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Abstract

Background: Selection bias and unmeasured confounding are fundamental problems in epidemiology that threaten study internal
and external validity. These phenomena are particularly dangerous in internet-based public health surveillance, where traditional
mitigation and adjustment methods are inapplicable, unavailable, or out of date. Recent theoretical advances in causal modeling
can mitigate these threats, but these innovations have not been widely deployed in the epidemiological community.

Objective: The purpose of our paper is to demonstrate the practical utility of causal modeling to both detect unmeasured
confounding and selection bias and guide model selection to minimize bias. We implemented this approach in an applied
epidemiological study of the COVID-19 cumulative infection rate in the New York City (NYC) spring 2020 epidemic.

Methods: We collected primary data from Qualtrics surveys of Amazon Mechanical Turk (MTurk) crowd workers residing in
New Jersey and New York State across 2 sampling periods: April 11-14 and May 8-11, 2020. The surveys queried the subjects
on household health status and demographic characteristics. We constructed a set of possible causal models of household infection
and survey selection mechanisms and ranked them by compatibility with the collected survey data. The most compatible causal
model was then used to estimate the cumulative infection rate in each survey period.

Results: There were 527 and 513 responses collected for the 2 periods, respectively. Response demographics were highly
skewed toward a younger age in both survey periods. Despite the extremely strong relationship between age and COVID-19
symptoms, we recovered minimally biased estimates of the cumulative infection rate using only primary data and the most
compatible causal model, with a relative bias of +3.8% and –1.9% from the reported cumulative infection rate for the first and
second survey periods, respectively.

Conclusions: We successfully recovered accurate estimates of the cumulative infection rate from an internet-based crowdsourced
sample despite considerable selection bias and unmeasured confounding in the primary data. This implementation demonstrates
how simple applications of structural causal modeling can be effectively used to determine falsifiable model conditions, detect
selection bias and confounding factors, and minimize estimate bias through model selection in a novel epidemiological context.
As the disease and social dynamics of COVID-19 continue to evolve, public health surveillance protocols must continue to adapt;
the emergence of Omicron variants and shift to at-home testing as recent challenges. Rigorous and transparent methods to develop,
deploy, and diagnosis adapted surveillance protocols will be critical to their success.
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Introduction

Accurate estimation of disease parameters is a fundamental
problem in epidemiology. The internal and external validity of
epidemiological studies is threatened by unmeasured
confounding and selection bias [1,2]. There is an extensive and
sophisticated literature focused on mitigating these threats by
study design and poststudy statistical adjustment [3-5]. In
particular, the randomization paradigm for treatment assignment
and sample selection has served at the de facto standard for
identifying causal effects and point estimates of disease
parameters in a target population. However, even studies with
perfect randomization can still suffer from unmeasured
confounding and selection bias via a variety of phenomena,
such as participant noncompliance, unit nonresponse, incomplete
registers of the target population, and data collection failures
[6]. In the past decade, there have been several advances in the
theoretical treatment of these threats, particularly in the graphical
causal modeling literature, where the problems of selection bias
and unmeasured confounding have received a comprehensive
theoretical treatment [7-9]. Although these recent methods
provide a clear conceptual and mathematical framework, they
have yet to be routinely deployed in the epidemiological
community at large [10,11].

This gap is particularly acute in internet-based public health
and surveillance. Internet-based sampling in general suffers
from unknown selection mechanisms on largely unobservable
and dynamic populations, making traditional adjustment
methods that require external data about the target population
vulnerable to model violation. Previous studies that augmented
traditional surveillance mechanisms with internet-based data
have proved highly successful at imputing missing or
time-delayed information [12,13]. However, it is challenging
to model emerging pathogens and adapt to changing internet
user behavior across time and social context [14]. This
fundamental difficulty was demonstrated vividly early in the
COVID-19 pandemic as several highly sophisticated
crowdsourced internet-based surveillance efforts were launched
in response to the pandemic [15-21]. Despite explicit support
by global social media and web service vendors, these early
efforts yielded significantly biased estimates of key
epidemiological parameters [22-26]. Internet-based
epidemiology must adopt methodological approaches
appropriate to the dynamic and unobservable features of internet
populations.

