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Abstract

Background: Low cardiorespiratory fitness (CRF) is an independent predictor of morbidity and mortality. Most health care
settings use some type of electronic health record (EHR) system. However, many EHRs do not have CRF or physical activity
data collected, thereby limiting the types of investigations and analyses that can be done.

Objective: This study aims to develop a nonexercise equation to estimate and classify CRF (in metabolic equivalent tasks)
using variables commonly available in EHRs.

Methods: Participants were 42,676 healthy adults (female participants: n=9146, 21.4%) from the Aerobics Center Longitudinal
Study examined from 1974 to 2005. The nonexercise estimated CRF was based on sex, age, measured BMI, measured resting
heart rate, measured resting blood pressure, and smoking status. A maximal treadmill test measured CRF.

Results: After conducting nonlinear feature augmentation, separate linear regression models were used for male and female
participants to calculate correlation and regression coefficients. Cross-classification of actual and estimated CRF was performed
using low CRF categories (lowest quintile, lowest quartile, and lowest tertile). The multiple correlation coefficient (R) was 0.70
(mean deviation 1.33) for male participants and 0.65 (mean deviation 1.23) for female participants. The models explained 48.4%
(SE estimate 1.70) and 41.9% (SE estimate 1.56) of the variance in CRF for male and female participants, respectively. Correct
category classification for low CRF (lowest tertile) was found in 77.2% (n=25,885) of male participants and 74.9% (n=6,850) of
female participants.

Conclusions: The regression models developed in this study provided useful estimation and classification of CRF in a large
population of male and female participants. The models may provide a practical method for estimating CRF derived from EHRs
for population health research.

(JMIR Public Health Surveill 2022;8(7):e34717) doi: 10.2196/34717
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Introduction

Background
The use of data from electronic health records (EHRs) beyond
day-to-day medical management is rapidly emerging in the
fields of digital health, public health, and epidemiology [1,2].
However, access to cardiorespiratory fitness (CRF), a valuable
health metric, is limited. This limitation is primarily due to the
medical service (cardiopulmonary stress test) being costly,
time-consuming, and generally focused on cardiac patients [3-5].
CRF is a comprehensive measure of one’s functional capacity

(mL O2 · kg 1 · min 1) driven by the combination of heart, lung,
and muscle function [6]. It is an important marker of health
status in the general adult population [3,6]. Further
demonstrating the importance of CRF, the American Heart
Association released a scientific statement proposing that CRF
be considered a clinical vital sign. The scientific rationale behind
the statement is driven by the voluminous evidence that
demonstrates that low CRF is a strong independent predictor
of adverse health outcomes (ie, all-cause mortality, cancer,
stroke, heart disease, and diabetes incidence) [3].

Prior Work
To help increase accessibility to CRF data, researchers have
developed an array of nonexercise estimated CRF (NEECRF)
equations to estimate CRF [7-9]. NEECRF equations commonly
include age, gender, resting heart rate, smoking status, BMI,
and self-reported physical activity status (PAS) [8,10-12].
Studies have shown NEECRF to predict all-cause and
cardiovascular disease mortality on par with measured CRF
[13,14]. However, the assessment of PAS required to calculate
NEECRF in patients is not typically conducted or documented
in health care settings [15]. Therefore, using an NEECRF model
without PAS (non-PAS) may be more feasible.

In a 2019 comprehensive NEECRF review, a few peer-reviewed
non-PAS NEECRF equations were identified in adult
populations reporting correlations and SE estimates [8]. Most
of the equations were developed using only age, height, and
weight combinations, and some used variables not commonly
found in EHRs (eg, waist girth, predicted/ideal weight, or
exercise mode).

Though correlations were moderate to high, the sample
populations were too small to determine the classification
accuracy of low CRF. Accurate classification of low CRF is
essential for large-scale investigations [3,16]. Low CRF (lowest
tertile) classification was recently investigated by Peterman et
al [9], who found Baynard’s [7] simplified non-PAS NEECRF
equation to have poor classification ability in a sizable (n=4871)
adult population. Other researchers have also suggested that
simple non-PAS NEECRF formulas have low validity, and
nuanced approaches are warranted [16,17]. Investigators have
also noted that valid non-PAS NEECRF models may have broad
applications for public health, epidemiology, surveillance,
practice, and research [3,8,9,16,18].

Goal of This Study
Because it is standard practice to assess and document resting
heart rate, blood pressure, BMI, and smoking status during a
typical clinic visit, the primary aim of this study was to develop
new models for NEECRF that could potentially be used in
large-scale population health investigations using variables
commonly found in EHRs. To accomplish this, we compared
a non-PAS NEECRF equation to clinically measured CRF and
evaluated its ability to estimate and classify CRF.

