
Original Paper

Changes in Temporal Properties of Notifiable Infectious Disease
Epidemics in China During the COVID-19 Pandemic:
Population-Based Surveillance Study

Xixi Zhao1,2,3*, PhD; Meijia Li4*, MPhil; Naem Haihambo4, MSc; Jianhua Jin5, BMed; Yimeng Zeng6,7, MPhil; Jinyi

Qiu8, MPhil; Mingrou Guo9,10, MPhil; Yuyao Zhu11, PhD; Zhirui Li12, BSc; Jiaxin Liu13, BSc; Jiayi Teng14, BSc;

Sixiao Li15, MSc; Ya-nan Zhao16, MPhil; Yanxiang Cao1,2,3, PhD; Xuemei Wang1,2,3, MD; Yaqiong Li1,2,3, MD; Michel

Gao17, MPhil; Xiaoyang Feng18, MPhil; Chuanliang Han9,10, PhD
1The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
2Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
3Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
4Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium
5Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
6State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal Univeristy, Beijing, China
7IDG/McGovern Institute for Brain Research, Beijing Normal Univeristy, Beijing, China
8School of Artificial Intelligence, Beijing Normal University, Beijing, China
9Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
10Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key
Laboratory of Brain Connectome and Behavior, Chinese Academy of Sciences, Shenzhen, China
11College of Environmental Sciences and Engineering, Peking University, Beijing, China
12Baoding First Central Hospital, Baoding, China
13Department of Psychology, University of Washington, Seattle, Seattle, WA, United States
14School of Psychology, Philosophy and Language Science, University of Edinburgh, Edinburgh, United Kingdom
15School of Music, Faculty of Arts, University of Leeds, Leeds, United Kingdom
16Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
17WM Therapeutics Ltd, Beijing, China
18Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
*these authors contributed equally

Corresponding Author:
Chuanliang Han, PhD
Brain Cognition and Brain Disease Institute
Shenzhen Institute of Advanced Technology
Chinese Academy of Sciences
1068 Xueyuan Avenue
Shenzhen University Town, Nanshan District
Shenzhen, 518055
China
Phone: 86 18800129802
Email: hanchuanliang2014@163.com

Abstract

Background: COVID-19 was first reported in 2019, and the Chinese government immediately carried out stringent and effective
control measures in response to the epidemic.

Objective: Nonpharmaceutical interventions (NPIs) may have impacted incidences of other infectious diseases as well. Potential
explanations underlying this reduction, however, are not clear. Hence, in this study, we aim to study the influence of the COVID-19
prevention policies on other infectious diseases (mainly class B infectious diseases) in China.
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Methods: Time series data sets between 2017 and 2021 for 23 notifiable infectious diseases were extracted from public data
sets from the National Health Commission of the People’s Republic of China. Several indices (peak and trough amplitudes,
infection selectivity, preferred time to outbreak, oscillatory strength) of each infectious disease were calculated before and after
the COVID-19 outbreak.

Results: We found that the prevention and control policies for COVID-19 had a strong, significant reduction effect on outbreaks
of other infectious diseases. A clear event-related trough (ERT) was observed after the outbreak of COVID-19 under the strict
control policies, and its decreasing amplitude is related to the infection selectivity and preferred outbreak time of the disease
before COVID-19. We also calculated the oscillatory strength before and after the COVID-19 outbreak and found that it was
significantly stronger before the COVID-19 outbreak and does not correlate with the trough amplitude.

Conclusions: Our results directly demonstrate that prevention policies for COVID-19 have immediate additional benefits for
controlling most class B infectious diseases, and several factors (infection selectivity, preferred outbreak time) may have contributed
to the reduction in outbreaks. This study may guide the implementation of nonpharmaceutical interventions to control a wider
range of infectious diseases.

(JMIR Public Health Surveill 2022;8(6):e35343) doi: 10.2196/35343
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Introduction

Atypical pneumonia caused by a new coronavirus was first
reported in December 2019 [1-4] and was subsequently termed
“COVID-19” by the World Health Organization (WHO) on
February 12, 2020. Later, human-to-human transmission of
COVID-19 was confirmed, resulting in a pandemic outbreak
worldwide [5-13]. After the outbreak, the Chinese government
took immediate action to implement strict public health policies
[14], such as lockdown, quarantine measures, and social
distancing. Domestic and international travel was restricted,
mass gatherings were reduced, and public entertainment venues
and schools were closed. The government also asked people to
be more vigilant and take personal precautions, such as
sanitizing hands and wearing surgical masks. Under these
policies, the number of COVID-19 infections in China sharply
decreased, and this situation has lasted until recently [15-17].
In addition to the COVID-19 outbreak, other fatal infectious
diseases have also had outbreaks [18], which may have been
overlooked. In China, the national infectious disease surveillance
system has been recording outbreaks of other diseases [19].
Infectious diseases are divided into notifiable classes A, B, and
C. In this classification, class B notifiable diseases have the
potential to cause severe epidemic outbreaks, such as hepatitis
B virus (HBV) [20], scarlet fever [21], measles [22], and rabies
[23-25]. Notably, COVID-19 is classified as a class B disease.

