noise was not too large.

The 2 midyear population pyramids for 2005 and 2015 are
depicted in Figure 3. We distinguish between the population
pyramids for the original nonanonymized data and anonymized
data with noise levels of 1 to 4. Almost no differences were
observed.

We do not explicitly show further graphs on the distribution of
the date of death, in-migration, and out-migration, as the results
are very similar to the previous figures; that is, there are no
significant differences in the distributions.

Table 4 shows summary statistics of the time span between
in-migration and subsequent out-migration of individuals. It
shows only minimal differences; that is, all statistics are well
preserved. The best results are obtained with noise scenario 4
(normal distributed noise). The results for out- to in-migration
are comparable, except for the time between out- to in-migration.
This can be shown in more details by a visualization.

Figure 4 visualizes this time span between in-migration and
subsequent out-migration, as well as between out-migration and
in-migration by box plots. The x-axis is presented on a log10

scale to better see minimal differences in the distribution of the
time span between the original nonanonymized data and the
anonymized data (almost no differences can be seen in the
original scale). Almost no differences were found in the time
span for in-migration to out-migration.

For the number of days between the out-migration and
in-migration of a person, the worst results were obtained by
scenario 4 (normal distributed noise). The reason for this
difference between in- and out-migration is that people tend to
return after out-migration much earlier than they leave the place
after in-migration. Normal noise tends to increase the number
of days of consecutive events if the events are close together.

Table 5 presents the results of the statistical test. The
cross-tabulation for age class×event code×sex×event time
category (2000-2004, 2005-2009, 2010-2014, and 2015-2020)
was calculated from the original nonanonymized data and for
the anonymized data. The corresponding cell counts were
compared with each other by using a chi-square test. The results
of the chi-square tests (Table 5) showed that the null hypothesis
of equality of anonymized and original data can never be
rejected.

Naturally, the differences between original and anonymization
increase with an increasing level of noise, as can be seen in all
the presented tables and visualizations of data utility. The best
utility was achieved by adding normal noise (Table 5). However,
even with noise level 3, the structure is well preserved, and the
data utility is very high for all 4 noise levels investigated.
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For the anonymization of the status variables on education and
occupation, including sex, number of events of a person, year
of birth, and year of death, a few values were suppressed to
achieve 3-anonymity (Table 6). The highest number of
suppressions is present in variable end education (last
educational status of a person), with approximately 0.64%
(3735/583,480) suppression. Overall, 0.14% (808/583,480) of
values were suppressed.

For the static and status variables, one of the most important
information might be the last status of occupation and education.
Figure 5 shows the frequencies of the corresponding contingency
tables. The differences were minimal and not detectable by
visual comparison. This is even more true for the other
tabulations.

Figure 2. Distribution of the date of birth of the original data set and for the anonymized data set according to noise levels 1, 2, 3, and 4.
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Figure 3. Population pyramids for 2005 and 2015 midyear population and age structure of the original and anonymized data according to noise levels
1, 2, 3, and 4 for men (left bars) and women (right bars).

Table 4. Summary statistics for the number of days between in-migration and subsequent out-migration of a person for noise levels 1 to 4.

<100 days (%)Values, mean (SD)Values (minimum-maximum)Scenario

2.2862.05 (714)(0-5909)(0;0) (original)

3.4846.67 (716)(0-5805)U(46;62)

4.4839.25 (717)(0-5832)U(76;93)

5.5831.30 (720)(0-5906)U(106;124)

2.9862.58 (716)(0-5859)N(μ=0; σ=50)

Figure 4. Time span (in log10 scale) between in-migration and subsequent out-migration and out-migration to subsequent in-migration of the original
data set and for the anonymized data sets by noise levels 1, 2, 3, and 4. Regarding in-migration to out-migration and out-migration to in-migration only
individuals who in- or out-migrate, respectively, are considered.
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Table 5. Comparison of 4-dimensional contingency tables of the anonymized and original data using a chi-square test.

N(μ=0; σ=50)U(106;124)U(76;93)U(46;62)Statistics

37.52121.3973.5846.08Test statistic

237.24237.24237.24237.24Critical value

.99.99.99.99P value

Table 6. Percentage of suppressions per variable and total number of suppressions per variable.

Year of
death

Year of
birth

Number of
events

End occupationEnd educationBase occupationBase educationSexSuppression

000.020.130.640.070.220.03Suppressions (%)

0013944655316023Total suppressions

Figure 5. Relative frequencies of the latest educational and latest occupational status of individuals for the original and the anonymized data set.

