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Abstract

Background: Monitoring disease incidence rates over time with population surveillance data is fundamental to public health
research and practice. Bayesian disease monitoring methods provide advantages over conventional methods including greater
flexibility in model specification and the ability to conduct formal inference on model-derived quantities of interest. However,
software platforms for Bayesian inference are often inaccessible to nonspecialists.

Objective: To increase the accessibility of Bayesian methods among health surveillance researchers, we introduce a Bayesian
methodology and open source software package, surveil, for time-series modeling of disease incidence and mortality. Given case
count and population-at-risk data, the software enables health researchers to draw inferences about underlying risk and derivative
quantities including age-standardized rates, annual and cumulative percent change, and measures of inequality.

Methods: We specify a Poisson likelihood for case counts and model trends in log-risk using the first-difference (random-walk)
prior. Models in the surveil R package were built using the Stan modeling language. We demonstrate the methodology and
software by analyzing age-standardized colorectal cancer (CRC) incidence rates by race and ethnicity for non-Latino Black
(Black), non-Latino White (White), and Hispanic/Latino (of any race) adults aged 50-79 years in Texas’s 4 largest metropolitan
statistical areas between 1999 and 2018.

Results: Our analysis revealed a cumulative decline of 31% (95% CI –37% to –25%) in CRC risk among Black adults, 17%
(95% CI –23% to –11%) for Latino adults, and 35% (95% CI –38% to –31%) for White adults from 1999 to 2018. None of the
3 observed groups experienced significant incidence reduction in the final 4 years of the study (2015-2018). The Black-White
rate difference (per 100,000) was 44 (95% CI 30-57) in 1999 and 35 (95% CI 28-43) in 2018. Cumulatively, the Black-White
gap accounts for 3983 CRC cases (95% CI 3746-4219) or 31% (95% CI 29%-32%) of total CRC incidence among Black adults
in this period.

Conclusions: Stalled progress on CRC prevention and excess CRC risk among Black residents warrant special attention as
cancer prevention and control priorities in urban Texas. Our methodology and software can help the public and health agencies
monitor health inequalities and evaluate progress toward disease prevention goals. Advantages of the methodology over current
common practice include the following: (1) the absence of piecewise linearity constraints on the model space, and (2) formal
inference can be undertaken on any model-derived quantities of interest using Bayesian methods.
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Introduction

Monitoring disease incidence rates is fundamental to public
health research and practice. Vital statistics systems, cancer
registries, and other disease-specific monitoring programs
provide critical data resources for public health research, and
valid interpretation of these data requires formal modeling.

Joinpoint regression modeling (JRM) is a commonly employed,
National Cancer Institute–endorsed method for monitoring
incidence and mortality rates [1-4]. JRM fits a piecewise linear
time trend to (log-) incidence rates. Nonetheless, piecewise
linearity conflicts with subject matter expertise insofar as we
“do not really believe that cancer rates change abruptly” [1] and
some trends are “obviously nonlinear” [3]. Further, standard
JRM methodology systematically underreports the uncertainty
of estimates because the SEs are conditional on an iterative
model selection procedure [5].

We present a Bayesian methodology and open source software
package for routine disease surveillance. The models are
appropriate for time-series count data aggregated across evenly
spaced time periods. The models assign the Poisson likelihood
to observed counts conditional on unknown risk; time trends in
risk are modeled by assigning the first-difference (random-walk)
prior distribution to the log-rates. Binomial models for nonrare
events are also implemented. Strengths of the method include
its parsimony, the absence of linearity constraints, and the use
of Bayesian inference [6-12] to summarize knowledge of disease
risk as well as model-derived quantities of interest, such as
age-standardized rates and measures of inequality [9,11,12].
The methodology is freely available through the surveil R
software package [13,14].

