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Abstract

Background: Socially vulnerable communities are at increased risk for adverse health outcomes during a pandemic. Although
this association has been established for H1N1, Middle East respiratory syndrome (MERS), and COVID-19 outbreaks, understanding
the factors influencing the outbreak pattern for different communities remains limited.

Objective: Our 3 objectives are to determine how many distinct clusters of time series there are for COVID-19 deaths in 3108
contiguous counties in the United States, how the clusters are geographically distributed, and what factors influence the probability
of cluster membership.

Methods: We proposed a 2-stage data analytic framework that can account for different levels of temporal aggregation for the
pandemic outcomes and community-level predictors. Specifically, we used time-series clustering to identify clusters with similar
outcome patterns for the 3108 contiguous US counties. Multinomial logistic regression was used to explain the relationship
between community-level predictors and cluster assignment. We analyzed county-level confirmed COVID-19 deaths from Sunday,
March 1, 2020, to Saturday, February 27, 2021.

Results: Four distinct patterns of deaths were observed across the contiguous US counties. The multinomial regression model
correctly classified 1904 (61.25%) of the counties’ outbreak patterns/clusters.

Conclusions: Our results provide evidence that county-level patterns of COVID-19 deaths are different and can be explained
in part by social and political predictors.

(JMIR Public Health Surveill 2022;8(7):e32164) doi: 10.2196/32164
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Introduction

A geographically, politically, and socioeconomically diverse
nation, the United States consists of 50 states, 48 of which are
contiguous. When considering the COVID-19 pandemic in
different regions throughout the United States, different patterns
of outcomes emerge. Based on data obtained from the open
source COVID-19 data hub [1], Figure 1 shows the national
7-day moving average of deaths as well as the various patterns
that arise among 8 example counties from Sunday, March 1,

2020, to Saturday, February 27, 2021. For example, New York,
NY, experienced a large first wave of deaths, followed by a
relatively low death count through the remainder of the study.
Nearby Ocean County, NJ, a populous county near the New
Jersey shore had a large first wave of deaths, followed by a
second wave beginning in late 2020. In contrast, Butler County,
OH, a populous midwestern county, showed low death counts
until late in the study period. None of these patterns mimics the
overall pattern for the aggregate death counts in the United
States.
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Figure 1. Time series profiles of the 7-day moving average of new COVID-19 deaths for the entire United States and 8 sample counties.

Early in the COVID-19 pandemic, the county-level population
mortality and case fatality rates were significantly different
among the US regions [2]. Explanations for regional differences
in health outcomes related to COVID-19 may be the structure
of the government and policy making within the United States
as it relates to the social vulnerability of the population. In the
United States, each state consists of county governments that
set health and economic policies for local communities. The
counties within the states vary in terms of population size,
demographics, access to health care, housing, and transportation.
Some have noted that the regional differences in COVID-19
policies, compliance, and subsequent outcomes could be due
to political differences across the regions. Goldwitzer et al [3]
showed Republican-leaning counties displayed less physical
distancing compared to Democratic-leaning counties and a
subsequent increase in COVID-19 cases and deaths. Another
study showed Democratic governors were 50% more likely to
implement stay-at-home orders [4], which have been associated
with increased physical distancing and reduction in COVID-19
cases and deaths [5].

Here, we investigate the regional patterns in deaths attributed
to COVID-19. The phenomenon of differing national and
regional patterns within the United States was illustrated for
confirmed COVID-19 cases in Megahed et al [6]. In addition,
a report by the Financial Times [7] argued, “Across the world,
public health data are gathered at a very local level before
aggregation into regional and national figures.... While useful
as a summary, local distinctions get lost, painting a misleading
image of whole countries being affected uniformly.” In this
study, we investigated the various patterns of COVID-19 deaths
across 3108 contiguous counties in the United States. We also
sought to determine what factors relate to the pattern of deaths.
Specifically, we posed 3 questions:

• How many distinct clusters of counties in the United States
exhibit similar time series patterns in the deaths due to
COVID-19?

• How are these clusters geographically distributed across
the United States?

• Are certain geographic, political, government, and social
vulnerability variables associated with the patterns of
COVID-19 related deaths?

To address the first question, we performed a cluster analysis
on the time series of the 3108 US counties. We provided maps
to show the geographic distribution of the clusters. To address
the third question, we applied a multinomial logistic regression
analysis using geographic, political, and social vulnerability
data to explain the patterns of deaths due to COVID-19 over
time.