Methods

Study Sample
The Aerobics Center Longitudinal Study (ACLS) is a
prospective epidemiological investigation of participants that
began in 1970 [19]. The original data set for this investigation
included 43,257 healthy adults who voluntarily participated in
a comprehensive preventive medical examination at the Cooper
Clinic in Dallas, Texas between 1974 and 2005. At baseline,
all participants were free of diabetes, heart disease, stroke,
cancer, positive electrocardiograms, and completed a maximal
graded exercise test. Each participant gave informed consent to
join the longitudinal study. The research population
demographic primarily consists of Caucasian college-educated
adults of middle to high socioeconomic status with an average
age at baseline of 43.5 (range 20-79) years.

Ethical Approval
The study was reviewed and approved annually by the Cooper
Institute Institutional Review Board, and all participants
provided written informed consent.

Measurements
Predictor variables were assessed during a preventive health
examination that included objective measurements of age, BMI,
resting heart rate, systolic blood pressure, diastolic blood
pressure, and self-reported smoking status between 1974 and
2005 at the Cooper Clinic. Age was verified at the time of the
examination. Height and weight were measured on a calibrated
scale using US customary units and converted to metric scales
for this investigation. BMI was calculated from measured height

and weight as kg/m2. Manual auscultation was used to measure
resting blood pressure while seated. Resting heart rate was
calculated using the R-R interval on an electrocardiogram while
seated. CRF was expressed as absolute metabolic equivalent

tasks (METs; 1 MET = 3.5 mL O2 · kg 1 · min 1) based on the
total duration of a symptom-limited maximal Balke graded
exercise test [6]. Following American College for Sports
Medicine Guidelines, patients were encouraged to give maximal
effort, and the test end point was volitional exhaustion or
termination by the physician for medical reasons [6]. METs
were calculated based on the final treadmill speed and grade
[6]. The Balke graded exercise test is highly correlated (r=0.94)
with maximal graded cardiopulmonary exercise testing [20,21].
A standardized medical questionnaire was used to ascertain
demographic information, lifestyle habits, and chronic disease
status. More detailed information on the preventive health
examination is available in prior ACLS publications [10,13].
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Statistical Analysis

Data Exclusion
Data were first examined for outliers and skewness. We removed
the outliers from the data set by removing participants with
predictor variables (continuous) beyond the ±3 σ interval. To
do this, we calculated the mean and SD of each predictor
variable, excluding smoking (categorical). Any participant with
at least one predictor variable above 3 SDs or below 3 SDs was
flagged as an outlier. After removing outliers and incomplete
entries (n=581), the data set comprised 33,530 male participants
and 9146 female participants, 98.7% of the original 43,257
participants.

Regression
The main analysis was based on apparently healthy adults at
baseline. Using a supervised machine learning technique, we
conducted separate linear regression analyses for men and
women to predict non-PAS NEECRF based on nonlinear
augmentation of the predictor variables [1]. We also considered
advanced machine learning models but did not find them
advantageous. The male and female non-PAS NEECRF
prediction equations were formulated to minimize the average
mean squared error, where N is the number of samples in our
data set:

The prediction equation used age, height (Ht), weight (Wt),
BMI, resting heart rate (rHR), systolic blood pressure (SBP),
diastolic blood pressure (DBP), and smoking. All variables were
continuous except for smoking status (nonsmoker=0, current
smoker=1). Data were standardized by subtracting the mean
and dividing by the SD for each variable. Next, separate models
were then trained for male and female participants. We
augmented the original 8 variables with second order and
interaction terms, and regressed them linearly to the dependent
variable for training. In this way, the nonlinearity was transferred
from the regressor to the independent variables, while the
model’s overall interpretability was maintained. The
augmentation procedure added the following 28 second order

and interaction terms: Wt2, Wt × Ht, Wt × Age, Wt × rHR, Wt

× SBP, Wt × DBP, Wt × BMI, Ht2, Ht × Age, Ht × rHR, Ht ×

SBP, Ht × DBP, Ht × BMI, Age2, Age × rHR, Age × SBP, Age

× DBP, Age × BMI, rHR2, Ht × SBP, Ht × DBP, rHR × BMI,

SBP2, SBP × DBP, SBP × BMI, DBP2, and DBP × BMI (for a
total of 36 variables). Because smoking status was a categorical
variable, it was not used to create the additional variables. The
augmented data set was input into an elastic net linear regressor
and trained and evaluated via 10-fold cross-validation [22].
Optimal model hyperparameters were calculated for the male
(α=.001, λ=1.0) and female (α=.004, λ=1.0) data sets through
the cross-validation procedure. Pearson correlation coefficients
were then calculated using the non-PAS NEECRF equations

for the male and female data sets (shown in Multimedia
Appendix 1). Lastly, for comparison, we cross-validated
Baynard’s [7] simplified non-PAS NEECRF equation (77.96 −
10.35 (sex; M=0, F=1) − 0.92 (BMI) − 0.32 (age)) [9].