We demonstrate use of the surveil R package by analyzing urban
colorectal cancer (CRC) incidence in Texas. “Eliminating cancer
disparities” is purportedly a “cross-cutting aim” of the Cancer
Prevention and Research Institute of Texas’s (CPRIT’s) 2018
Texas Cancer Plan, but the plan conspicuously lacks
disparity-related goals and metrics [15]. Racial-ethnic
inequalities in CRC are of long-standing concern, including the
Black-White incidence and mortality differences that emerged
in the early 1990s [16,17]. We examine CRC incidence by race
and ethnicity in the 4 largest metropolitan areas in Texas, using
our Poisson time-series models. We also examine CRC
incidence inequalities and their change over time [18]. We
conclude with comments on CRC prevention priorities for
Texas, lessons from successful CRC screening efforts, and
limitations of this analysis.

Methods

Model Specification
The surveil R package implements Poisson random-walk
models. For time period t={1,…,n}, we assign the Poisson

probability distribution to the observed case counts, yt,

conditional on a given level of risk, exp(ηt), and population at
risk, Pt:

yt~Pois(Pt * exp(ηt))

Alternatively, the binomial likelihood may be used:

yt~Binom(Pt, g-1(ηt)),

where g-1(x)=exp(x)/(1+exp(x)) is the inverse-logit function.

We assign the first-difference (random-walk) model to the log-
or logit-transformed risk parameters, consistent with our
knowledge that disease risk tends to vary smoothly over time:

ηt~Gau(ηt-1, τ
2), t>1

This and related intrinsic Gaussian Markov random field
specifications are extensively studied models for time trend
analyses [19,20].

By default, surveil prior distributions are diffuse for most
applications, and users can adjust them to match their subject
matter knowledge. The log- or logit-transformed risk for t=1
(η1), requires a prior distribution (because t=0 does not exist).
For a rare disease, the following prior is diffuse:

η1~Gau(-5, 52)

It is centered on a rate of e-5=673 per 100,000 and spreads the
prior probability across a wide range of values. Changes in
log-rates are small, such that surveil’s following default prior
is also diffuse:

τ~Gau+(0, 12)

This base model specification may be extended for multiple
correlated time series, such as observations of multiple
demographic groups. If ηt is the vector of log-rates for k groups
at time t, then

ηt~Gau(ηt-1, ∑)

introduces a covariance structure through the multivariate
normal distribution [21]. We decompose the k-by-k covariance
matrix, ∑, into a vector of scale parameters and a correlation
matrix, and use the LKJ distribution as a prior for the correlation
matrix [22].

Bayesian Inference
The models were built in Stan, a state-of-the-art platform for
Bayesian inference with Markov chain Monte Carlo (MCMC)
[22,23]. Stan uses a Hamiltonian Monte Carlo algorithm to draw
samples from user-specified joint probability distributions
[9,11,24]. Model results are summarized by surveil, which
reports estimates (means of marginal posterior distributions)
with 95% CIs (Textbox 1).
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Textbox 1. The surveil R package.

The surveil R package is freely available and archived on the Comprehensive R Archive Network. Basic use of the software requires only
introductory-level R programming skills. Tables downloaded from the CDC Wonder database are automatically in the expected format. The model-fitting
function, stan_rw, returns a summary of results (estimates with 95% CIs) and Markov chain Monte Carlo (MCMC) samples.

The package supports a streamlined workflow for analyzing disease incidence data. It produces publication-quality visualizations using ggplot2 [25]
and enables researchers to make health equity an integral component of surveillance research. The models were built in the Stan modeling language,
a robust, stable, state-of-the-art platform for Bayesian inference, providing built-in MCMC diagnostics and visualization methods.

Using MCMC, probability statements can be made about any
quantity of interest that is derived from model parameters
[9,11,12]. Functions in the surveil package return probability
distributions for model-derived quantities such as annual and
cumulative percent change, age-standardized rates, the Theil
inequality index [26], and a variety of pairwise inequality
measures (Textbox 2). The Theil index measures discrepancies
between each group’s share of disease burden and their share
of the population; owing to its fractal structure, it can be used
to measure inequality across geographically nested populations
[27-29].