Discussion

Principal Findings
Providing open data (public use files) is a typical mechanism
for HDSS data sharing, which is consistent with the funders’
[2] call for lowering barriers to data access and in the interest
of implementing sustainable data sharing models. However,
more stringent anonymization is required than that for
access-restricted and contracted files used for scientific
purposes.

Anonymizing HDSS data is challenging, and no easy-to-apply
solutions are available. The details matter to ensure consistency
or credibility, and context knowledge is key for successful
implementation. The presented approach is novel in several
respects. This is the first time that a systematic approach has
been adopted to determine the anonymization requirements for
residency data from LMIC HDSS studies or for any other
longitudinal data generated in these settings. Previously,
anonymization of HDSS data was performed on an ad hoc basis.

We grouped the variables into static, status (time-varying), and
core event–specific variables and tackled the anonymization
relating to the variables in each of these groupings.

We achieved an anonymized data set with very low disclosure
risk and high utility, ready for sharing as a public use data file.

Using distance-based neighborhood matching, we simulated an
attack under a nosy neighbor situation and using the worst-case
scenario, where attackers have full information on the original
data. We showed that the risk of disclosure is very low, even
when assuming the worst-case scenario.

We explicitly defined a procedure for anonymizing core event
dates as a major part of the HDSS event history data
anonymization. Different levels of noise addition to the event
history dates were evaluated for disclosure risk and data utility.
It was found that high utility was maintained, even with the
highest level of noise. The basic properties of the event data
such as order, time span, and number of events were preserved
compared with the original data. As can be seen from the
application and anonymization of event history dates, it is likely
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that the noise level and the loss of data utility will balance each
other. Thus, a medium level of noise may be recommended to
preserve the properties and usefulness of the data. In addition,
the preservation of the time intervals between events is important
for the successful implementation of this anonymization method.
If the interval is too small, the added noise will is also
automatically reduced by the algorithm.

Furthermore, our work explores the extent to which methods
or tools such as sdcMicro can be used and for which aspects of
longitudinal data. The guides for these tools focus on
cross-sectional data and thus do not naturally lend themselves
to the anonymization of multiple records per individual, which
is the case in the Karonga HDSS core residency data that we
used. In this regard, we transformed the time-varying variables
of education level and occupation, year of death, year of birth,
and the number of events for an individual before feeding them
into the sdcMicro R package. The transformation involved
limiting the number of transitions an individual had in the
time-varying variables over time. This strategy preserves the
data utility well, albeit providing fewer details than the original
data.

The HDSS and medical science research communities in LMIC
settings will be the primary beneficiaries of the results and
methods presented in this paper; however, the results will be
useful for anyone working on anonymizing longitudinal data
sets, possibly including time-varying information and event
history data with time-varying variables for purposes of sharing.
If more sensitive variables such as medical conditions are added,

l-diversity should also be checked. Alternatively, the PRAM
[37] should be applied to medical conditions.

Future Work
The proposed approach of combining the range of values for
the status variables into a baseline value and a final value may
not be optimal for some analyses. This is one of the realities of
data anonymization; it almost always results in data of lower
utility than the original data. Further work is required to explore
alternative handling of the status variables to determine the
optimal handling of the transitions in the time-varying variables.

The disclosure risk is calculated based on 3 nearest-neighbor
distance-based matchings. This matching strategy is already
quite complex, with some constraints described previously, as
well as dealing with missing values. However, other matching
strategies might be possible, and specialized record linkage
software [43] might also be considered.

Further work is also required to determine the right amount of
offset for the core event dates. To determine this, it might be
important to gather data from the participants to estimate what
it would take to sufficiently offset the dates so that the potential
nosy neighbors are unable to make guesses even in cases where
events such as in-migration are rare.

Of course, not all data sets might have exactly the same structure
as the HDSS residency data set used here. Other longitudinal
data sets from HDSS settings, such as those generated from the
observation of tuberculosis episodes or sexual partnership
episodes, may contain features not fully catered for by our
approach here. These issues need to be explored further.

Acknowledgments
The work of CK and MT was supported by a start-up grant from Network for the promotion of Institutional Health Partnerships,
Switzerland. An interview about this grant and further details about the project can be found in German, English, and French
[44]. The authors would especially like to thank Dörte Petit and Judith Safford from the University of Bern for their support on
this project.