Methods

This study was conducted in 3 stages: (1) data gathering and
preprocessing, (2) time series clustering, and (3) modeling and
cluster validation.

Data
The open source COVID-19 data hub [1] was used to extract
county-level time series data related to confirmed COVID-19
deaths from Sunday, March 1, 2020, to Saturday, February 27,
2021. Data were extracted from 3108 counties in the 48
contiguous US states and were completely anonymous. This
data set was used to compute the daily confirmed deaths related
to COVID-19 by county and contained the sole data used to
inform the time series cluster analysis.

To develop the explanatory model describing the clusters, the
following additional variables were gathered: region, governor's
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party affiliation, government response. the Centers for Disease
Control and Prevention’s (CDC) social vulnerability index
(SVI), and population density.

Region
The CDC produces a 10-region Framework for Chronic Disease
Prevention and Health Promotion [8]. Figure 2 shows the 10

regions used in our explanatory model. The CDC's National
Center for Chronic Disease Prevention and Health Promotion
(NCCDPHP) developed these regions to promote consistency
in technical assistance and communications for chronic disease
prevention [8].

Figure 2. The 10 CDC regions. CDC: Centers for Disease Control and Prevention.

Governor's Party Affiliation
The political party affiliation of each US state governor (within
the 48 contiguous US states) at the start of the pandemic (March
2020) was determined. Since the District of Columbia does not
have a governor, the political party of the mayor (Democrat)
was used. The party affiliation of the governor was used as this
affects the political actions and policies taken, often in the form
of executive orders from the governor, during the pandemic [4].

Government Response
The overall government response index (at the US state level)
from the Blavatnik School of Government [9] was downloaded
on March 16, 2021. The index considers containment and
closure indicators, such as school and workplace closings;
economic response, such as income support and debt relief; and
health systems, such as testing policies, contact tracing, and
investment in vaccines. Higher values of the government
response index indicate a stronger government response related
to the pandemic. This index changed over the time of the study
period. To capture the index over the majority of the study
period, we summarized the index using the median value over
the study period. Details of the methodology used to compute
the index can be found at Oxford University COVID-19 Tracker
Github [10].

The Social Vulnerability Index
The CDC’s SVI is computed by the CDC's Agency for Toxic
and Disease Registry's Geospatial Research, Analysis, and
Services Program [11]. The SVI provides the relative
vulnerability of each US county based on US Census data and
is ranked on 15 social factors, including unemployment,

minority status, and disability. Note that the SVI data from the
CDC returned results for 3107 counties, with no data on Rio
Arriba County, New Mexico, and hence this county was
excluded from our explanatory analysis. The SVI data were
grouped into the following 4 themes:

• SVI theme 1: socioeconomic
• SVI theme 2: household composition and disability
• SVI theme 3: minority status and language
• SVI theme 4: housing and transportation

Our study included each of the 4 SVI themes. To construct the
SVI for each theme, the percentile rank for each variable across
the counties was computed. These were summed across the
themes and then ranked within each domain. The SVIs ranged
from 0 to 1, with higher values of SVIs for a particular theme
indicating a higher level of social vulnerability. For more details
on the SVI, see Flanagan et al [12].

Population Density
The population density in each county was computed based on
the land area in square miles and the 2014-2018 American
Community Survey (ACS) population estimates in each county.
Both land area and population estimate variables were obtained
from the CDC’s SVI 2018 data set [11]. Due to right-skewness
in this variable, the natural logarithm of population density was
used in the analysis.

Time Series Clustering
Time series cluster analysis was based solely on the daily
confirmed deaths related to COVID-19 by county. The goal
was to separate counties into groups (clusters) that show similar
time series patterns. There are 3 important decisions that affect

JMIR Public Health Surveill 2022 | vol. 8 | iss. 7 | e32164 | p. 3https://publichealth.jmir.org/2022/7/e32164
(page number not for citation purposes)

Megahed et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the cluster solution: (1) the scaling of the data, (2) the measure
of distance between the clusters, and (3) the clustering algorithm.
Liao [13] gives an overview of time series clustering methods.