When working with age-standardized rates, excess cases (ECs)
must be calculated separately for each age stratum and then
summed across age groups (Textbox 3). Dividing the resulting
ECs by total risk provides an age-standardized measure of
proportion attributable risk (PAR). For age-standardized rates,
this method of calculating the PAR may be preferred over the
rate ratio (RR) as a measure of relative inequality because the
PAR better reflects the actual age distribution. If an RR is still
preferred and the PAR is less than 1, the PAR can be converted
to its equivalent RR using RR=(1/PAR)/(1/PAR-1).

Textbox 2. Measures of pairwise inequality provided by surveil.

Rate ratio (RR)=Rd/Ra, where R is the incidence rate, and subscripts “a” and “d” represent the advantaged and disadvantaged demographic groups,
respectively.

• Rate difference (RD)=Rd–Ra

• Proportion attributable risk (PAR)=RD/Rd

• Excess cases (EC)=RD×Pd, where P represents the populations at risk.

• Cumulative EC=Σt ECt, where the subscript “t” represents the time period.

• Cumulative PAR=Σt ECt/Σt (Rdt×Pdt)

Textbox 3. Age-standardized measures of pairwise inequality provided by surveil.

Rate ratio (RR)=SRd/SRa, where “SR” is the age-standardized incidence rate, and subscripts “a” and “d” represent the advantaged and disadvantaged
demographic groups, respectively.

• Rate difference=SRd–SRa

• Excess cases (EC)=Σi (Rdi–Rai)×Pdi, where “P” represents the populations at risk, and subscript “i” represents the age groups.

• Proportion attributable risk (PAR)=EC/ΣiRdi×Pdi

• Cumulative EC=Σt ECt, where “t” represents the time periods.

• Cumulative PAR=Σt ECt/Σt Σi (Rdit×Pdit)

CRC Incidence in Urban Texas
We gathered publicly available age-specific (50-79 years) data
on CRC incidence and population at risk, between 1999 and
2018, by race and ethnicity in the 4 largest metropolitan
statistical areas (MSAs) in Texas (centered in Austin, Dallas,
Houston, and San Antonio). Uncensored data for this age range
are publicly available at the level of 5-year age groups for
Hispanic/Latino (all racial groups combined), non-Latino Black
or African American (Black), and non-Latino White (White)
populations. CRC data for Asian Pacific Islanders are not
available for 5-year age groups but are available for the
aggregate 50-79–year-old population. Data for American
Indians/Alaska Natives are not available [30].

We modeled CRC incidence by race-ethnicity and 5-year age
group for the 4 MSAs combined using surveil’s Poisson
first-difference models. We calculated age-standardized rates
using direct age-standardization and the 2000 US standard
million population [12]. While remaining cognizant of data
limitations, we also modeled age-specific (50-79 years) CRC
incidence with Poisson first-difference models in order to
examine CRC risk among Asian Pacific Islander residents.

We examined rates of change by calculating the average annual
percent change (AAPC) per 4-year period. The sole purpose of
aggregating to 4-year periods is to stabilize the estimates. We
measure Black-White inequality by the rate difference (RD),
PAR, and ECs. Probability distributions for all quantities of
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interest were obtained using MCMC analysis. For each model,
we drew 6000 samples from each of 4 MCMC chains, discarding
the first 3000 samples of each chain as warm-up. Before
analyzing the results, we confirm that MCMC samples converge
on a single distribution using the split R-hat statistic and that
MCMC SEs are sufficiently small [11]. We summarize posterior
distributions using the mean and 95% CI.

