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Abstract

Background: The Surveillance Outbreak Response Management and Analysis System (SORMAS) contains a management
modul e to support countriesin their epidemic response. It consists of the documentation, linkage, and follow-up of cases, contacts,
and events. To allow SORMAS users to visualize data, compute essential surveillance indicators, and estimate epidemiological
parameters from such network datain real-time, we developed the SORMAS Statistics (SORMAS-Stats) application.

Objective: This study aims to describe the essential visualizations, surveillance indicators, and epidemiological parameters
implemented in the SORMAS-Stats application and illustrate the application of SORMAS-Stats in response to the COVID-19
outbreak.

Methods: Based on findings from a rapid review and SORMAS user requests, we included the following visualization and
estimation of parametersin SORMAS-Stats. transmission network diagram, serial interval (Sl), time-varying reproduction number
R(t), dispersion parameter k, and additional surveillance indicators presented in graphs and tables. We estimated Sl by fitting
lognormal, gamma, and Weibull distributions to the observed distribution of the number of days between symptom onset dates
of infector-infectee pairs. We estimated k by fitting a negative binomia distribution to the observed number of infectees per
infector. Furthermore, we applied the Markov Chain Monte Carlo approach and estimated R(t) using the incidence data and the
observed Sl computed from the transmission network data.

Results: Using COVID-19 contact-tracing data of confirmed cases reported between July 31 and October 29, 2021, in the
Bourgogne-Franche-Comté region of France, we constructed anetwork diagram containing 63,570 nodes. The network comprises
1.75% (1115/63,570) events, 19.59% (12,452/63,570) case persons, and 78.66% (50,003/63,570) exposed persons, including
1238 infector-infectee pairs and 3860 transmission chains with 24.69% (953/3860) having events as the index infector. The
distribution with the best fit to the observed Sl data was alognormal distribution with a mean of 4.30 (95% CI 4.09-4.51) days.
We estimated a dispersion parameter k of 21.11 (95% Cl 7.57-34.66) and an effective reproduction number R of 0.9 (95% CI
0.58-0.60). The weekly estimated R(t) values ranged from 0.80 to 1.61.

Conclusions: We provide an application for real-time estimation of epidemiological parameters, which isessential for informing
outbresk response strategies. The estimates are commensurate with findings from previous studies. The SORMA S-Stats application
could greatly assist public health authoritiesin the regions using SORMAS or similar tools by providing extensive visualizations
and computation of surveillance indicators.
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Introduction

Background

During the course of 2020, there was a substantial increase in
the number and use of eHealth applications, mainly in response
to the COVID-19 outbreak [1-3]. These applications are being
used in different areas of digital health intervention, such as
disease surveillance, vaccine delivery, hospital management,
laboratory management, symptom journals, and education [4].

The Surveillance Outbreak Response Management and Analysis
System (SORMAYS) is an open-source digital tool that supports
disease control and outbreak management procedures [5-8].
The objective of SORMAS is to ensure the availability of
real-time surveillance data for priority diseases at all
administrative levels. SORMAS supports task management,
complies with data protection and data security standards, and
enhances interoperability with other applications.

Essential epidemiological parameters governing COVID-19
transmissions such as seria interval (Sl), instantaneous
reproduction number R(t), effective reproduction number R,
and individua-level variation in transmission are
context-specific, and thus often difficult to estimate precisely
with publicly available data. Studies have been conducted to
estimate these epidemiological parameters during the early
phase of the outbreak, but most focused on coarse, aggregated,
and publicly reported data sources that likely mask local
specificities or are biased toward more severe cases[9-11]. The
lack of easy access to outbreak data containing more
epidemiological and clinical information has been reported as
a limiting factor in improving the performance of
epidemiological models [12]. Since then, most public health
stakeholders used eHealth applications to document rich and
large contact-tracing data in response to the COVID-19
outbreak. Nonetheless, such informative surveillance data are
often not hosted on a centralized hub but scattered on different
databases in the corresponding countries. In addition, the
estimation of epidemiological parametersisfrequently not done
in real time and does not account for spatia and temporal
variation, and thus, fails to provide comprehensive and timely
infformation on outbreak evolution to best inform
decision-making [13]. Further, public health stakeholdersfaced
challengesin generating reproducible analysesfor their routine
situation reports because data are often manually exported from
eHealth applications and analyzed with stand-alone statistical
applications such as R, SAS, SPSS or STATA.