Malawi Epidemiology and Intervention Research Unit (MEIRU) and Zurich University of Applied Sciences (ZHAW) contributed
in kind for some of CK’s and MT’s time on this project to enable them to fully explore the research collaboration and the methods
used for anonymization.

The authors’ gratitude also goes to the study participants and the iSHARE team for providing a platform through which health
and demographic surveillance system data can be shared.

Conflicts of Interest
None declared.

References

1. Pisani E, Aaby P, Breugelmans JG, Carr D, Groves T, Helinski M, et al. Beyond open data: realising the health benefits of
sharing data. BMJ 2016 Oct 10;355:i5295 [FREE Full text] [doi: 10.1136/bmj.i5295] [Medline: 27758792]

2. Walport M, Brest P. Sharing research data to improve public health. Lancet 2011 Feb 12;377(9765):537-539. [doi:
10.1016/S0140-6736(10)62234-9] [Medline: 21216456]

3. Sankoh O, Byass P. The INDEPTH Network: filling vital gaps in global epidemiology. Int J Epidemiol 2012
Jun;41(3):579-588 [FREE Full text] [doi: 10.1093/ije/dys081] [Medline: 22798690]

4. Federer LM, Belter CW, Joubert DJ, Livinski A, Lu YL, Snyders LN, et al. Data sharing in PLOS ONE: an analysis of
data availability statements. PLoS One 2018 May 2;13(5):e0194768 [FREE Full text] [doi: 10.1371/journal.pone.0194768]
[Medline: 29719004]

JMIR Public Health Surveill 2022 | vol. 8 | iss. 9 | e34472 | p. 14https://publichealth.jmir.org/2022/9/e34472
(page number not for citation purposes)

Templ et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://europepmc.org/abstract/MED/27758792
http://dx.doi.org/10.1136/bmj.i5295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27758792&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(10)62234-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21216456&dopt=Abstract
http://europepmc.org/abstract/MED/22798690
http://dx.doi.org/10.1093/ije/dys081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22798690&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0194768
http://dx.doi.org/10.1371/journal.pone.0194768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29719004&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


5. Herbst K, Juvekar S, Bhattacharjee T, Bangha M, Patharia N, Tei T, et al. The INDEPTH data repository: an international
resource for longitudinal population and health data from health and demographic surveillance systems. J Empir Res Hum
Res Ethics 2015 Jul;10(3):324-333 [FREE Full text] [doi: 10.1177/1556264615594600] [Medline: 26297754]

6. Templ M. Statistical Disclosure Control for Microdata: Methods and Applications in R. Cham, Switzerland: Springer; 2017.
7. Templ M, Kowarik A, Meindl B. Statistical disclosure control for micro-data using the R package sdcMicro. J Stat Soft

2015;67(4):1-36. [doi: 10.18637/jss.v067.i04]
8. Statistical Disclosure Control (sdcMicro). International Household Survey Network. URL: http://www.ihsn.org/software/

disclosure-control-toolbox, [accessed 2022-02-22]
9. Templ M, Todorov V. The software environment R for official statistics and survey methodology. Aust J Stat 2016 Feb

29;45(1):97-124. [doi: 10.17713/ajs.v45i1.100]
10. Milliff A. Data security in practitioner-academic partnerships: an agenda for improvement. SSRN J 2020 Sep 16. [doi:

10.2139/ssrn.3693330]
11. Statistical Disclosure Control. The Centre for Humanitarian Data. 2019. URL: https://centre.humdata.org/guidance-note-

statistical-disclosure-control/ [accessed 2021-10-20]
12. Hummerl M. Data-intensive computing with genomic data. BiobankCloud. 2013. URL: https://cordis.europa.eu/docs/pro

jects/cnect/1/317871/080/deliverables/001-D52.pdf [accessed 2022-08-01]
13. Song X, Waitman LR, Hu Y, Luo B, Li F, Liu M. The impact of medical big data anonymization on early acute kidney

injury risk prediction. AMIA Jt Summits Transl Sci Proc 2020 May 30;2020:617-625 [FREE Full text] [Medline: 32477684]
14. COVID-19 Case Privacy Review. GitHub. URL: https://github.com/CDCgov/covid_case_privacy_review/ [accessed

2021-10-20]
15. INDEPTH Network. Population and Health in Developing Countries: Population, Health, and Survival at INDEPTH Sites.