During the COVID-19 pandemic, local and international
governments relied on nonpharmaceutical measures until
vaccines were available. Unlike vaccines or medicine, which
are restricted by supply and logistics [26], nonpharmaceutical
interventions (NPIs) could have a broader impact on multiple
infectious diseases. Take the influenza virus as an example.
Human beings have little immunity to it, which allows it to
spread rapidly from one person to another. In the absence of
effective vaccines to immunize people, NPIs are one of the best
strategies to control pandemics. Several studies have found that
policies to prevent COVID-19 and other NPIs could reduce the
number of infections of influenza [17,27-29], tuberculosis

[30,31], and some other diseases [32,33] to a large degree, while
the characteristics of an epidemic are not only limited to the
static number of the infected cases but also limited to the
temporal dynamics of the epidemic. The temporal features of
an infectious epidemic after NPIs is not precisely defined,
although common sense suggests that the number of cases may
decrease. The question whether under a consistent and rigorous
prevention policy, this decrease would rebound or only fall to
0 arises. New analysis indicators are required to define it clearly.
There are some characteristics of temporal dynamics, such as
the tuning curve of the infectious disease in a year [34-37] and
the spectrogram of the epidemic [38-42] analyzed by the Fourier
method. The tuning curve of monthly infected cases illustrates
the essential profile of each disease outbreak and gives a direct
picture of the monthly situation, but it lacks quantitative features
(eg, infection selectivity and preferred outbreak time) that were
highly summarized from the tuning curve and lack of further
analysis. Although these temporal indices have been mentioned
in previous studies, it remains unclear how they changed with
strict NPIs during the COVID-19 outbreak and to what extent
they contributed to the reduction in infectious cases under the
NPIs.

In the light of this, in this study, we investigated the impact of
NPIs on other class B infectious diseases. We extracted the time
series data for 23 class B notifiable infectious diseases between
2017 to 2021 from public data sets of the National Health
Commission of the People’s Republic of China [43]. During
the COVID-19 pandemic, the strict NPIs in China have always
been existing, which can be described by the stringency index
taken from the Oxford COVID-19 Government Response
Tracker [44]. We expected to find a significant trough of most
class B infectious diseases after the outbreak and subsequent
interventions for COVID-19, which we defined as the
event-related trough (ERT). The ERT can be used to investigate
the fluctuations in several infections that are time-locked to an
event without intervention. We then explored how infection
selectivity and the preferred month of the outbreak of the
infectious diseases may affect the ERT. Finally, we calculated
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the oscillatory strength of each infectious disease and compared
the power before and after the COVID-19 outbreak.

Methods

Data and Sources
Time series data available for the monthly reported and
confirmed cases of 23 class B notifiable infectious diseases in
China’s mainland, from April 2017 to September 2021, were
obtained from the National Health Commission of the People’s
Republic of China. The data set is open to the public around
the world and is reported by the Chinese Centre for Disease
Control and Prevention (CDC) each month. These 23 diseases
are HIV/AIDS, hepatitis (including hepatitis A virus, HAV;
HBV; hepatitis C virus, HCV; and hepatitis E virus, HEV),
measles, hemorrhagic fever, dengue and severe dengue, rabies,
Japanese encephalitis, anthrax, Shigella spp. or Entamoeba
histolytica, tuberculosis, typhoid and paratyphoid fever,
pertussis, neonatal tetanus, scarlet fever, brucellosis, gonorrhea,
Treponema pallidum, leptospirosis, schistosomiasis, and malaria.
The data sampling rate was 1 time point per month (12 time
points per year) from the monthly report of the National Health
Commission of the People’s Republic of China. We used 2
criteria to select these diseases. First, the maximum number of
infectious cases each month in recent years should be larger
than 10. Second, the time points should be continuously publicly
reported within the years of interest. We were mainly interested
in how other class B infectious diseases might be influenced by
policies related to COVID-19, considering that COVID-19 is
also classified as class B. We did not include class A diseases
due to their low incidences. Class C diseases, such as the flu,
were not included, because they are less fatal and controllable
and would not have the same impact as class B diseases.