To addressthese challenges, we envisaged an approach whereby
standardized statistical analysis methods are brought to where
the rich and detailed surveillance data are hosted. To assist
stakeholders (SORMAS users) with areactive anaytic platform
that leverages the rich and detailed data documented in
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SORMAS, we developed the SORMAS Statistics
(SORMAS-Stats) application. SORMAS-Statsisauser-friendly
R Shiny web application to estimate epidemiological parameters,
compute country or region-specific indicators, and provide
visualizationsin real time.

Objective

This study aims to describe the essential visualizations,
epidemiological parameters, and surveillance indicators
implemented in the SORMA S-Stats application. Weillustrated
its application in response to the COVID-19 outbreak using
surveillance data captured with SORMAS in the
Bourgogne-Franche-Comté region of France.

Methods

Design Process of SORMAS-Stats

We gathered the requirements essential to supporting outbreak
response through SORMA S user requests (from Nigeria, Ghana,
France, and Germany), which thus guided the design of
SORMAS-Stats. SORMAS users are public health personnel
of a country, such as field investigators and epidemiologists.
We identified user requests through GitHub issues created by
SORMAS users, the SORMAS user support platform, and the
minutes of sprint planning meetings. The sprint planning
meetings took place every 3 weeks, matching the software
release cycle of SORMAS. In parallel, we conducted a rapid
review of epidemiological publications and situation reports.
Subsequently, we combined the essential requirements obtained
from the review and the users requests, implemented them,
and released a beta version of the SORMA S-Stats application.
Further, we conducted afield test of the betaversion, got users
feedback, implemented them, and deployed a stable version.
The time from requirement gathering to deployment was 12
months (July 2020 to June 2021).

Overview of SORMAS-Stats

SORMAS-Statsisaweb application that can beinstalled locally
and uses advanced visualization and statistical analysis methods
toanalyzesurveillance datain real time. SORMAS-Stats assists
public health officials in managing outbreaks and permits the
execution of reproducible routine epidemiological analysis. The
workflow of SORMAS-Stats consists of the preprocessing phase
and the analytics phase.

In the preprocessing phase, SORMAS-Stats imports
pseudonymized data from an external database. The default
integration of SORMAS-Statsiswith the SORMA S PostgreSQL
database. Only the records and associated attributes reported
within the time interval specified in the SORMAS-Stats
configuration file are extracted from the externa database.
Further data processing steps are the deletion of error records,
deduplication, categorization, and the computation of derived
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variables. In the analytics phase, SORMAS-Stats analyzes the
preprocessed data. We classified the analytics phase into two
types: (1) data visualization and the computation of summary
statistics and (2) the estimation of essential disease-specific
epidemiological parameters through statistical modeling.

Epidemiological Data

The SORMAS-Stats application analyzes the entity-based
surveillance data routinely collected by public health workers.
Generally, surveillance datainclude the following entities. case
person (a person infected with a disease), contact person (a
noninfected person exposed to a case person), and event (any
exposure or gathering that poses a threat to human health or
may lead to the spread of diseases). The collection of all
probable transmission chains (pairs of entities. case
person—contact person or event—persons exposed to an event
[event participants], that can result in disease transmission)
formsthe network data of the disease. During contact follow-up,
acontact person or event participant may become symptomatic
and meet the case definition of the disease in question, thus
being converted or reclassified as a case. In such instances, 2
types of infector (ie, index case) and infectee (ie, secondary
case) pairs are formed (infector-infectee pairs): first, between
the case person and contact person, and second, between the
event and the event participant.

The data used to illustrate the application of SORMAS-Stats
consisted of confirmed cases of COVID-19 and their contacts
documented using SORMASS between July 31 and October 29,
2021, in the Bourgogne-Franche-Comté region of France.