In this work, we seek to address this gap between recent
theoretical developments and the current practice of
internet-based public health surveillance. We present structural
causal modeling as a guide to epidemiological judgement
through encoding epidemiological knowledge into models that
can be tested using sample data, and we describe a general
graphical method for deriving falsifiable model conditions.

Importantly, this approach can be deployed using only the
sampled data, whereas traditional methods for detecting
confounding and selection bias require some information about
the unsampled or missing data from units with partial data or
external data, such as census or health care system medical
records [1]. For novel and dynamic phenomena, the required
external information may be unavailable, unreliable, or
impractical to collect in the timespan available. Our objective
is to demonstrate the practical utility of model diagnosis and
selection using statistical criteria derived from structural causal
models.

Methods

Structural Causal Models
Structured causal models permit the formal encoding of causal
mechanisms and have been extended to formally analyze studies
in the presence of selection bias and unmeasured confounding.
The mathematical tool necessary for this work is d-separation
on directed acyclic graphs (DAGs). Here, we briefly review
d-separation notation and concepts. We can represent a
probability distribution as a DAG where nodes represent
variables X, Y, and Z and edges represent functional
dependencies between variables. The formalism of d-separation
is a mapping between the DAG of a probability distribution and
the conditional independencies of that distribution; this is stated
formally in the conditional independence statements of Figure
1. To state that variables X and Y are d-separated by Z is to
state that X and Y are conditionally independent if conditioned
on variable Z. Conversely, if X and Y are not d-separated by
Z, then X and Y are conditionally dependent if conditioned on
Z. A path in a DAG is a sequence of edges (regardless of
direction), and every path can be decomposed into a sequence
of path elements of edges, chains, forks, and colliders, as shown
in Figure 1. The variables X and Y are d-separated in the DAG
if all paths from X to Y in the graph are “blocked.” Intuitively,
a path from X to Y is blocked if no information about X can be
inferred from observing Y via information transferred along
that path.

The d-separation path element rules determine whether a path
between X and Y is blocked. A path between X and Y can be
blocked in 2 different ways by conditioning on a set of variables
W. If the path contains a fork or a chain element, then it is
blocked if the middle variable (Z in Figure 1) in at least 1 of
the fork or chain elements is in W. If the path contains a collider
element, then the path is blocked only if the middle variable is
not in W. Conditioning on the middle variable of a collider
element can unblock the path and make X and Y not d-separated.
To illustrate this concept more explicitly, consider 2 independent
binary 0,1 variables X and Y, where Z = X + Y. If we condition
on Z such that Z=1, then X and Y would appear anticorrelated
(nonindependent) because samples with X=Y=0 and X=Y=1
are, by definition, never observed in the subset where Z=1. This
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effect is known as collider bias and is a major source of
selection bias in epidemiological studies. For further reading,

there are several good introductions to d-separation in graphical
models [6,9].

Figure 1. Conditional independence statements and d-separation rules.

The only additional conceptual step necessary for analyzing
selection bias is to add the sampling mechanism to the initial
causal graph G to create the augmented causal graph Gs. The
encoded sampling mechanism determines the value of the
sampling indicator variable S, where S=1 if the unit was sampled
and S=0 otherwise. Additionally, any mechanism that filters
data after primary collection induces an additional selection
bias and must also be encoded in Gs. The augmented graph Gs

obeys d-separation rules, but for clarity, the sampling indicator
S node is depicted in Gs with a double ring to emphasize that
S=1 for all samples by definition; all d-separation statements
in Gs must be evaluated conditional on S=1.

For any graph Gs, the s-recoverability condition states that for
any variables Y and X in Gs, the distribution of the sample
P(Y|X,S=1) is identical to the distribution of the target
population P(Y|X) if and only if Y and S are d-separated by X
[8]. Assuming the graph is faithful, S and Y conditioned on X
are independent if and only if there is no selection bias or
unmeasured confounding. It is not possible to directly test for
independence between S and Y using sample data, because is
no variation as S=1 by definition, but other surrogate variables
in the sample data can be used to test independence of S and Y.