Results

Aggregate MSA Trends
CRC incidence declined substantially between 1999 and 2018
(Figure 1 and Table 1). Age-standardized CRC risk declined

31% (95% CI –37% to –25%) for Black adults from a rate per
100,000 of 188 (95% CI 176-201) in 1999 to 129 (95% CI
123-136) in 2018. CRC risk among White adults decreased by
35% (95% CI –38% to –31%), from 144 per 100,000 (95% CI
140-150) in 1999 to 94 (95% CI 91-98) in 2018. Among Latino
adults, CRC risk decreased by 17% (95% CI –23% to –11%),
from 116 (95% CI 109-123) in 1999 to 96 (95% CI 92-100) in
2018. Results from the age-specific models (Table 2), while
subject to some amount of confounding by age, indicate that
CRC risk was lower for Asian Pacific Islanders than for the
other groups examined and that Asian Pacific Islanders
experienced the smallest cumulative change in risk (if any),
which was –11% (95% CI –25% to 3%).

Figure 1. Age-standardized incidence rates of colorectal cancer (CRC) per 100,000 by race-ethnicity among adults aged 50-79 years between 1999
and 2018 in 4 Texas metropolitan statistical areas.

Table 1. Levels and cumulative percent change of age-standardized risk of colorectal cancer (CRC) per 100,000 among adults aged 50-79 years, in
Texas’s 4 largest metropolitan statistical areas between 1999 and 2018.

Percent (%) change (95% CI)Age-standardized CRC risk in 2018, risk
(95% CI)

Age-standardized CRC risk in 1999, risk
(95% CI)

–31 (–37 to –25)129 (123 to 136)188 (176 to 201)Black

–17 (–23 to –11)96 (92 to 100)116 (109 to 123)Latino

–35 (–38 to –31)94 (91 to 98)144 (140 to 150)White
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Table 2. Levels and cumulative percent change of age-specific risk of colorectal cancer (CRC) per 100,000 among adults aged 50-79 years (not
age-standardized), in Texas’s 4 largest metropolitan statistical areas between 1999 and 2018.

Percent (%) change (95% CI)Non–age-standardized CRC risk in 2018, risk
(95% CI)

Non–age-standardized CRC risk in 1999, risk
(95% CI)

–11 (–25 to 3)67 (61 to 73)75 (66 to 88)Asian Pacific Islander

–28 (–34 to –22)122 (115 to 128)170 (160 to 182)Black

–16 (–22 to –9)86 (83 to 90)103 (97 to 109)Latino

–30 (–34 to –26)95 (91 to 98)135 (130 to 140)White

AAPC by 4-year period shows that the most rapid progress on
CRC prevention was achieved (roughly) between 2003 and
2014, and that progress appears to have stalled since then (Figure
2). For example, from 2007 to 2010, AAPC for Black, Latino,
and White residents, respectively, was –3.7 (95% CI –5.5 to
–1.5), –2.2 (95% CI –3.9 to –0.5), and –3.7 (95% CI –4.9 to
–2.4). Of these 3 groups, none experienced any robust reduction
in CRC risk over the most recent period (2015-2018).

By multiple measures, aggregate Black-White inequality
increased between 1999 and 2008 and then decreased or
stabilized by 2018 (Figure 3). The RD increased from 44 per
100,000 (95% CI 30-57) in 1999 to 58 (95% CI 49-67) by 2008
and then decreased to 35 (95% CI 28-43) by 2018. Expressed

in relative terms as a percentage of total risk among Black adults
(PAR), the Black-White gap increased from 25% (95% CI
19%-30%) in 1999 to 35% (95% CI 31%-38%) in 2008 and
then decreased to 28% (95% CI 23%-32%) by 2018.
Cumulatively, the Black-White gap accounts for 3983 CRC
cases (95% CI 3746-4219) or 31% (95% CI 29%-32%) of CRC
incidence among Black residents aged 50-79 years. The EC
count is a function of both the RD and size of the population at
risk; owing to a combination of Black population growth and
the persistence of the Black-White gap, the annual number of
excess cases increased from 117 (95% CI 85-150) in 1999 to
230 (95% CI 183-276) in 2018. These represent the number of
cases that would have been avoided had the level of risk for
Black residents equaled that of White residents each year.