For this study, the daily confirmed deaths related to COVID-19
by county were smoothed using a 7-day moving average to
account for weekly patterns due to reporting. Moreover, the
7-day moving averages were rescaled so that all values fell
between 0 and 1 to focus on the pattern of the progression of
the deaths rather than the magnitude of the death counts. The
magnitude of the death counts in each county depends on many
factors, such as county size, population density, and region. The
scaled 7-day moving average for county i at time t is

where MA7i,t is the 7-day moving average of deaths related to
COVID-19 for county i at time t. The maximum in the
denominator is taken over all time, 0≤t≤T. The outer maximum
function in Equation (1) is used to account for reporting
adjustments that occur with negative death counts on some days.

For illustration, suppose that county i recorded deaths only on
days 7, 8, and 9, when, respectively, 7, 21, and 14 deaths
occurred. On all other days, no deaths were recorded. For clarity,
this sequence of death counts, the calculations of the 7-day
moving averages (MA7i,t), and the scaled moving averages

( ) for the first 17 days are shown in Table 1.

This method of scaling the 7-day moving averages ensured that
we evaluated the shape of the death profile for each county
across time.

Many metrics can be used to measure the distance between time
series, including Euclidean distance, dynamic time warping
[14], and the Pearson correlation coefficient. An elastic measure,
such as dynamic time warping, is commonly used with time
series clustering [13] because it aligns or warps the time series
so that the distance between them is minimized. Elastic measures
such as this do not preserve the timing of the outbreak and
deaths in a meaningful way. For this reason, we used the
Euclidean distance to measure the distance between the time
series clusters. In our case, the Euclidean distance between 2
death profiles of length T was

There are numerous clustering algorithms that have been
suggested for time series clustering [13,15]. We used k-means
clustering for this analysis. A heuristic-based method of
clustering, k-means clustering partitions n objects into k≤n
mutually exclusive clusters and each cluster is represented by
the most centrally located object in the cluster. One limitation
of the k-means clustering approach is that the number of clusters
must be determined a priori in order to obtain a solution. It is
common practice in exploratory research to evaluate cluster
solutions for several sizes of k and select the best based on
measures of cluster validity or homogeneity [16]. The R package
NbClust [17] can be used to compute up to 30 cluster validity
indices for cluster solutions of several sizes, k. This approach
provides a systematic, data-driven method for selecting the
optimal number of clusters in a data set without capitalizing on
a single validity measure. For this analysis, k-means clustering
was used to find the cluster solutions and the NBClust package
was used to determine the optimal number of clusters to retain.

Table 1. Example calculation of the scaled 7-day moving averages ( ).

1716151413121110987654321Time

0000000014217000000Deaths

00256666641N/AN/AN/AN/AN/AN/AaMA7i,t

002/65/6111114/61/6N/AN/AN/AN/AN/AN/A

aN/A: not applicable.

Explanatory Modeling
The time series clustering method described before resulted in
mutually exclusive clusters of time series profiles containing
counties with similar patterns in the daily deaths related to
COVID-19. To further validate the cluster solution and to
explain the differences in the progression of daily deaths across
the counties, a multinomial regression analysis [18] was fit
using the explanatory variables described in the Data section.
The multinom function from the R package nnet [19] was used
for this analysis.

Model performance was evaluated in terms of the ability to
meaningfully interpret the model coefficients and by evaluating
the in-sample classification performance. Specifically, the model
predicted cluster was compared to the cluster as determined by

the time series cluster solution for each county. The in-sample
classification performance was measured by sensitivity,
specificity, and balanced accuracy:

Sensitivity = TP/(TP + FN),

where TP and FN are the number of true-positive and
false-negative predictions, respectively,

Specificity = TN/(TN + FP),

where TN and FP are the number of true-negative and
false-positive prediction, respectively, and

Balanced accuracy = (Sensitivity + Specificity)/2.
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Results

Number of Distinct Clusters
To address our first research question regarding the number of
distinct clusters, we used time series cluster analysis of the
scaled 7-day moving average of daily deaths due to COVID-19.
Figure 3 shows the scaled time series of the daily deaths due to
COVID-19 for 9 randomly selected contiguous counties in the
United States during the study period. We evaluated 2≤k≤51
time series cluster solutions using 23 cluster validity indices
[17]. Of the 23 validity indices, 7 (30.4%) preferred a 4-cluster
solution. The second-most preferred cluster solution was a
2-cluster solution, which was preferred by 6 (26.1%) of the 23
indices. Using a majority rule of the validity indices, we retained
a 4-cluster solution.