Indicators of government response in China were taken from
the Oxford COVID-19 Government Response Tracker [44]. In
this work, we use the stringency index (all closure indicators,
such as lockdown policies and travel bans, and health system
policies that record public information campaigns and contact
tracing), which records the strictness of lockdown-style policies.
The index scores the level of government responses between 0
and 100. The higher the score is, the stricter the government
interventions were (Multimedia Appendix 1).

Ethical Considerations
For this study, we used public data from the National Health
Commission of the People’s Republic of China. Our study did
not involve any intervention on human participants. This study
was approved by the Ethics Committee of Beijing Anding
Hospital, Capital Medical University, China.

Trough and Peak Amplitude Before and After the
COVID-19 Outbreak
We defined a new concept named the ERT, which originates
from the event-related potential (ERP) in neuroscience [45].
The ERT describes the direct impact of specific events on
reducing the number of infectious diseases. This event could
be a pharmaceutical or nonpharmaceutical intervention to
prevent the spread of infectious disease. In this study, the
specific event is the strong prevention and control policies

implemented at the outbreak of the COVID-19 epidemic, which
are an NPI. The ERT is the lowest increase of an outbreak in
the period of 6 months after the outbreak of COVID-19. The
trough amplitude before COVID-19 is the lowest value of the
infection in the 3-year period before COVID-19 (Equation 1).
The peak amplitude (Equation 2) before and after the COVID-19
outbreak is the highest value of the infection before and after
COVID-19. We also calculated the trough ratio index as the
ratio of troughs before and after the outbreak of COVID-19
(Equation 3).

Trough amplitude = arg min(infected cases after
outbreak of the epidemic) (1)

Peak amplitude = arg max(infected cases after
outbreak of the epidemic) (2)

Trough ratio index = arg min(infected cases before
outbreak of the epidemic)/arg min(infected cases after
outbreak of the epidemic) (3)

Tuning Curves for Monthly Infected Cases Before and
After the COVID-19 Outbreak
The tuning curve of the monthly infected cases illustrates the
essential profile of the outbreak of each disease in China, which
gives a direct picture of the situation each month based on the
historical data. We assumed that all infectious diseases included
in this study have a similar trend each year for the years of
observation (Multimedia Appendix 2), similar to previous
studies [18]. Thus, we took the monthly average number of
infected cases and computed them into a tuning curve (Equation
4). Each infectious disease in this study has a tuning curve
before and after the COVID-19 outbreak, and the oscillatory
pattern within a year is clear.

Tuning curvemonth = sum(infected casesmonth)/N, (4)

where N is the number of years.

Preferred Month and Selectivity of the Epidemic
Outbreak Before and After COVID-19
Two indices of the disease were defined: preferred month and
infection selectivity (Equation 5), which are important indicators
of the infectious property of the epidemics caused by a disease
in a year. The preferred month index is defined as the month in
a year that has the most cases of infections. The infection
selectivity index is defined as (1 – ratio of the minimum and
the maximum number of infected cases in a year). If the
selectivity index is closer to 1, it means outbreaks only occur
in specific months. If the selectivity index is closer to 0, it means
that outbreaks occur throughout the year.

Selectivity index = 1 – [min(mean infected cases in
a year)/max(mean infected cases in a year)] (5)

Power Spectrum Analysis
The oscillatory property of an infectious disease is an important
indicator of the regular fluctuations and recurrence of epidemics.
To better quantify these fluctuations, we used spectrum analysis.
Similar methods have been used in classic and modern studies
in the field of infectious diseases [38-42] and some other
biological research [46,47]. Spectrum analysis is a technique
for decomposing complex signals into simpler signals based on
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Fourier transform (Equation 6). Many biological signals can be
expressed as the sum of various simple signals of different
frequencies and produce information about a signal at different
frequencies (eg, amplitude, power, intensity, phase).

The power spectral density (PSD; Equation 7) for each infectious
disease before and after the outbreak of COVID-19 was
computed using the multitaper method with the Chronux toolbox
[48], an open source, data analysis toolbox [49]. Power spectra
of the time series data (infected cases of each disease) were
calculated in 2 time periods (2017-2020 and 2020-2021).

where WT(t) is 1 within the arbitrary period and 0 elsewhere,
and T is centered about some arbitrary time t=t0.