We demonstrate this principle in Figure 2 using the causal
graphs GA,s, GB,s, GC,s, and GD,s with outcome variable Y,
instrumental variable V on variable X relative to Y, and a sample
indicator variable S determined by X. Here we define an
instrumental variable V on X relative to Y as a variable V that

is not independent of X (V and X not d-separated), but V is
independent of Y conditional on X (V and Y are d-separated
by X). In graph GA,s, the variables V and Y are trivially
d-separated (d-separated without any blocking variables) and
therefore independent. If there is any selection bias (GB,s, GC,s)
or unmeasured confounding (GD,s), then V and Y are not trivially
d-separable and are not independent. For example, suppose the
null hypothesis of statistical independence between V and Y is
rejected in the sampled data. Then the graph GA,s is not
compatible with the sample data, but alternative graphs GC,s,
GB,s, and GD,s are compatible with nonindependent V and Y
and should be considered. Any augmented causal graph Gs

entails a set of conditional independencies that can be
statistically tested using only the sample data. For more complex
graphs, there are several software tools that will compute all
the entailed independencies, of which dagitty is perhaps the
most user friendly [26].

In this work, we focus on graphical modeling as a formalism
to aid epidemiological judgment. Epidemiological knowledge
tightly constrains the set of possible explanatory scenarios for
a given context; the difficultly is choosing which of these
scenarios is most plausible. Statistically testing the
independencies implied by the causal graph encoding is a direct
method to select between scenarios. We now demonstrate this
approach in an applied problem of estimating the cumulative
infection rate CIP of SARS-CoV-2 in the COVID-19 New York
City (NYC) spring 2020 epidemic through a prospectively
collected crowdsourced internet survey.
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Figure 2. Example causal graphs with selection bias and unmeasured confounding.

Recruitment
Initial crowdsourced epidemiology efforts in the COVID-19
pandemic focused on surveys collected from a variety of internet
sources and target populations. Instead of recruiting via major
internet platforms such as Facebook and Google, we recruited
our survey participants from the Amazon Mechanical Turk
(MTurk) crowdworking platform. MTurk is an internet-based
labor market where a research group or business (requesters)
can create and disseminate a human intelligence task (HIT) to
a distributed human labor pool (workers) that can accept and
complete these tasks for a known monetary reward upon
satisfactory completion of the task. A HIT can range from
transcribing an audio file to a personality survey, and requesters
can restrict the task workers within a specific geographic area
or demographic subset. All MTurk workers in the United States
are adults of age 18 years or older.

We chose the MTurk population for 2 reasons. First, MTurk
has been successfully used by many academic groups, including
our own, across a broad array of disciplines [27-32]. Second,
the demographics and health status of the MTurk worker
population in the United States has been repeatedly characterized
and has remained stable through time, closely matching the
racial and ethnic composition of the United States but skewing
toward women, a younger age, worse mental health, and lower
income than the US population [28]. Any MTurk worker
registered as residing in New York State or New Jersey was
permitted to respond to the survey via the MTurk HIT job
posting with restriction that a worker could respond only once
per survey period. No other restrictions or invitation mechanisms
were used in either survey period.

Human Subject Research Ethical Statement
This research was not found to be considered human subject
research as the survey did not collect any personally identifying
information or set of information that could be reidentifying,

in compliance with MTurk’s policy prohibiting any transmission
of workers’ personally identifiable information to requesters
and Stanford University research policy GUI-H12. Research
was carried out in a way that followed ethical guidelines set by
the Declaration of Helsinki. All MTurk tasks are carefully
reviewed before being posted, and MTurk workers are able to
accept but then refuse to complete any task or any part of a task
at any point in time. Furthermore, the survey task included an
introduction page that informed the respondents of the purpose
and content of this survey and for what purposes their response
data would be used.