Classification Accuracy
We cross-classified non-PAS NEECRF and CRF for three
specified cut points (lowest quintile, lowest quartile, and lowest
tertile) commonly used in epidemiological investigations to
define low CRF [3]. Next, CRF distributions were then grouped
by males and females where α served as the value of the α-th
percentile using the calculation non-PAS NEECRF>α. After
classification, we determined the non-PAS NEECRF accuracy,
sensitivity, positive predictive value, and F1 score. The reference
standard was the measured CRF, and low CRF was defined as
a positive test. All analyses were performed in scikit-learn
version 0.22.2 (NumFOCUS).

Results

Descriptive statistics are provided in Table 1. Correlation
coefficients between each independent variable and CRF are
presented in Multimedia Appendix 1. The multiple Rs and mean
deviations for non-PAS NEECRF (in METs) were high at 0.70
(mean deviation 1.33) for male participants and moderate at
0.65 (mean deviation 1.23) for female participants. The models
explained 48.4% (SE estimate 1.70, 95% CI 0.05-3.97) of the
variance in CRF for male participants and 41.9% (SE estimate
1.56, 95% CI 0.05-3.48) for female participants. Multimedia
Appendix 1 provides a simple independent variable input Google
Sheet for researchers and data scientists to easily calculate
NEECRF. Table 2 provides the findings regarding the accuracy,
positive predictive, and sensitivity values using the lowest
quintile, quartile, and tertile to classify low CRF for male and
female participants. While overall classification accuracy was
meaningful for a nondiagnostic test across the three models, the
optimal model was the lowest tertile. Combined male and female
positive predictive value were 0.60, sensitivity 0.67, and F1

score 0.63 [23,24]. The F1 score is the best practice summary
metric consisting of the harmonic mean of positive predictive
value and sensitivity for classification (0=low, 1=high) [23].
Assuming a balanced data set (n=2529) by Peterman et al [16],
we calculated the F1 scores from their reported findings for
equations applicable to EHRs [16]. We found F1 scores ranging
from 0.04 to 0.56. Based on a residual plot (Multimedia
Appendix 1), we found the model was most accurate for CRF
MET values in the 7.5 to 12.5 METs range but tended to
underestimate MET values >12.5 METs and overestimate MET
values <7.5 METs. Notably, this is a common finding in
non-PAS NEECRF studies [3]. Similar to Peterman et al [9],
we cross-validated Baynard’s [7] non-PAS NEECRF equation
with our reference CRF data set and found low positive
correlations for male (r=0.49, mean deviation 1.60) and female
(r=0.43, mean deviation 1.46) participants.
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Table 1. Baseline characteristics of participants.

Female participants (n=9146)Male participants (n=33,530)All (N=42,676)

44.1 (10.2)44.1 (9.5)44.1 (9.6)Age (years), mean (SD)

23.3 (3.7)26.5 (3.5)25.8 (3.8)BMI (kg/m2), mean (SD)

64.0 (10.1)60.1 (10.4)60.9 (10.5)Resting heart rate (bpm), mean (SD)

112.4 (13.9)120.7 (12.7)118.9 (13.4)Systolic blood pressure (mmHg), mean (SD)

76.0 (9.3)81.1 (9.3)80.0 (9.6)Diastolic blood pressure (mmHg), mean (SD)

792 (9.7)5569 (16.7)6361 (14.9)Smoker, n (%)

9.8 (2.0)12.0 (2.4)11.5 (2.5)Measured CRFa (mL/kg/min), mean (SD)

aCRF: cardiorespiratory fitness (maximal oxygen consumption).

Table 2. Predictive accuracy of nonexercise estimated CRF classification of lowest cardiovascular fitness against the reference CRF.

Low CRF (lowest tertile)Low CRF (lowest quartile)Low CRFa (lowest quintile)Group

SEN (%)PPV (%)ACC (%)SEN (%)PPV (%)ACC (%)SENd (%)PPVc (%)ACCb (%)

66.759.977.267.450.979.569.244.781.5Male participants

66.960.474.955.655.477.957.843.980.6Female participants

aCRF: cardiorespiratory fitness.
bACC: accuracy.
cPPV: positive predictive value.
dSEN: sensitivity.