Figure 4 shows the geographic distribution of the 4-cluster
solution across the United States. Cluster C1 is primarily
concentrated in the Upper Midwest and mountain states, as well
as in Ohio, Central Kentucky, Virginia, and Maine. Cluster C2
is located along the coast in the Northeast and in some of the
larger US cities, such as Chicago, Detroit, Seattle, and New

Orleans. Cluster C3 is scattered throughout much of the United
States but particularly in Missouri, Illinois, and the states
surrounding the Great Lakes. Cluster C4 occurs across the
United States but shows concentrations in California, East
Texas, the Southwest, and the Southeast. For an interactive
color version of this map, please see Section 3.3.3 in Megahed
et al [20].

Figure 5 shows the 25th, 50th, and 75th percentiles of the time
series profiles for the counties within each cluster and provides
insight into the shape of the cluster patterns. From Figure 5, it
is clear that counties in cluster C1 experienced a low number
of deaths due to COVID-19 throughout the study period.
Counties clustering in C2 experienced early death counts
beginning in April 2020, but the death counts tapered off in
early summer. These counties maintained low death counts
throughout the late summer and early fall, until rising again in
November 2020. In C3, counties experienced few COVID-19
deaths until October 2020, when they saw a rapid rise in deaths.
The death counts in C3 began dropping in December 2020,
which continued through March 2021. The fourth cluster, C4,
showed a small increase in deaths in late summer, followed by
a steady rise throughout the fall and a higher peak in early 2021.

Figure 3. Time series profiles of the scaled 7-day moving average of new COVID-19 deaths for 9 sample counties.
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Figure 4. Map of 4 scaled time series profile clusters of COVID-19 deaths by county in contiguous US counties.

Figure 5. A summary plot, where the median scaled time series profile for each cluster is depicted using the solid bold line. The first and third quartiles
are shown by dotted and 2-dash lines, respectively.

Explaining the Clusters
To address the second research question regarding factors that
relate to the patterns of COVID-19–related deaths, we used an
explanatory multinomial regression analysis to validate our
cluster solution. Table 2 provides a summary of the explanatory
study variables for each cluster.

Table 3 gives the coefficients from the multinomial logistic
regression analysis. The dependent variable was cluster. The

baseline category for the analysis was C1, the cluster of counties
with few deaths related to COVID-19. The coefficients showed
the linear change in the natural log of the odds ratio (OR) of a
county classified in a corresponding cluster (eg, C2, C3, or C4)
versus the baseline cluster (C1). From Table 3, it is clear that
several geographic, political, government, and social
vulnerability variables are associated with the patterns in
COVID-19–related deaths.
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Table 2. A summary of how the predictor variables were distributed per cluster. For each numeric variable, we report the mean (SD). For categorical
variables, we report the distribution of each subcategory across the 4 clusters. The row summation of percentages for a subcategory may deviate slightly
from 100% due to rounding errors.

C4a (N=794)C3 (N=827)C2 (N=226)C1 (N=1261)Variables

Continuous variables, mean (SD)

0.61 (0.26)0.45 (0.27)0.44 (0.31)0.48 (0.30)Theme 1: socioeconomic

0.56 (0.29)0.49 (0.28)0.37 (0.31)0.50 (0.28)Theme 2: household composition and disability

0.65 (0.24)0.43 (0.27)0.71 (0.22)0.41 (0.28)Theme 3: minority status and language

0.60 (0.27)0.49 (0.26)0.60 (0.28)0.42 (0.29)Theme 4: housing and transportation

4.60 (1.29)3.73 (1.31)5.86 (1.81)3.01 (1.71)Log(population density)

48.13 (7.65)47.24 (8.25)52.87 (9.13)47.09 (8.45)Government response index median

Categorical variables, n (%)

202 (25.4)428 (51.8)142 (62.8)579 (45.9)Governor’s party (Democratic)

591 (74.4)399 (48.2)84 (37.2)682 (54.1)Governor’s party (Republican)