Overview of Survey Design
We collected primary data from the MTurk population listed
as currently residing in New Jersey or New York. Data for
surveys s1 and s2 were collected in 2 successive periods: April
11-14 and May 8-11, 2020. During this period, both New York
and New Jersey were under a statewide stay-at-home order that
greatly restricted travel and prohibited public gatherings [33,34].
We collected primary data from 2 survey periods to estimate
the trajectory of the spring 2020 COVID-19 epidemic in NYC
and assess the stability of model selection across 2 different
phases of the epidemic. The context of NYC in spring 2020 was
chosen because it was 1 of the first major COVID-19 epidemics.
A Qualtrics survey was created for each survey run, with a
reward (median completion time) for the surveys of US $1 (5
minutes) and US $1.25 (6 minutes) for s1 and s2, respectively.
This reward is consistent with other MTurk HITs for the time
required. Before accepting the task, the participant was aware
of the overall survey subject (COVID-19) and the monetary
reward for completion. We excluded responses from participants
that were incomplete or out-of-area, as determined by
geolocation information provided by Qualtrics. The included
responses were split by collection period and aggregated into
3 nested geographic areas: New Jersey and New York (NJ/NY),
the section of the New York City Combined Statistical Area
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contained within New Jersey and New York (NYC CBSA), and
NYC proper.

Before answering any questions, the survey asked each
participant (respondent) to privately list their 5 closest peer
relationships (relations) with whom they typically socialize in
person. There was large variation in the number of contacts for
each person during the mandatory stay-at-home orders. Instead
of asking respondents about their total number of contacts, we
asked about their closest peer relationships because these are
the set of persons whose current health status and household
characteristics would most likely be known to the respondents.
Furthermore, we only asked about 5 relations to minimize the
time to complete the survey. The survey queried each respondent
about the demographic, employment characteristics, and possible
COVID-19 symptoms of both themselves and their relations.
The survey also queried each respondent about both their
household and their relations’households, including household
size and whether any member had a confirmed SARS-CoV-2
infection since March 15, 2020. These questions were chosen
to permit comparison of respondents and relations to known
census demographic data and to estimate the cumulative number
of infected households and individuals within a specified
geographic area. The survey material is included in Multimedia
Appendices 1 and 2.

Statistical Analysis

Estimator Definition
We defined a household-based cumulative infection rate

estimator on a sample PS for the cumulative infection rate
as:

where Cp is an indicator variable for the confirmed SARS-CoV-2
infection status of person p in a population P of size NP. We
defined the household secondary attack rate (SARh) as the ratio
of secondary household cases to the total population of exposed
household members. We can write SARh formally as:

where H is the set of unique households in population P,
indicator variable Ch=1 for if there is at least 1 SARS-CoV-2
infection in household h, and Nh the size of household h in H.
Let the total population be defined as the sum of the household
members NP=ΣhεH Nh. We can then rewrite CIP in terms of
households as:

We then defined the estimator of CIP on a sample PS as:

with unique households HS. The estimator is consistent
as HS goes to H if P(Ch, Nh|h in Hs)=P(Ch, Nh) of the target

population. In the special case of SARh=0, is an unbiased
estimator of the cumulative household infection rate CIH under
the less restrictive condition of P(Ch|S=1)=P(Ch).

Structural Causal Models
The survey data were modeled in a causal graph encoding the
variables and assumptions, as depicted in Figure 3. Every person
in the population P was assigned 2 indicator variables Resi and
Relij and the outcome variables Ch,Res,i and Ch,Rel,ij. The variable
Resi=1 if person pi is a respondent to the survey, and Relij=1 if
pi in P would choose person pj as a relation in the context of
this survey. In the sample, the set of respondents is
PS,Res={pi|Resi=1}, the set of relations is PS,Rel={pj|Relij=1, pi

in PS,Res}, and the total sample is PS=PS,Res ∪ PS,Rel. The
outcome variable Ch,Res,i=1 if there is at least 1 confirmed
SARS-CoV-2 infection in the household of respondent pi in
PS,Res, and Ch,Rel,ij=1 if there is at least 1 confirmed infection in
the household of relation pj in PS,Rel. For each response, there
is 1 respondent and 5 relations chosen by that respondent. In
the causal graphs in Figure 3, the subgraph that includes
variables pertaining to relations is replicated identically for all
5 relations. Given that this was an anonymous internet survey,
we assumed no information bias due to intentional
misrepresentations on the part of the respondents or relations.
We also assumed there was no information bias due to testing
constraints at the level of the household.

We defined 4 possible causal models depicted in Figure 3,
augmented with the sampling indicator variable S. All variables
were conditioned on a common geographic area, which was
suppressed in the graphs and notation for clarity.