Ottawa, ON, Canada: International Development Research Centre; 2002.
16. Ye Y, Wamukoya M, Ezeh A, Emina JB, Sankoh O. Health and demographic surveillance systems: a step towards full civil

registration and vital statistics system in sub-Sahara Africa? BMC Public Health 2012 Sep 05;12:741 [FREE Full text]
[doi: 10.1186/1471-2458-12-741] [Medline: 22950896]

17. Benzler BJ, Herbst K, MacLeod B. A data model for demographic surveillance systems. INDEPTH Network. 1998. URL:
http://www.indepth-network.org/Resource%20Kit/INDEPTH%20DSS%20Resource%20Kit/LinkedDocuments/HRS2%20DSS
%20Reference%20Data%20Model%20Paper.pdf [accessed 2021-10-20]

18. Crampin AC, Dube A, Mboma S, Price A, Chihana M, Jahn A, et al. Profile: the Karonga health and demographic surveillance
system. Int J Epidemiol 2012 Jun;41(3):676-685 [FREE Full text] [doi: 10.1093/ije/dys088] [Medline: 22729235]

19. Crampin AC, Kayuni N, Amberbir A, Musicha C, Koole O, Tafatatha T, et al. Hypertension and diabetes in Africa: design
and implementation of a large population-based study of burden and risk factors in rural and urban Malawi. Emerg Themes
Epidemiol 2016 Feb 1;13:3 [FREE Full text] [doi: 10.1186/s12982-015-0039-2] [Medline: 26839575]

20. Bocquier P, Ginsburg C, Herbst K, Sankoh O, Collinson MA. A training manual for event history data management using
Health and Demographic Surveillance System data. BMC Res Notes 2017 Jun 26;10(1):224 [FREE Full text] [doi:
10.1186/s13104-017-2541-9] [Medline: 28651610]

21. Dube A, Crampin AC. Malawi - Karonga HDSS INDEPTH Core Dataset 2003-2017 (Release 2019). INDEPTH Network
Data Repository. 2019. URL: https://datacompass.lshtm.ac.uk/id/eprint/1738/ [accessed 2021-10-20]

22. Dwork C. Differential privacy: a survey of results. In: Proceedings of the 5th International Conference on the Theory and
Applications of Models of Computation. 2008 Presented at: TAMC '08; April 25-29, 2008; Xi'an, China p. 1-19. [doi:
10.1007/978-3-540-79228-4_1]

23. Abadi M, Erlingsson Ú, Goodfellow I, McMahan HB, Mironov I, Papernot N, et al. On the protection of private information
in machine learning systems: two recent approches. In: Proceedings of the IEEE 30th Computer Security Foundations
Symposium. 2017 Presented at: CSF '17; August 21-25, 2017; Santa Barbara, CA, USA p. 1-6. [doi: 10.1109/csf.2017.10]

24. Domingo-Ferrer J, Sánchez D, Blanco-Justicia A. The limits of differential privacy (and its misuse in data release and
machine learning). Commun ACM 2021 Jul;64(7):33-35 [FREE Full text] [doi: 10.1145/3433638]

25. Francis P. Dear differential privacy, put up or shut up. The Max Planck Institute for Software Systems. 2020 Jan 9. URL:
http://www.mpi-sws.org/tr/2020-005.pdf [accessed 2021-10-20]

26. Bambauer J, Muralidhar K, Sarathy R. Fool's gold: an illustrated critique of differential privacy. Vanderbilt J Entertain
Technol Law 2020;16(4):701-755.

27. Skinner CJ, Holmes DJ. Estimating the re-identification risk per record in microdata. J Off Stat 1998;14(4):361-372.
28. Hochguertel T, Weiss E. De facto anonymity in results. FDZ-Arbeitspapier Nr. 2012. URL: https://unece.org/fileadmin/

DAM/stats/documents/ece/ces/ge.46/2011/50_Hochguertel-Weiss.pdf [accessed 2021-10-20]
29. Bond S, Brandt M, de Wolf PP. Guidelines for the checking of output based on microdata research. Data without Boundaries.