Correlation Analysis
We performed Pearson correlation to measure the relationship
of several indices (ERT, selectivity, oscillatory strength, and
mean infected number) before and after the COVID-19 outbreak.
Pearson correlation was also performed in the correlation
analysis between trough ratio and selectivity, between the
change in power and change in infected numbers, and between
the change in power and change in trough amplitude. Spearman

correlation was performed to measure the relationship between
the trough amplitude and the peak amplitude before and after
the COVID-19 outbreak. The significance (P value) of the
correlation was corrected with Bonferroni correction.

Statistical Analysis
We performed an independent-sample t test to compare the
difference between several indices (trough amplitude, peak
amplitude) before and after the COVID-19 outbreak and test
the difference in the trough ratio between diseases with a
different preferred time of outbreak. The pairwise t test was
performed to compare the oscillatory power and the average
infected number before and after the COVID-19 outbreak.

Results

Monthly Data
This study analyzed monthly data from April 2017 to September
2021 of confirmed cases of 23 class B notifiable infectious
diseases in China’s mainland. After the COVID-19 outbreak,
most class B infectious diseases had an obvious sudden trough,
which we defined as the ERT (see Figure 1A for 3 typical
examples). The stringency index of China showed that during
the COVID-19 pandemic, the strict NPIs in China have always
been existing (Multimedia Appendix 1), which allows us to
analyze the long-term effect after the COVID-19 outbreak.

Figure 1. Infectious disease before and after the COVID-19 outbreak (A) Monthly infected cases from 2017 to 2021 of three examples (HCV,
Tuberculosis, and Gonorrhea). The curve after the vertical dotted line shows specifically the infected cases after the COVID-19 outbreak. (B) The
normalized mean number of infected cases before and after the COVID-19 outbreak. (C) Trough amplitude (left) and peak amplitude (right) before and
after the COVID-19 outbreak (** is for P<.01). (D) The relationship between the normalized trough (left) and peak (right) before and after the COVID-19
outbreak.
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Significant Event-Related Trough Occurred After the
Strict Control Policy for the COVID-19 Outbreak in
China
We showed several examples of diseases that had an obvious
ERT after the COVID-19 outbreak (HCV, tuberculosis, and
gonorrhea); see Figure 1A, and see Multimedia Appendix 3 for
all diseases. To compare the time series of all diseases on a
notionally common scale, we normalized the time series of the
number of infected people by subtracting the mean number of
infections before COVID-19 and dividing it by its SD. Hence,
the mean number of infections before COVID-19 was 0 for all
the diseases (Figure 1B). The pattern shows an obvious and
sudden decrease in confirmed cases after the COVID-19
outbreak (see Figure 1B). To investigate whether the peak and
trough amplitudes may change due to the outbreak, we compared
the differences between peak and trough amplitudes before and
after the event (policy in response to COVID-19). Results
showed that the amplitude of both peak (P<.01) and trough
(P<.01) significantly decreased, which indicated that the
outbreak strongly moderated the oscillation amplitude (see
Figure 1C). We then calculated the correlation between the
normalized trough before and after the outbreak event, and we
found that the trough after the outbreak was significantly
correlated (r=0.88, P<.001) to the trough before but the peak
was not correlated (r=–0.15, P=.48; see Figure 1D).

Infection Selectivity and Preferred Outbreak Time
Strongly Related to the Trough Ratio Before and After
the COVID-19 Outbreak
The ERT might be affected by the basic properties (infection
selectivity and preferred outbreak time) of infectious disease
outbreaks. To further clarify potential factors that would cause
an ERT, we determined the property of oscillations for infectious
diseases in a year by defining 2 indicators: infection selectivity
and preferred outbreak time of the infectious disease. We
selected 3 infectious diseases that have different selectivity as
examples (Figure 2A,B; see Multimedia Appendix 4 for all
diseases). The infection selectivity index is defined as (1 – ratio
of the minimum and the maximum number of infected cases in
a year). If the selectivity index is closer to 1, then the shape of
the tuning curve is sharper (eg, Japanese encephalitis), and vice
versa (eg, HEV). The preferred month index is defined as the
month in a year that has the most cases of infections. Results
showed that there was a significant increase in infection
selectivity after the outbreak of COVID-19, and infection
selectivity before and after the outbreak was positively
correlated (with Bonferroni correction; Figure 2C). When we
compared the selectivity before the outbreak and the trough
ratio, we found that the stronger the infection selectivity, the
smaller the trough ratio (Figure 2D). We also conducted a partial
correlation analysis between infection selectivity and trough
ratio, controlling for the preferred time of outbreak, which was
significant (r=–0.58, P=.004). The association between infection
selectivity and trough ratio confounded by seasons was,
however, weak.
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Figure 2. Relationship between selectivity and trough ratio before and after the COVID-19 outbreak (A) Monthly infected cases from 2017 to 2021
of three examples (Japanese encephalitis, Scarlet fever, and HEV). The curve after the vertical dotted line shows specifically the infected cases after
the COVID-19 outbreak. (B) The number of infected cases every month in a year calculated before (light-colored curve) and after the COVID-19
outbreak (dark-colored curve) corresponding to the time-series data of plot A. (C) The scatter plot of the selectivity before and after the COVID-19
outbreak. (D) The relationship between the selectivity (before) and trough ratio (post/pre).