The first 3 causal models GRes,s, GRel,s, and GAll,s all shared the
same causal graph, as represented in the first graph in Figure
3, and differed only in terms of the data used. The first causal
graph encoded that the age variable A of a person influences
whether they respond as a relation/respondent in variable R,
which in turn determines whether they are in the sample S.
Furthermore, the household infection status Ch of the person
was assumed to be unrelated to the other variables. The first
causal model GRes,s only used data on respondents, whereas the
second model GRel,s only used data on relations. The third model
GAll,s combined respondents’ and relations’ data.
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Figure 3. Alternative causal graphs.

The second graph in Figure 3 corresponds to the fourth causal
model GRel*,s, which encoded a possible confounding between
S and CRes and between S and CRel. In particular, GRel*,s modeled
the case where the respondents’household status Ch,Res is related
to the relations’ household status Ch,Rel through a transmission
event I between a respondent and a relation due to the recent
close contact event M. The variables I and M d-separated the
sampling indicator S and the outcome of interest Ch,Rel, but the
infection event I was unobservable. However, if we filtered the
samples so that M=0 (excluding relations with close contact
events with the respondent), then I=0 for the retained samples
because there can be no transmission without close contact;
filtering on M=0 effectively conditioned on M=0 and I=0.
Filtering on M also induced another selection bias modeled by
the edge M to S, but S and Ch,Rel remained d-separated as did
Ch,Rel and ARel. Therefore, the graph GRel*,s implied that
P(Ch,Rel|M=0,I=0,S=1)=P(Ch) and furthermore implied that
Ch,Rel and ARel are statistically independent. Effectively, this
model excluded information from respondents and excluded
relations that had recent in-person contact with the respondents.
Practically, this model reduced overestimation of the cumulative
infection rate due to possible common causes of the infection
status of respondents and relations, such as when a respondent
transmits an infection to a relation.

These 4 models can be compared and ranked empirically by
statistical tests of the conditional independences implied by
their d-separation conditions. Each causal model in Figure 3
has at least 1 independence statement that is testable using the
observed data on the age and household infection status of the
respondents and relations. From 1 statistical test of the
independence statement, we can distinguish which causal model
is compatible with the data for each survey period using only
the survey sample data. This is an important methodological
point, given that the current practice for model diagnosis and
selection assumes strong prior knowledge about the target
population on several demographic variables. No external data
are required for this type of diagnostic analysis, which is a key
advantage when the target population is unstudied, inaccessible,
or dynamic through time.

We evaluated the causal models by statistically testing the
implied independence of A; Ch in models GRes,s, GRel,s, and
GAll,s; and ARel and Ch,Rel in model GRel*,s using the Fisher exact
test for independence. For each model, we filtered the data, as
specified in the model, median-split the age variable, and
performed Fisher exact tests on the 2×2 table of the age group
(A0, A1) by house infection status (Ch,0, Ch,1) with point test
statistics shown in Table 1. Ages for respondents and relations
were randomly assigned within the recorded 5-year bin across
independent replications (n=1000). The median odds ratio with
95% CIs and median P values are reported in Table 1.
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Table 1. Model selection by conditional independence tests.

Sample size, NP valueOdds ratio (95% CI)Survey

GRes,s

527.770.802 (0.765-0.922)s1

513.010.271 (0.202-0.438)s2

GRel,s

2635.900.955 (0.885-1.026)s1

2565.010.634 (0.581-0.694)s2

GAll,s

3162.730.919 (0.824-1.007)s1

3078<.0010.572 (0.525-0.614)s2

GRel*,s

1340.990.977 (0.855-1.130)s1

1104.281.472 (1.216-1.823)s2

In the general case, there will be no ground truth to compare
the model against. However, in this study, we assessed the model
performance directly. Due to the particular conditions of the