Discussion

Principal Findings
Using a greater combination of clinical measures commonly
found in EHRs, this study compared non-PAS NEECRF with
objectively measured CRF in the largest population to date
[10,11,25-27]. Overall, our model may provide a more
applicable method for estimating and classifying CRF than
previous methods [8,9,16]. Moreover, because the vital signs
and medical information used to calculate non-PAS NEECRF
are routinely captured during health care visits, our approach
places nominal demand on health care staff and patients for
collecting data. From a public health perspective, a moderate
positive predictive value is practical, given that non-PAS
NEECRF is a nondiagnostic test that is no cost and easily
accessible [24]. Likely, some individuals classified with low
fitness may be at the lower end of the fit spectrum and benefit
from health promotion [24]. From a clinical perspective and
considering moderate sensitivity, we concur with previous
investigators that, while estimation equations are applicable for
epidemiological investigations, they should not replace clinical
exercise testing for patient diagnosis and management [3,16].
Our findings show that the ACLS non-PAS NEECRF may
provide a useful assessment of CRF to conduct population health
research.

Comparison to Prior Work
Comparatively, PAS-based NEECRF models have demonstrated
higher positive correlation values (0.71-0.93) along with a higher
degree (~90%) of correct classification accuracy for low CRF
than non-PAS NEECRF models [3]. Because physical activity

is a key contributor to CRF, including a PAS variable in an
NEECRF model improves accuracy [3,8,16]. However, a recent
review of distinct EHRs across 20 countries found that only
18.8% of family practice clinics had structured PAS
questionaries embedded within the EHR, with documented PAS
in the EHR ranging from 10% to 86% [15]. Notably, no
validated questionaries designed for PAS-based NEECRF
calculations were used. Therefore, the ability to conduct
large-scale studies aggregating existing EHR data across local,
domestic, or international systems to predict CRF is unlikely.
Conversely, our model may provide a global approach to
aggregating EHR data across systems to predict CRF and
conduct analyses.

In 2019, Wang et al [8] provided a comprehensive list of
peer-reviewed non-PAS NEECRF models that used some
combination of age, BMI, or gender to predict CRF [8]. Samples
were from small populations, and moderate to high correlations
were reported generally without SE estimates [8]. Notably, the
validity and usefulness of these simplified types of equations
have been called into question [8,9,16,17]. We found that the
findings from such investigations may be limited because the
studies only reported correlations and lacked sufficient sample
sizes to calculate prediction values for low CRF. It is also
important to note that high correlation values do not necessarily
result in a more accurate classification of low CRF [9,16].

Recently, Peterman et al [16] determined the ability of 7
non-PAS NEECRF equations to accurately classify low
NEECRF (tertile) compared to measured CRF in a
demographically comparable cohort (n=2529) to ACLS. Only
3 of the 7 equations apply because of variables not commonly
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found in EHRs. On balance, the classification accuracy of low
CRF (tertile) appeared to be better for ACLS. In a separate
investigation, Peterman et al [9] also tested Baynard’s [7]
simplified non-PAS NEECRF using the Ball State cohort
(n=4871) to assess classification accuracy. The equation had
an r of 0.76; however, there was poor accuracy for detecting
individuals positive for low CRF (37%). We also cross-validated
Baynard’s [7] equation with our data set and found low
correlations, thus did not attempt to determine accuracy [9].
Although the ACLS and Ball State cohorts are demographically
similar, our finding is expected to some degree because the
ACLS equation is specifically trained from the ACLS data set
[9,16]. Moreover, these equations need to be tested in
epidemiological investigations with EHR data to see how well
they predict health outcomes.

Limitations
This study is not without limitations. Our study’s primary
limitation regarding correlation was that the measured reference
CRF was conducted using a Balke graded maximal exercise
test that estimates absolute METs. This testing strongly
correlates with adults’ maximal graded cardiopulmonary

exercise testing and is routinely used for clinical and
epidemiological purposes [3,20,21]. Though the ACLS data set
provides the largest known healthy female data set for clinically
measured CRF, a larger female sample size may have provided
a slightly better predictive model [3,27]. Nonetheless, our
analyses demonstrated reasonable correlation and classification.
Our analyses are based on a large predominantly Caucasian
cohort; it is unknown if the results generalize to other ethnic
groups. Notably, the homogeneity of the ACLS cohort may
have strengthened the internal validity of our results by limiting
possible confounders. The main strength of this investigation
is that it was conducted on the largest cohort to date with a
larger number of objectively measured predictive variables to
estimate non-PAS NEECRF.

Conclusions
The ACLS non-PAS NEECRF equation may provide a useful
population health metric for CRF. More work should be
conducted regarding diverse populations, the incidence of
chronic conditions, and longitudinal repeated measures analyses
toward improving public health and surveillance capability.
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Abbreviations
ACLS: Aerobics Center Longitudinal Study
CRF: cardiorespiratory fitness
DBP: diastolic blood pressure
EHR: electronic health record
Ht: height
MET: metabolic equivalent task
NEECRF: nonexercise estimated cardiorespiratory fitness
PAS: physical activity status
rHR: resting heart rate
SBP: systolic blood pressure
Wt: weight
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