Estimation of Epidemiological Parameters and
Surveillance Indicators

Serial Interval

We computed the observed Sl as the difference in the number
of days between symptom onsets of infector-infectee pairs. We
excluded infector-infectee pairs for which the infector was an
event or if one of a pair had missing data for symptom onset
date. However, we only included symptomatic transmissions
with available data for the date of symptom onset for both
infector and infectee in a pair, as transmission data are often
generated during contact-tracing under symptomatic settings
[14]. We estimated the SI distribution by fitting lognormal,
gamma, Weibull, and normal distributions to the observed Sl
data. The choice of these distributions was based on previous
studies [15,16]. For all 4 types of distributions, we excluded
observed S| greater than 30 days. For lognormal, gamma, and
Weibull distributions, which do not take negative values, we
dropped negative values before fitting the distributions. For
each fitted distribution, we computed the goodness-of -fit criteria
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(Akaike information criterion and Bayesian information
criterion) and goodness-of-fit statistics (Kolmogorov-Smirnov,
Cramer-von Mises, and Anderson-Darling) [17]. We chose the
distribution with the best fit by several approaches: the smallest
Akaike information criterion, a plot of the density function of
the fitted distribution with the histogram of observed data, and
a plot of the empirical and theoretical cumulative distribution
functions of each fitted model. We calculated the 95% CI of
the mean Sl using the formulap + 1.96 x (o / Vn), where L is
the estimated sample mean, o the estimated sample SD, and n
the sample size. The analysis was performed using the R
statistical software (R Foundation for Statistical Computing)
package fitdistrplus [17].

I nstantaneous Reproduction Number

We estimated R(t)—on a weekly basis—using the approach
proposed by Cori et a [18,19]. This method mainly requires
the incidence and contact-tracing data, which are the types of
data captured by SORMAS. We implemented 2 approaches to
specify the Sl distribution used to estimate R(t). First, a
parametric distribution for S with values for the mean and SD,
and second, a parametric distribution for Sl and the observed
data of infector-infectee pairs. For the second approach, we
estimated the Sl distribution by applying the Markov Chain
Monte Carlo method. The possible choices of the parametric
distribution for SI were gamma, Weibull, and lognormal. We
computed the summary statistics of the posterior mean and
plotted the posterior mean and 95% credible interval for R(t).
The analysis was performed using the R statistical software
package EpiEstim [19].

Variation in Transmission Heterogeneity and Effective
Reproduction Number

Using the datafor infector-infectee pairs of cases, we computed
the observed offspring distribution as the number of infectees
per infector. We applied the approach described by LIoyd-Smith
et a [20] and fitted a negative binomial distribution to the
observed offspring distribution. We estimated the effective
reproduction number R and the variation in transmission
heterogeneity as the mean and dispersion parameter k of the
negative binomial distribution, respectively [20]. In addition,
we computed the median and 95% percentile Cl of both
parameters using bootstrap. We performed the analysis using
the R statistical software package fitdistrplus [17].

Visualizations and Surveillance | ndicators

We computed 6 surveillanceindicatorsthat may beinformative
in managing disease outbreaks using transmission network data.
Table 1 presentsthe definition of visualizations and surveillance
indicators implemented in the SORMA S-Stats application.
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Table 1. Description and application of epidemiological parameters, surveillance indicators, and visualizationsin SORMAS-Stats application.

Name of output or indicator

Description

Applicationsin disease surveillance

Epidemiological parameters
Serial interval (SI)

I nstantaneous reproduction
number R(t)

Effective reproduction num-
ber (R)

Dispersion parameter (k)

Surveillance indicators
Proportion of exposed persons
who became cases

Proportion of index infectors

Variance-to-mean ratio
(VMR)

Edge density

Number of individual trans-
mission chains

Visualizations
Network diagram

Time series plots

Tables

Charts

Maps

The difference in the number of days between
symptom onsets of infector-infectee pairs (see
Methods).

The average number of infectees per infector at a
particular timet (see Methods).

The average number of infectees per infector (see
Methods).

A measure of how the number of infectees per infec-
tor (offspring distribution) is distributed around the
mean value (see Methods).