NYC epidemic, the performance of the estimator in each
causal model can be evaluated directly from the CIP reported
by the New Jersey and New York State health departments.
Under the test rationing and home quarantine policies of New
York and New Jersey during the spring 2020 epidemic,
diagnostic real-time reverse transcription polymerase chain
reaction (rRT-PCR) SARS-CoV-2 tests were restricted to
individuals hospitalized with COVID-19 symptoms. Households
with a member who tested positive were required by law to
quarantine [35-40]. Although multiple members of a given
household might have SARS-CoV-2 infections, no additional
rRT-PCR tests would be performed on other household members
unless they were hospitalized. Therefore, the reported CIP is as
if SARh=0 where no secondary household cases are reported.
We aggregated confirmed SARS-CoV-2 infections as reported
by the New York and New Jersey governments for each date
and geographic area (NJ/NY, NYC CBSA, NYC) and calculated
the CIP relative to the American Community Survey (ACS)
population for each. To evaluate the performance of each model,

we computed the cumulative infection rate estimator at
SARh=0 and calculated its relative bias from the reported CIP

for each area and period.

To demonstrate the practical epidemiological utility of this type

of internet-based sampling, we calculated for different
values of SARh using the causal model most compatible with
the primary data, deriving 95% CIs by bootstrap resampling
(n=1000).

Results

Demographics
In total, 527 and 513 responses met the inclusion criteria from
surveys s1 and s2, respectively. Demographic information is
summarized as frequencies for each collection period, with
Pearson chi-squared tests performed to compare raw counts to
demographic distributions in the 2018 ACS update of the US
Census Bureau (Table 2).

Significant age skews were apparent across all survey periods,
with both respondents and relations skewing significantly
younger than the known population distribution, while sex
distributions were not significantly different than the ACS
estimate for New York and New Jersey. This large age skew
made the sample highly unrepresentative of the target
population, but with a correctly specified causal model, it was
possible to obtain an unbiased estimate of the cumulative
infection rate CIP, as we next demonstrate through model
diagnosis, selection, and evaluation.
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Table 2. Demographic characteristics of survey samples.

ACSa (%)Combined, n(%)Relations, n(%)Respondents, n(%)Characteristics

Survey s2

(N=3078)
Survey s1

(N=3162)
Survey s2

(N=2565)
Survey s1

(N=2635)
Survey s2

(N=513)
Survey s1

(N=527)

Age (years)

22.7361 (11.7)266 (8.4)356 (13.9)264 (10.0)5 (1.0)2 (0.4)<19

15.2767 (24.9)804 (25.4)575 (22.4)620 (23.5)192 (37.4)184 (34.9)19-29

13.2688 (22.4)701 (22.2)525 (20.5)531 (20.2)163 (31.8)170 (32.3)30-39

12.9421 (13.7)489 (15.5)344 (13.4)400 (15.2)77 (15)89 (16.9)40-49

14.1392 (12.7)423 (13.4)346 (13.5)367 (13.9)46 (9.0)56 (10.6)50-59

11.2318 (10.3)303 (9.6)294 (11.5)284 (10.8)24 (4.7)19 (3.6)60-69

10.6131 (4.3)176 (5.6)125 (4.9)169 (6.4)6 (1.2)7 (1.3)≥70

N/Ab672793358457480475Chi-square (df=6)

N/A<.001<.001<.001<.001<.001<.001P value

Sexc

N/A80 (2.6)21 (0.7)77 (3.0)20 (0.8)3 (0.6)1 (0.2)N/A

51.41589 (51.6)1620 (51.2)1303 (50.8)1353 (51.3)286 (55.8)267 (50.7)Female

48.61409 (45.8)1521 (48.1)1185 (46.2)1262 (47.9)224 (43.7)259 (49.1)Male

N/A3.140.0460.970.134.500.08Chi-square (df=1)

N/A.07.83.32.71.03.77P value

Occupation (multiple)

N/AN/AN/AN/AN/A140 (27.9)153 (30.0)Essential worker

N/AN/AN/AN/AN/A27 (5.3)31 (5.9)Food service

N/AN/AN/AN/AN/A69 (13.5)66 (12.5)Health care

N/AN/AN/AN/AN/A183 (35.7)152 (28.8)Work from home

N/AN/AN/AN/AN/A86 (16.8)71 (13.5)Not working

N/AN/AN/AN/AN/A173 (33.7)231 (43.8)Other

aACS: American Community Survey of the US Census Bureau.
bN/A: not applicable.
cSex inferred from the reported gender identity for comparison with the ACS.