Relationship Between an Infection and Its Oscillatory
Power Before and After the COVID-19 Outbreak
We quantified the oscillatory strength of outbreaks using power
spectrum analysis (Figures 3A and 3B; see Multimedia
Appendix 5 for all diseases). We then explored the relationship
between infected cases and their corresponding strength of
oscillatory power before and after the COVID-19 outbreak.
Results indicated that the oscillatory strength (r=0.83, P<.001)
and mean infected cases (r=0.95, P<.001) before the COVID-19
outbreak were significantly positively correlated to the indices
after the COVID-19 outbreak (Figure 3C), showing that the
stronger the oscillatory power was before the outbreak, the
stronger it was after the outbreak. The same was true for mean
infected cases.

To determine the differences between oscillatory power before
and after the COVID-19 outbreak and between mean infected

cases before and after the COVID-19 outbreak, we also split
the data and compared the indices before and after the event.
Consistent with our hypothesis, results showed both decreases
in oscillatory power and mean infected cases after the
COVID-19 outbreak (Figure 3D). We further examined the
relationship between the change in power between the change
in infected numbers and trough amplitude. Results showed that
the change in power and the change in infected numbers was
significantly correlated (r=0.92, P<.001). The more the change
in oscillatory power, the more changes in the number of
confirmed cases (Figure 3E). However, the change in power
was not related to the change in trough amplitude (r=–0.37,
P=.08 with Bonferroni correction; Figure 3F). In sum, the
COVID-19 outbreak reduced the outbreaks of class B notifiable
infectious diseases, as indicated by oscillatory power and mean
infected cases.
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Figure 3. Relationship between the infection and its oscillatory power before and after COVID outbreak (A) Infected cases from 2017 to 2021 of three
examples (Rabies, Dysentery, and Brucellosis). The curve after the vertical dotted line represents specifically the infected cases after the COVID-19
outbreak. (B) The power spectrum calculated before (light-colored curve) and after the COVID-19 outbreak (dark-colored curve) corresponding to the
time-series data of plot A. (C) The scatter plot of the power (left) and mean infected number (right) before and after the COVID-19 outbreak. (D) The
histogram of the oscillatory power (left) and averaged infected cases (right) before and after the COVID-19 outbreak. (E) The scatter plot of the change
of power and change of infected number. (F) The scatter plot of the change of power and change of trough amplitude.

Discussion

Principal Findings
In this study, we defined several novel concepts and robust
metrics (ERT, selectivity of infection, preferred time to outbreak,
oscillatory strength of the infectious disease) to quantify and
capture the temporal characteristics of infectious disease
outbreaks and event-related fluctuations in China. Our results
showed that a clear ERT occurred for most class B infectious

diseases after the COVID-19 outbreak under the strict public
health policy. We further found that the ERT was related to the
nature of diseases, such as their infection selectivity and
preferred outbreak time. However, their oscillatory strength was
somehow unrelated. We also compared these indices of the
infectious diseases before and after the outbreak of COVID-19.
The impact of the COVID-19 outbreak influenced the infectious
diseases by reducing the trough amplitude, mean infected cases,
and oscillatory strength but increasing infectious selectivity (see
Figure 4).

Figure 4. A summary of the main finding. As illustrated in the four plots, the impact of the COVID-outbreak influenced the infectious diseases in four
aspects: decreased the trough amplitude, the mean infected cases, and the oscillatory strength, but increased the seasonal selectivity.