24 (3.0)21 (2.5)43 (19.0)41 (3.3)Region A

48 (6.0)62 (7.5)63 (27.9)131 (10.4)Region B

239 (30.1)13 (1.6)19 (8.4)101 (8.0)Region C

153 (19.3)51 (6.2)20 (8.8)140 (11.1)Region D

23 (2.9)283 (34.2)30 (13.3)188 (14.9)Region E

201 (25.3)116 (14.0)31 (13.7)154 (12.2)Region F

25 (3.1)144 (17.4)7 (3.1)236 (18.7)Region G

9 (1.1)88 (10.6)7 (3.1)187 (14.8)Region H

53 (6.7)14 (1.7)1 (0.4)22 (1.7)Region I

18 (2.3)35 (4.2)5 (2.2)61 (4.8)Region J

aRio Arriba County, New Mexico, assigned to C4 based on the time series clustering was not modeled using the multinomial logistic regression, since
we could not obtain values for its predictor variables. Hence, the reported mean (SDs) and n (%) for C4 exclude this county.
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Table 3. Results of multinomial logistic regression for clusters C2, C3, and C4. We used C1 as the reference cluster since it contained the largest
number of counties.

C4C3C2Variables

OR (95% CI)β (SE)OR (95% CI)β (SE)ORa (95% CI)β (SE)

0.98 (0.47-2.05)–0.018 (0.376)0.70 (0.40-1.23)–0.356 (0.286)1.52 (0.48-4.85)0.419 (0.592)Theme 1: socioeconomic

1.89 (1.12-3.19)0.638 (0.267)1.48 (0.96-2.29)0.392 (0.223)0.78 (0.34-1.83)–0.245 (0.432)Theme 2: household composi-
tion and disability

3.20 (1.89-5.40)1.162 (0.268)1.00 (0.65-1.55)0.004 (0.222)38.90 (15.51-
97.54)

3.661 (0.469)Theme 3: minority status and
language

1.82 (1.07-3.09)0.599 (0.270)2.96 (1.90-4.62)1.086 (0.227)1.75 (0.75-4.04)0.557 (0.428)Theme 4: housing and trans-
portation

2.61 (2.33-2.92)0.959 (0.057)1.52 (1.39-1.65)0.417 (0.043)2.74 (2.35-3.20)1.009 (0.078)Log(population density)

2.98 (2.13-4.19)1.093 (0.173)0.72 (0.57-0.92)–0.323 (0.122)0.90 (0.57-1.43)–0.101 (0.233)Governor’s party (Republican)

0.33 (0.15-0.72)–1.108 (0.395)0.60 (0.30-1.20)–0.509 (0.354)0.15 (0.06-0.38)–1.879 (0.464)Region B

1.65 (0.79-3.45)0.502 (0.376)0.19 (0.08-0.44)–1.673 (0.437)0.07 (0.03-0.19)–2.621 (0.496)Region C

1.27 (0.58-2.80)0.242 (0.401)0.56 (0.27-1.16)–0.574 (0.369)0.18 (0.06-0.51)–1.717 (0.537)Region D

0.15 (0.07-0.32)–1.925 (0.403)2.42 (1.28-4.57)0.884 (0.324)0.14 (0.06-0.35)–1.941 (0.461)Region E

2.26 (0.95-5.39)0.814 (0.444)1.88 (0.91-3.85)0.629 (0.367)0.22 (0.08-0.61)–1.520 (0.522)Region F

0.22 (0.09-0.51)–1.536 (0.444)1.44 (0.71-2.92)0.363 (0.361)0.06 (0.02-0.20)–2.886 (0.647)Region G

0.26 (0.09-0.81)–1.329 (0.570)1.45 (0.67-3.16)0.374 (0.396)0.11 (0.03-0.41)–2.221 (0.681)Region H

8.49 (3.34-21.58)2.139 (0.476)1.93 (0.75-4.93)0.657 (0.479)0.03 (0.00-0.27)–3.509 (1.117)Region I

0.81 (0.32-2.07)–0.213 (0.480)1.26 (0.58-2.73)0.228 (0.396)0.08 (0.02-0.29)–2.527 (0.666)Region J

0.98 (0.96-1.00)–0.020 (0.012)0.97 (0.95-0.99)–0.030 (0.009)0.97 (0.94-1.01)–0.028 (0.018)Government response

0.01 (0.00-0.04)–5.115 (0.934)0.35 (0.09-1.35)–1.308 (0.684)0.01 (0.00-0.07)–5.171 (1.292)Constant

aOR: odds ratio.