Model Diagnosis, Selection, and Evaluation
In the first survey period, no model could be rejected at nominal
α=0.05, but in the second survey period, only model GRel*,s

could not be rejected. The most likely explanation for why the
4 models were more distinguished in the second period is that
the cumulative infection rate increased through the course of
the epidemic, giving greater power to detect a statistical

dependence in a model, even though the total sample size was
similar between periods for each model.

Model Performance
The model GRel*,s recovered accurate cumulative infection rate

estimates, with the lowest bias across both survey periods
for the full sample (NJ/NY), as displayed in Figure 4, with the
estimator variance for all models increasing as the sample size
decreased with a smaller geographic area.
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Figure 4. Relative bias of cumulative infection estimates by geographic area, model, and survey period. NJ/NY: New Jersey and New York; NYC:
New York City; NYC CBSA: New York City Combined Statistical Area contained within New Jersey and New York.

Estimating the Cumulative Infection Rate from the
Household Secondary Attack Rate
The model GRel*,s was used to calculate the cumulative infection

rate estimator for different values of SARh, as displayed

in Figure 5. For all geographic areas and survey periods, the

median estimate was approximately 1-4 times higher than
the reported cumulative infection rate CIP, with upper bounds
ranging from 2.5-5 times higher.

Figure 5. Estimated cumulative infection rate by geographic area, household secondary attack rate (SARh), and survey period. Dashed lines are the
reported CIp for the survey period, color-matched to the geographic area. NJ/NY: New Jersey and New York; NYC: New York City; NYC CBSA: New
York City Combined Statistical Area contained within New Jersey and New York.

Reported Symptoms Among Respondents and
Relations
The number of households with at least 1 confirmed
SARS-CoV-2 infection increased by 2 times, and the number
of households with at least 1 member recently hospitalized for

influenza-like illness (hospital ILI) increased by 1.5 times for
both respondents and relations across the 2 survey periods, as
shown in Table 3. Despite this, the marginal rates of common
symptoms (fever, aches, anosmia, allergy) remained similar
across both periods. This highlights the practical difficulties of

JMIR Public Health Surveill 2022 | vol. 8 | iss. 7 | e31306 | p. 9https://publichealth.jmir.org/2022/7/e31306
(page number not for citation purposes)

Stockham et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


estimating changes in CIP by using common symptom checklists,
as reported by internet surveys.

The correlation between health status indicators and symptoms
remained largely the same across both periods (Figure 6). The

notable exception is that the correlation between SARS-CoV-2
and hospital ILI increased from the first to the second survey
period, presumably corresponding to the conversion from
diagnosis to hospitalization as the epidemic progressed.

Table 3. Respondent/relation household heath status and symptoms by survey period.

Reported symptoms, n (%)Household health status, n (%)Person

AllergyAnosmiaAchesFeverHospital ILIb,cSARS-CoV-2a

Survey s1

89 (8.6)45 (4.3)112 (10.8)32 (3.1)24 (2.3)25 (2.4)Respondents (N=1040)

226 (4.4)167 (3.2)325 (6.3)211 (4.1)109 (2.1)155 (3.0)Relations (N=5200)

Survey s2

104 (10.2)46 (4.5)145 (14.3)23 (2.3)33 (3.2)53 (5.2)Respondents (N=1040)

192 (3.8)180 (3.6)337 (6.6)154 (3.0)169 (3.3)295 (5.8)Relations (N=5200)

aSARS-CoV-2: at least 1 household member had tested positive for SARS-CoV-2 infection by real-time reverse transcription polymerase chain reaction
(rRT-PCR).
bILI: influenza-like illness.
cHospital ILI: at least 1 household member was recently hospitalized for an ILI.

Figure 6. Reported symptom correlations by survey period. SARS-CoV-2 : at least 1 household member tested positive for SARS-CoV-2 infection by
rRT-PCR. Hospital ILI: at least 1 household member was recently hospitalized for an ILI. ILI: influenza-like illness; rRT-PCR: real-time reverse
transcription polymerase chain reaction.