Comparison With Prior Work
To the best of our knowledge, this is the first study to
systematically investigate the influence of the COVID-19
outbreak on the temporal characteristics of other class B
infectious diseases in China, including both respiratory

infectious diseases and other types, such as those transmitted
through sex, body fluids, the digestive tract, contact, and
mosquitos. The key contribution of this study is that several
new concepts were purported, such as the ERT, selectivity of
infectious diseases, the preferred outbreak time, and the power
strength of infectious oscillation. Some previous studies have
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investigated basic properties of a few infectious diseases in
China [18,22-25,50-52] and countries worldwide [39,40,53-55],
and NPIs to mitigate COVID-19 could have affected the
transmission dynamics of influenza and other respiratory
diseases [17,27-29,56,57]. However, previous research did not
quantify the reduction using a specific temporal index. We first
defined the ERT in the field of infectious diseases to capture
the immediate influence of the strong interventions related to
the public health events, such as the prevention policy on disease
outbreaks. The ERT could measure the temporal feature when
studying the effect of some specific interventions in the future,
which increases 1 dimension (temporal dynamics) compared
with a simple reduction number.

Another novel finding of this study is that we also built up a
connection between the ERT and some other important
indicators (selective property and oscillatory property), which
were neglected in prior works. In this study, we found that the
ERT is related to the selectivity (Figure 2D) of an infectious
disease, which gives a new understanding of how an epidemic
could be more easily controlled (when a disease has high
selectivity). In the future, infectious selectivity would play a
more important role than before, especially when combined
with the tuning curve of a disease. It would depict new pictures
of the basic property of each disease and give more practical
guidance on the prevention and control of epidemics. The
oscillatory properties of infectious diseases were also analyzed
in some previous studies [18,22-25,38-40,53-55,58-60], which
could be driven by both natural [11,61,62] and human [63-68]
factors. However, prior studies did not investigate the influence
of COVID-19 measures or other NPIs to control epidemics on
the oscillatory strength of infectious diseases systematically.
Our results indicate that the oscillatory strength significantly
decreased after the COVID-19 outbreak, which was
accompanied by a decrease in the mean infections. This finding

supports the conceptual hybrid model [18]. We also found that
the oscillatory strength before the COVID-19 outbreak did not
correlate to the change in trough, which further suggests that
the ERT is not related to some seasonal factors but more to the
measurement of the COVID-19 outbreak. The oscillatory
phenomenon of population-based epidemics would be the new
impetus for the study of public health. In the future, this index
could be connected to more natural and human factors, which
would contribute to constructing a more generic stimulated
model to explain history and predict the future situation.

Limitations
One limitation of our study is that the data we used are from
the entire mainland China but are not specific to different
provinces or cities, which may lack spatial resolution. Another
limitation of our study is that the results were based on a
macroscopic rather than a microscopic view of most class B
infectious diseases. Further studies are needed to clarify the
deeper underlying mechanisms of the COVID-19 pandemic.
With these findings, we could better provide the government
with recommendations on the optimal timing to intervene before
achieving herd immunity, thereby helping to design
fit-for-purpose policies.

Conclusion
In sum, the study developed a new and potentially universal
approach to revealing the dynamics of infectious diseases. The
transmissibility and severity of infectious diseases fluctuate
regularly. The introduction of the concept of the ERT in
infectious diseases can better capture the immediate influence
of interventions related to previous public health events. Our
results confirmed that early commencement of strong public
health interventions has additional benefits on other infectious
diseases.
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Stringency index in China after January 2020 (data from the Oxford COVID-19 Government Response Tracker).
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Multimedia Appendix 2
Annual average of all infected cases diseases. HIV: Human Immunodeficiency Virus; HAV: hepatitis A virus; HBV: hepatitis B
virus; HCV: hepatitis C virus; HEV: hepatitis E virus.
[PNG File , 448 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Monthly cases of infection for all diseases. HIV: Human Immunodeficiency Virus; HAV: hepatitis A virus; HBV: hepatitis B
virus; HCV: hepatitis C virus; HEV: hepatitis E virus.
[PNG File , 369 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Annual average of all infected cases of diseases before (gray) and after (black) the COVID-19 outbreak. HIV: Human
Immunodeficiency Virus; HAV: hepatitis A virus; HBV: hepatitis B virus; HCV: hepatitis C virus; HEV: hepatitis E virus.
[PNG File , 383 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Power spectrum of all infected cases before (gray) and after (black) the COVID-19 outbreak. HIV: Human Immunodeficiency
Virus; HAV: hepatitis A virus; HBV: hepatitis B virus; HCV: hepatitis C virus; HEV: hepatitis E virus.
[PNG File , 378 KB-Multimedia Appendix 5]
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