The proportion of exposed persons—among all ex-
posed persons—that converted to cases by exposure
types.

The proportion of index infectorsamong all infector
nodes (infector person, infectee person, or event).

The variance divided by the mean of the observed
offspring distribution [21].

The ratio of the number of edges (links between 2
nodes) and the maximum number of possible edges
[22]. It represents how connected the nodes of the
network diagram are to each other.

Thetotal number of transmission chains or index in-
fector nodes in the network diagram.

A directed graph of all disease transmission chains
consisting of the following types of nodes: case per-
sons, contact persons, events, and event participants.

A bar graph or line plot of entity counts over time
(day, week, or month).

Tables of entity count, proportions, or incidence
proportions by administrative area (regions, districts,
community).

Pie charts and bar graphs of entity counts or propor-
tions by entity attributes (eg, age and sex).

Spatial-temporal display of entity counts, proportion,
and incidence proportion on amap by administrative
area (regions, districts, community).

To distinguish disease variants, design follow-up and
guarantine duration, and determine time window for effec-
tive intervention strategies.

To assess the impact of intervention measures.
R(t)>1signify anincreaseininfectiousnessat timet, R(t)<1
signify adecrease in infectiousness [18].

Similar to R(t).

To assess the evidence of superspreading events or forma-
tion of clusters. This can help to devise relevant control
measures. Smaller values of k indicate higher levels of
dispersion, thus suggesting evidence of superspreading.

To devise relevant control measures similar to the disper-
sion parameter k. To assess the quality of contact tracing
and better allocate resources.

To determine the quality of contact-tracing. A smaller
proportion indicates a greater coverage of identified link-
ages between infectors and infectees.

Similar to k. VMR>1 indicates higher levels of dispersion
and thus signaling evidence of superspreading.

To assesstheimpact of control measureson overall societal
behavior. Higher values may signify higher social interac-
tions.

Similar to proportion of index infectors.

To prioritize investigation and follow-up of events with
known confirmed cases.

To gauge the efficacy of control measuresin place and the
need to implement new ones.

To target intervention measures to specific areas of the
country such as hotspots.

To protect vulnerable groups.

Similar to tables.

Architecture of SORMAS and SORMAS-Stats

The SORMAS application was developed on the VAADIN
framework, JAVA EE, Payaraserver, and PostgreSQL database.
SORMAS consists of 2 components. the mobile app and the
web application. The mobile app communi cates with the server
viaa REST-API and the VAADIN web client application. The
SORMAS-Stats application analyzes the surveillance data
documented in the PostgreSQL database of SORMAS. We
developed SORMAS-Stats based on the R Shiny framework
[23]. To secure the server hosting the application, we used an
architecture with the following configuration: https-portal or
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secure proxy, 2-factor authentication with Keycloak, and the
default authentication of SORMAS-Stats (Figure 1). The default
authentication of SORMAS-Stats used the shinyauthr R package
authentication module to hash the user password [24,25].
SORMAS-Stats can be executed as adefault R Shiny application
or a Docker application. We deployed SORMAS, SORMAS
PostgreSQL, and SORMAS-Stats applications as separate
Docker containers and managed them with one Docker-compose
file. Thetest version of SORMAS-Stats based on demonstration
data is available online [26]. The code and description of
deployment are hosted on GitHub [27].
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Figure 1. Server setup for the SORMAS-Stats application. SORMAS: Surveillance Outbreak Response Management and Analysis System.
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Ethical Considerations

The Agence Régional e de Santé de Bourgogne Franche-Comté,
France, as an administrative public health institution, granted
permission for using the anonymized COVD-19 outbreak data
in this study, under article 11 of Law No. 2020-546 of May 11,
2020. Under this law, the secondary data used in this study did
not require individual informed consent.