2013. URL: https://ec.europa.eu/eurostat/cros/system/files/dwb_standalone-document_output-checking-guidelines.pdf
[accessed 2021-10-20]

30. Griffiths E, Greci C, Kotrotsios Y, Parker S, Scott J, Welpton R, et al. Handbook on Statistical Disclosure Control for
Outputs. figshare. 2019. URL: https://figshare.com/articles/book/SDC_Handbook/9958520/1 [accessed 2021-10-20]

JMIR Public Health Surveill 2022 | vol. 8 | iss. 9 | e34472 | p. 15https://publichealth.jmir.org/2022/9/e34472
(page number not for citation purposes)

Templ et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://journals.sagepub.com/doi/10.1177/1556264615594600?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/1556264615594600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26297754&dopt=Abstract
http://dx.doi.org/10.18637/jss.v067.i04
http://www.ihsn.org/software/disclosure-control-toolbox,
http://www.ihsn.org/software/disclosure-control-toolbox,
http://dx.doi.org/10.17713/ajs.v45i1.100
http://dx.doi.org/10.2139/ssrn.3693330
https://centre.humdata.org/guidance-note-statistical-disclosure-control/
https://centre.humdata.org/guidance-note-statistical-disclosure-control/
https://cordis.europa.eu/docs/projects/cnect/1/317871/080/deliverables/001-D52.pdf
https://cordis.europa.eu/docs/projects/cnect/1/317871/080/deliverables/001-D52.pdf
http://europepmc.org/abstract/MED/32477684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32477684&dopt=Abstract
https://github.com/CDCgov/covid_case_privacy_review/
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-741
http://dx.doi.org/10.1186/1471-2458-12-741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22950896&dopt=Abstract
http://www.indepth-network.org/Resource%20Kit/INDEPTH%20DSS%20Resource%20Kit/LinkedDocuments/HRS2%20DSS%20Reference%20Data%20Model%20Paper.pdf
http://www.indepth-network.org/Resource%20Kit/INDEPTH%20DSS%20Resource%20Kit/LinkedDocuments/HRS2%20DSS%20Reference%20Data%20Model%20Paper.pdf
http://europepmc.org/abstract/MED/22729235
http://dx.doi.org/10.1093/ije/dys088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22729235&dopt=Abstract
https://ete-online.biomedcentral.com/articles/10.1186/s12982-015-0039-2
http://dx.doi.org/10.1186/s12982-015-0039-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26839575&dopt=Abstract
https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-017-2541-9
http://dx.doi.org/10.1186/s13104-017-2541-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28651610&dopt=Abstract
https://datacompass.lshtm.ac.uk/id/eprint/1738/
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1109/csf.2017.10
https://arxiv.org/abs/2011.02352
http://dx.doi.org/10.1145/3433638
http://www.mpi-sws.org/tr/2020-005.pdf
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/50_Hochguertel-Weiss.pdf
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/50_Hochguertel-Weiss.pdf
https://ec.europa.eu/eurostat/cros/system/files/dwb_standalone-document_output-checking-guidelines.pdf
https://figshare.com/articles/book/SDC_Handbook/9958520/1
http://www.w3.org/Style/XSL
http://www.renderx.com/


31. Dupriez O, Boyko E. Dissemination of microdata files: principles procedures and practices. International Household Survey
Network. 2010 Aug. URL: http://www.ihsn.org/sites/default/files/resources/IHSN-WP005.pdf [accessed 2021-10-20]

32. Borde DS, Hebare PA, Dhanedhar PD. Overview of Web password hashing using salt techiques. Int Res J Eng Technol
2017 Nov;4(11):152-154.

33. Sauermann S, Kanjala C, Templ M, Austin CC, RDA COVID-19 WG. Preservation of individuals’ privacy in shared
COVID-19 related data. SSRN J 2020 Jul 17. [doi: 10.2139/ssrn.3648430]

34. Hundelpool A, Domingo-Ferrer J, Franconi L, Giessing S, Nordholt ES, Spicer K, et al. Statistical Disclosure Control.
Hoboken, NJ, USA: Wiley; 2012.

35. Manning AM, Haglin DJ, Keane JA. A recursive search algorithm for statistical disclosure assessment. Data Min Knowl
Disc 2007 Jul 10;16(2):165-196. [doi: 10.1007/s10618-007-0078-6]

36. Manning AM, Haglin DJ. A new algorithm for finding minimal sample uniques for use in statistical disclosure assessment.
In: Proceedings of the 5th IEEE International Conference on Data Mining. 2005 Presented at: ICDM '05; November 27-30,
2005; Houston, TX, USA p. 290-297 URL: http://dblp.uni-trier.de/db/conf/icdm/icdm2005.html%5C#ManningH05 [doi:
10.1109/icdm.2005.10]

37. Gouweleeuw JM, Kooiman P, Willenborg LC, de Wolf PP. Post randomisation for statistical disclosure control: theory and
implementation. J Off Stat 1998;14(4):463-478.