Discussion

Principle Findings
Using no external data and standard statistical independence
tests, we were able to rank and reject all alternative models
except the model GRel*,s that yielded the lowest bias for the

cumulative infection rate estimator , with a bias of less
than 4% on the full sample despite the high skew toward
younger ages relative to the target population. Without
randomization or representativeness, this study recovered
accurate estimates of a key epidemiological parameter using an
internet-based crowdsourced population in a dynamic public
health crisis using only a few hundred samples.
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Although we primarily intend this work to demonstrate the
broad utility of graphical models as an aid to epidemiologists,
it is worth noting how useful internet-based epidemiology could

prove in future epidemics by inspecting the estimates of 
for varying SARh (Figure 5). A major source of confusion in
the early COVID-19 pandemic was diverging estimates of the
cumulative infection rate. By July 27, 2020, there were 228,679
rRT-PCR cumulative confirmed infections in NYC for a
reported CIP of 2.65%. However, the actual CIP was estimated
to be 23.3% by seroprevalence studies in the July 27-August
13, 2020, period—8.8 times higher [41-44]. A similar difference
would imply that the reported CIP of 2.14% by May 8, 2020,
corresponded to an actual CIP of ~19%. Using the simple method

of estimating by SARh=0.38, it would yield intermediate
estimates implying upper bounds on the actual CIP of 2.5 and
5 times the reported cumulative infection rate CIP.

Limitations
The limitations of this approach are encoded directly in the set
of causal graphs and entail explicit conditions where statistical
tests will fail to reject incorrect models. For example, if age is
a poor instrumental variable for response status, then with finite
data, none of the models may be rejected by statistical tests. In
contrast, if age is strongly related to the outcome variable
household status Ch, but not response status, then all models
could be rejected, even if there was no selection bias on Ch.
More generally, if there is any relationship between a set of
variables, there will be a statistically significant correlation,
given sufficient data; therefore, any causal model regardless of
its utility will be rejected if statistical tests are applied naively.

These inherent limitations are why we emphasize structural
causal models as an aid and not a substitute for epidemiological
judgment. The utility of causal modeling is the formal
comparison and communication of alternative explanations of
the sampled data. For example, in this study, we chose to not
model information bias, instead focusing on detecting selection
bias. The choice to ignore information bias is explicit in the

presented causal graphs; none of them have a subgraph that
models an information bias mechanism, such as rRT-PCR test
constraints or inaccurate self-reporting. These causal models
were constructed with these assumptions for the context and
objectives of this study, and similar assumptions may not be
acceptable for a different context or objective. The key point is
that all these assumptions are made apparent on inspection of
the causal graphs.

Conclusion
The COVID-19 pandemic is an unprecedented event, pushing
the limits of the health care system worldwide. Reducing
transmission via nonpharmacological interventions has been
effective but requires near-real-time and accurate information
across all segments of society, information that has been difficult
to reliably ascertain. Given the vast divergence of cumulative
infection rate estimates across early studies [43] and the
consequences for undermining public trust, there is a clear use
case for internet-based public health surveillance to rapidly
estimate key epidemiological parameters. A major use of
internet-based surveys in the COVID-19 pandemic has been
estimating the rate of vaccine uptake. The Census Household
Pulse and Delphi-Facebook overestimated COVID-19 vaccine
uptake to May 2021 by 14% and 17%, respectively, in the
United States [44], while a much smaller Axios-Ipsos online
survey of a different design overestimated uptake by only 5%
in the United States. Internet-based surveys are an important
tool with several uses for managing a pandemic, but current
methodology is hampered by an inability to successfully detect
and mitigate estimate bias. However, looking beyond vaccine
uptake, near-term public health interventions, and advances in
treatments, COVID-19 continues to evolve along with human
societies. Surveillance systems and statistical models that
assume centralized reporting may not be as useful with the mass
adoption of at-home tests for COVID-19; alternative approaches,
such as the social network polling design used in this work,
may need to be deployed. For these reasons, we hope that these
recent advances in causal modeling theory are adopted by the
epidemiological community for current and future epidemics.
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Abbreviations
ACS: American Community Survey
DAG: directed acyclic graph
HIT: human intelligence task
ILI: influenza-like illness
MTurk: Mechanical Turk
NJ/NY: New Jersey and New York
NYC: New York City
NYC CBSA: New York City Combined Statistical Area contained within New Jersey and New York
rRT-PCR: real-time reverse transcription polymerase chain reaction
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