We found that the clusters can be roughly described as follows:

• C1: low death rates throughout much of the pandemic;
found mostly in Upper Midwest and mountain states

• C2: high death rates in spring 2020, with another spike in
December 2020/January 2021; found mostly in the northeast
and other large cities

• C3: low death rates until fall 2020, followed by a peak in
December 2020; spread throughout the United States with
concentrations in Central Midwest and Great Lakes

• C4: steady death rates from late summer through December
2020, followed by a peak in January; spread throughout the
United States with concentrations in California, the
Southwest, and the Southeast

“SVI theme 3: minority status and language” was significantly
associated with clustering in C2 versus C1, yielding an OR of
38.90. Counties with high levels of SVI theme 3 were strongly
associated with membership in C2 compared to C1. All CDC
regions (B-J) showed a significant, negative association with
C2 versus C1, indicating that being located outside region A
(the Northeast, baseline category for region) is associated with
lower odds of clustering in C2 versus C1. This is consistent
with our initial finding from the map in Figure 4, which showed
that the counties in C2 are primarily located in the Northeast.

The variable with the strongest positive association to C3,
relative to C1, was “SVI theme 4: housing and transportation.”

Population density was also significant and positively related
to C3. The governor's party was significant and negatively
associated with C3, indicating that counties in states with
Republican governors are associated with lower odds of
clustering in C3 than in C1. The government response was also
significant and negatively related to membership in C3, but the
effect was small. Among the regions, the coefficient for region
C (North Carolina, South Carolina, Georgia, and Florida) was
significant and negative; thus, counties in these states are
associated with lower odds of being classified in C3 than in C1.
In contrast, the coefficient for region E was significant and
positive, which suggests that counties in Minnesota, Wisconsin,
Illinois, Indiana, Michigan, and Ohio are associated with higher
odds of clustering in C3.

“SVI theme 1: socioeconomic” was not significant for
membership in any of clusters C2-C4; however, 3 of the SVIs
(household composition and disability, minority status and
language, and housing and transportation) were significant and
positively associated with membership in C4. In addition,
counties located in states with Republican governors were also
associated with higher odds of classification in C4 relative to
C1. Among the CDC regions, regions I (California, Nevada,
and Arizona) and F (New Mexico, Texas, Oklahoma, and
Louisiana) had positive coefficients. Regions B, E, G, and H
had significantly negative coefficients. The logarithm of
population density was also a significant predictor for
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classification in C2, C3, and C4, relative to C1, which indicates
that a low population density is associated with clustering in
C1.

Overall, the multinomial regression model correctly classified
1904 (61.25%) of the 3108 counties into 1 of 4 clusters. Table
4 gives the in-sample predictive performance of the multinomial
regression model broken down by cluster. The balanced
accuracy was similar for all 4 clusters, ranging from 0.63 to
0.80. A more nuanced view of the performance can be seen
from sensitivity and specificity. The model performed well in
correctly classifying counties in cluster C4 (sensitivity=0.74),
which shows a sustained emergence in deaths beginning in late
summer 2020. The model also performed well in classifying
counties in cluster C1 (sensitivity=0.71), counties with few
deaths. However, it had only moderate ability to correctly
classify counties into clusters C2 and C3 (sensitivity=0.42 and

0.39, respectively). Note that the sensitivity performance for
clusters C2 and C3 exceeded the expected sensitivity of 0.25
that would be obtained from random allocation among 4 classes
in a balanced or imbalanced multiclass classification problem
(see Megahed et al [21] for more details). In terms of specificity,
the model performed well at identifying which counties are not
in clusters C1-C4, with specificity values ranging from 0.71 to
0.98. Figure 6 shows the distribution of the accuracy of the
multinomial logistic model in predicting cluster membership.
Counties that were correctly predicted from the model are
indicated in a light color, while those that were incorrectly
predicted are indicated in a dark color. The model provides
some insight into the patterns across the United States, but
additional data are needed to more accurately classify counties
in terms of the pattern of death rates due to COVID-19. For an
interactive version of this map, please see Section 4.2.4 in
Megahed et al [20].

Table 4. The predictive performance of the multinomial regression model for each cluster.

SpecificitySensitivityBalanced accuracyCluster

0.710.710.71C1

0.980.420.70C2

0.880.390.63C3

0.860.740.80C4

Figure 6. Map of the prediction accuracy of the multinomial logistic model describing the time series cluster solution. Counties in a light color (labeled
“Yes”) were correctly classified by the model. Counties in a dark color (labeled “No”) were incorrectly classified. Rio Arriba County, New Mexico (in
white), was not classified due to missing data.
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Discussion

Principal Findings
This research provides a framework for understanding the
pattern of COVID-19–related deaths across the United States.
Using time series clustering with county-level data on the
occurrence of COVID-19–related deaths, we observed 4 distinct
patterns from March 1, 2020, to February 27, 2021. The second
stage of our analysis revealed that these patterns can be partially
explained by region as well as social and political predictors.