Figure 2. Average annual percent change (AAPC) in age-standardized incidence rates of colorectal cancer (CRC) by 4-year period between 1999 and
2018.

Figure 3. Black-White inequality in the incidence rates of colorectal cancer between 1999 and 2018: rate difference per 100,000, proportion attributable
risk, and excess cases.
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Discussion

Methodological Contributions
Monitoring disease incidence is a crucial public health task.
The ubiquitous JRM method has notable shortcomings,
including linearity constraints and overconfident SEs. This paper
presents a parsimonious methodology grounded in Bayesian
time-series analysis and accessible through the surveil R
package. The package also returns probability distributions for
annual and cumulative percent change, measures of pairwise
inequality, and the Theil inequality index. Using standard
MCMC analysis techniques, users may also conduct inference
on any user-defined quantity of interest that is a function of
model parameters, such as the AAPC. This project aims to make
Bayesian analysis accessible to a wider range of researchers
while making robust analyses of health inequality integral to
surveillance research. The Poisson models discussed here are
appropriate for “rare” events (generally, rates of <0.04).
Binomial models for nonrare events are also implemented in
surveil. The models are designed for the analysis of data from
high-quality surveillance or vital statistics systems that have
been aggregated across evenly spaced time periods.

CRC Prevention Priorities
Between 1999 and 2013, robust CRC risk reduction occurred
for White and Black residents, the highest-risk racial-ethnic
groups for which data are publicly available, while more modest
progress was achieved for Latino and Asian Pacific Islander
populations. Excess CRC risk among Black adults is the most
burdensome and urgent health inequality identified in this
analysis. Black-White inequality increased in relative terms
before falling toward its previous level, while annual excess
cases increased by approximately 190%. From 2015 to 2018,
none of the observed groups experienced any substantial
progress in terms of CRC risk reduction.

CRC screening by colonoscopy can prevent CRC through the
removal of precancerous polyps [31]. Organized CRC screening
programs implemented by, respectively, the state of Delaware
and Kaiser Permanente Northern California were followed by

substantial reductions in CRC incidence and the practical
elimination of Black-White differences in CRC incidence rates
[32,33]. New York’s Citywide Colon Cancer Control Coalition
(C5) provides a third example of an effective and equitable CRC
screening program. The C5 effort included, among other things,
a public advertising campaign to promote colonoscopy, a patient
navigation system, and a voluntary colonoscopy quality
improvement initiative with 230 participating gastroenterologists
[34].

Given claims that racial segregation is a driver of Black-White
cancer inequalities [35-37], it would be insightful and useful to
learn how much of the Black-White gap in metropolitan Texas
is accounted for by segregated and high-poverty areas. Ongoing
research aims to address important limitations of this analysis
using the geostan R package—surveil’s spatially oriented
companion for public health research [38,39].

Limitations
Major limitations of this analysis include the absence of data
by social class or income, aggregation of data across distinct
MSAs, exclusion of the El Paso metropolitan area, and exclusive
focus on the highest-risk age groups.

Conclusions
Public accountability for public health goals requires routine
monitoring of health outcomes and inequalities. surveil can help
health agencies and the public in defining goals and monitoring
outcomes. Our analysis of CRC incidence in 4 Texas MSAs
finds that prevention progress has stalled and that little to no
progress on Black-White CRC inequality was achieved from
1999 to 2018. Texans have voted twice—first in 2007, and again
in 2019—to establish and fund CPRIT, making cancer
prevention a public priority. CPRIT recently identified ending
cancer disparities as a priority [15]. Initiation of a new period
of robust and widespread CRC prevention and closure of the
Black-White gap warrant urgent attention from the Texas Cancer
Plan as well as Texas cancer researchers. Ambitious and
well-resourced CRC screening initiatives have succeeded
elsewhere and may provide important lessons for Texas.
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