38. Franconi L, Polettini S. Individual risk estimation in μ-argus: a review. In: Proceedings of the CASC Project International
Workshop on the Privacy in Statistical Databases. 2004 Presented at: PSD '04; June 9-11, 2004; Barcelona, Spain p. 262-272.
[doi: 10.1007/978-3-540-25955-8_20]

39. Skinner C, Shlomo N. Assessing identification risk in survey microdata using log-linear models. J Am Stat Assoc 2008
Sep;103(483):989-1001. [doi: 10.1198/016214507000001328]

40. Samarati P, Sweeney L. Protecting privacy when disclosing information: k-anonymity and its enforcement through
generalization and suppression. Electronic Privacy Information Center. 1998. URL: https://epic.org/wp-content/uploads/
privacy/reidentification/Samarati_Sweeney_paper.pdf [accessed 2021-10-20]

41. Samarati P. Protecting respondents identities in microdata release. IEEE Trans Knowl Data Eng 2001;13(6):1010-1027.
[doi: 10.1109/69.971193]

42. Templ M. Quality indicators for statistical disclosure methods: a case study on the structure of earnings survey. J Off Stat
2015 Dec 16;31(4):737-761. [doi: 10.1515/jos-2015-0043]

43. Sariyar M, Borg A. The RecordLinkage package: detecting errors in data. R J 2010;2(2):61-67. [doi: 10.32614/rj-2010-017]
44. Wurz J. A partnership building on health research data from Malawi. Esther Switzerland. 2021 Jun 1. URL: https://www.

esther-switzerland.ch/a-partnership-building-on-health-research-data-from-malawi/ [accessed 2022-08-02]

Abbreviations
CPU: central processing unit
HDSS: health and demographic surveillance system
INSPIRE: Implementation Network for Sharing Population Information from Research Entities
LMIC: low- and middle-income countries
PRAM: postrandomization method
SDC: statistical disclosure control

Edited by H Bradley; submitted 25.10.21; peer-reviewed by M Sariyar, K Herbst; comments to author 23.02.22; revised version
received 19.04.22; accepted 10.05.22; published 02.09.22

Please cite as:
Templ M, Kanjala C, Siems I
Privacy of Study Participants in Open-access Health and Demographic Surveillance System Data: Requirements Analysis for Data
Anonymization
JMIR Public Health Surveill 2022;8(9):e34472
URL: https://publichealth.jmir.org/2022/9/e34472
doi: 10.2196/34472
PMID:

©Matthias Templ, Chifundo Kanjala, Inken Siems. Originally published in JMIR Public Health and Surveillance
(https://publichealth.jmir.org), 02.09.2022. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete

JMIR Public Health Surveill 2022 | vol. 8 | iss. 9 | e34472 | p. 16https://publichealth.jmir.org/2022/9/e34472
(page number not for citation purposes)

Templ et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.ihsn.org/sites/default/files/resources/IHSN-WP005.pdf
http://dx.doi.org/10.2139/ssrn.3648430
http://dx.doi.org/10.1007/s10618-007-0078-6
http://dblp.uni-trier.de/db/conf/icdm/icdm2005.html%5C#ManningH05
http://dx.doi.org/10.1109/icdm.2005.10
http://dx.doi.org/10.1007/978-3-540-25955-8_20
http://dx.doi.org/10.1198/016214507000001328
https://epic.org/wp-content/uploads/privacy/reidentification/Samarati_Sweeney_paper.pdf
https://epic.org/wp-content/uploads/privacy/reidentification/Samarati_Sweeney_paper.pdf
http://dx.doi.org/10.1109/69.971193
http://dx.doi.org/10.1515/jos-2015-0043
http://dx.doi.org/10.32614/rj-2010-017
https://www.esther-switzerland.ch/a-partnership-building-on-health-research-data-from-malawi/
https://www.esther-switzerland.ch/a-partnership-building-on-health-research-data-from-malawi/
https://publichealth.jmir.org/2022/9/e34472
http://dx.doi.org/10.2196/34472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


bibliographic information, a link to the original publication on https://publichealth.jmir.org, as well as this copyright and license
information must be included.

JMIR Public Health Surveill 2022 | vol. 8 | iss. 9 | e34472 | p. 17https://publichealth.jmir.org/2022/9/e34472
(page number not for citation purposes)

Templ et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