Our findings add to the literature on the relationship between
COVID-19 outcomes and vulnerable populations [22-24]. The
largest number of counties in the United States experienced few
deaths during the study period (cluster C1). These counties
were, on average, at or below the median of all measures of
social vulnerability. With lower population densities, and spread
throughout the United States, C1 counties served as our model
baseline.

The county-level COVID-19 death data were extracted using
the COVID19 R package [1], which extracted confirmed deaths
from a GitHub repository [25]. The cross-sectional data set
containing the predictors used in the multinomial regression
was compiled by the authors from disparate sources and is
available in Megahed [26]. R statistical software version 4.0.4
was used for all processing and analysis of data. A reproducible
workflow of our analysis is made available using R Markdown
and is hosted in Megahed et al [20], following the best practices
of Jalali et al [27] in reporting and documenting analyses for
COVID-19.

Cluster C3 (low death rates until fall 2020, peaking in December
2020) had the second largest number of counties. C3 counties
are spread across much of the country but have concentrations
in the Great Lakes and Central Midwest regions. Interestingly,
few incidences of C3 occur in the Southeastern United States
and along the eastern seaboard from Washington, DC, to
Massachusetts. Like C1, counties in C3 had SVI measures below
the median, on average. These counties experienced a single
late wave in COVID-19 deaths beginning in late October 2020
that declined by the end of the study period. There were a few
distinguishing features between counties being classified in C3
versus C1: a higher population density, Democratic state
leadership, location outside the Southeast, location in the Great
Lakes region, and higher vulnerability in the SVI housing and
transportation theme. This index indicates a higher incidence
of multiunit housing, mobile homes, crowding, lack of vehicles,
or group living situations.

The 226 counties that are clustered in C2 (high death rates in
spring 2020 and December 2020/January 2021) are mostly
populous counties in the Northeast, Washington, southeast

Louisiana (including New Orleans), and the Four Corners region
of Arizona and New Mexico. C2 counties experienced an early
outbreak of deaths, followed by a second wave beginning in
November 2020 but few deaths in summer 2020. These counties
showed a strong relationship with the SVI minority and language
theme, indicating a large percentage of residents who are
minority or nonnative English speakers.

Cluster C4 (steady death rates beginning late summer, peaking
in January) is located throughout the United States, with
concentrations in the Southeast and Southwest. The counties in
C4 showed a steady incidence of deaths beginning in late
summer 2020 that continued through the study period. C4
counties were, on average, above the median on all SVI themes,
and 3 of the 4 themes were significant in classifying counties
in C4 versus C1. Specifically, the themes related to household
and disability, minority and language, and housing and
transportation all showed a positive association with this
sustained pattern of COVID-19–related deaths. The majority
(n=591, 74.4%) of these counties are located in Republican-led
states.

Limitations
The local patterns in COVID-19–related deaths suggest that
local-level factors, including geographic, demographic, and
social vulnerability characteristics, are related to adverse
outcomes from COVID-19. There are several limitations to this
research. These include the observational nature of the study,
which was conducted as the pandemic continues to emerge. The
retrospective, secondary use of data makes it impossible to infer
causation from our model. Outbreaks and adverse outcomes
changed over time as local and national governments adopted
new policies and vaccines to react to the emerging pandemic.
Further, the government response index is available only at the
state level and is constant across all counties within a state.
Using a state-level predictor to explain cluster membership at
the county level could lead to an ecological fallacy.

Conclusion
Despite limitations, this exploratory study revealed new insights
into the most severe outcome of the COVID-19 pandemic. The
identification of 4 distinct patterns of death incidences in 3108
US counties provides evidence of the differences in the
realization of severe outcomes from the pandemic. The United
States is a demographically and politically diverse nation, and
it is important to understand the differences in pandemic-related
outcomes across communities. By examining the relationship
between county-level predictors and membership in the 4 cluster
patterns, we showed that there are important demographic,
political, and socioeconomic differences related to death patterns
across the United States.
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