Results

Contents of the SORMAS-Stats User | nterface

The SORMAS-Stats application has multiple dashboards with
filters, permitting users to execute analysis and download the
output. Table 1 depictsthe contents of the SORMAS-Stats user
interface and their applications in disease surveillance or
outbreak management. The contents of the interface are
visualizations, epidemiological parameters, and surveillance
indicators.
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RenderX

external database

Description of the Epidemiological Data Used to
[llustrate SORMAS-Stats

Weused SORMAS-Statsto estimate epidemiol ogical parameters
and surveillanceindicators by analyzing the contact-tracing data
documented in SORMAS between July 31 and October 29,
2021, inthe Bourgogne-Franche-Comté region of France. Figure
2 presents a network diagram constructed from the
contact-tracing data consisting of 63,570 unique nodes,
comprising 1.75% (n=1115) events, 19.59% (n=12,452) case
persons, and 78.66% (n=50,003) exposed persons. Of the 50,003
exposed persons, 6390 (12.78%) subsequently converted to
cases. The network diagram consisted of 3860 transmission
chains, with each chain comprising a minimum of 1 exposed
person and a source infector node (case person or event). The
length of the longest directed chain was 4 generations of
infection. The average number of exposed persons per node
(node degree) was 1.73 (IQR 1-228), whereas the
variance-to-mean ratio was 4.65.
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Figure 2. Screenshot of SORMA S-Stats showing the COVID-19 transmission network diagram and surveillance indicators for 63,570 entities reported
between July 31 and October 29, 2021, in the Bourgogne-Franche-Comté region of France. The diagram comprises 1115 events (blue gear node), 12,452
case persons (nongreen person node), 50,003 exposed persons (green person node), and 54,929 exposures (directed arrow from infector node).
SORMAS-Stats: Surveillance Outbreak Response Management and Analysis System Statistical application.
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After subsetting the network diagram by considering chains
with resulting cases only, 10,250 unique nodes remained,
comprising 9.30% (n=953) events and 90.70% (n=9297) case
persons. Of the 9297 case persons, 68.73% (n=6390) were
infectees. There were 3860 transmission chains, with 24.69%
(n=953) having an event astheindex infector. The average node
degreewas 1.36 (IQR 1-36), whereasthe variance-to-mean ratio
was 1.05. The edge density of the compl ete or reduced network
diagram considering chainswith only resulting caseswas <0.01.

Considering infector-infectee pairs consisting of person entities
only (event nodes excluded) resulted in 1238 infector-infectee
pairs, of which 31.26% (n=387) had avail able datafor symptom
onset date. Of the 387 pairs with available data for symptom
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onset date, 20.41% (n=79) were pairs of asymptomatic
transmission for which the onset date of the infectee preceded
or was on the same date as that of the infector. After excluding
negative Sls, the mean of the observed S| was 3.96 (IQR 0-27)
days. The distribution with the best fit to the observed Sl data
was the lognormal distribution with a mean of 4.30 (95% ClI
4.09-4.51) days (Figure 3). The mean of the observed offspring
distribution was 1.36 (IQR 1-36). By fitting a negative binomial
distribution to the observed offspring distribution, we estimated
a dispersion parameter k of 21.11 (95% Cl 7.57-34.66) and a
reproduction number R of 0.9 (95% CI 0.58-0.60). Using the
observed transmission data with a lognormal distribution for
Sl, the estimate of the average weekly posterior mean for R(t)
was 0.98 (IQR 0.80-1.61) (Figure 4). The estimated range of
R(t) was congruent with the values obtained when plugging in
values for SI mean and SD obtained from the literature (5.19
and 4.23 days, respectively) [9].
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Figure 3. Screenshot of SORMAS-Stats showing the COVID-19 seria interval distribution for 1238 infector-infectee pairs reported between July 31
and October 29, 2021, in the Bourgogne-Franche-Comté region of France. AIC: Akaike information criterion; BIC: Bayesian information criterion;
SORMAS-Stats: Surveillance Outbreak Response Management and Analysis System Statistical application.
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Figure 4. Screenshot of SORMAS-Stats showing an estimate of COVID-19 time-dependent reproduction number (line) with 95% credible interval
(grey band) for 12,452 case persons reported between July 31 and October 29, 2021, in the Bourgogne-Franche-Comté region of France. SORMAS-Stats:
Surveillance Outbreak Response Management and Analysis System Statistical application.
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analyzing the contact-tracing data for COVID-19 captured
between July 31 and October 29, 2021, in the
Bourgogne-Franche-Comté region of France. The estimated
mean Sl was 4.30 days; this was commensurate with findings
from previous studies [9,11]. The estimate for k was 21.11,
whereasthe variance-to-mean ratio of the offspring distribution
was >1 (1.05), signifying a probable clustering of infections
compatible with the observation of superspreading events.
However, the estimate was not of the same magnitude as
findings from 2 previous studies that used contact-tracing data
from other countries at the early phase of the pandemic and
reported k of 0.58 and 0.43[28,29]. Thisdifferencein estimates
could be related to various factors that may have prevented
superspreading events, such as (1) intervention measures (such
asthe closure of bars, schools, and gatherings) that stakeholders
may have enforced during the study period or (2) differences
in the geographical area. The possibility of estimating k in real
time may assist stakehol dersin understanding the current local
infection dynamics and thus inform which, if any, control
measure would be most appropriate. Theweekly estimated R(t)
values ranged from 0.80 to 1.61. The maximum value of 1.61
was at the start of the study period; this value was not well
estimated since there were no data for the preceding weeks.
However, the subsequent values were well estimated and
predominantly fluctuated slightly below and above 1, signifying
that theinfection dynamicswere stable within the study period.
The computed density of the transmission network diagram was
small (<0.01), suggesting low social interactions among the
persons in the population, thus resulting in alow transmission
rate.

Thevisudizationsincluded in SORMAS-Stats are maps, charts,
tables, time series plots, and network diagrams. Further,
SORMAS-Stats contains several filters to explore the network
diagram by clusters, transmission chains, and superspreading
events. The possibility to filter the network diagram was hel pful
to stakeholders, not only to assist the exploration of transmission
chains but to also detect and correct errors created during the
data collection phase. SORMAS-Stats is a stand-alone
application, easily deployable owing to Docker technology and
does not depend on the principa application or method used
for data collection. Thus, users with programming skillsin R
statistical software only can easily configure and extend
SORMAS-Statsto cover other types of statistical analyses.

SORMAS-Stats has a public GitHub repository that permits
stakeholders from interested countries to make additional

Silenou et al

reguests and contributions. In this way, it stays an application
developed by and for public health workers.

Limitations

Thecurrent integration of SORMAS-Statsiswith the SORMAS
PostgreSQL  database. However, with minor adjustment,
SORMAS-Stats can be integrated with other databases or files
that can be read by R statistical software as long as the
relationship between the entities (such as case person, contact
person, event, and event participant) are referenced across the
tables in the database [30]. The range of the length of the
directed transmission chain was 1 to 4; the mgjority of the chains
had 2 or fewer generations of infection. This might be due to
the short study period since the datafor analysiswere available
for only 3 months. In France, data older than 3 months are
deleted from the SORMAS database as demanded by the law.
Some transmission chains may have continued to spread after
the study period.

Recommendations for Future Research

Further development of the SORMAS-Stats application can
focus on the following features: (1) implement more
epidemiological indicators that can inform the management of
outbreaks such as statistics on hospitalization, immunization,
or symptoms; (2) integrate datafrom other eHealth applications
other than SORMAS; and (3) include outbresk detection, change
point detection, or prediction models (eg, compartment models).
In addition, asmore public health workers use SORMA S-Stats,
further research can investigate users experience, such as
desirability, usefulness, and performance, through incorporating
the concepts of human-computer interaction [31].

Conclusions

We have provided an application for the real-time estimation
of communicable disease parameters, which are essential for
outbreak response. The use of the application requiresonly basic
statistical analysis skills. SORMAS-Stats may greatly assist
public health authoritiesin countriesusing SORMAS or similar
tools by providing extensive visualizations, the computation of
surveillance indicators, the estimation of epidemiological
parameters, and the facilitation of the generation of routine
epidemiological reports. This study aso showcases how
epidemiologistswith skillsin R statistical software programming
only can build a web application, integrate it with a database
of another application, and deploy it in the field for outbreak
response.
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