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Abstract

Background: The Surveillance Outbreak Response Management and Analysis System (SORMAS) contains a management
module to support countries in their epidemic response. It consists of the documentation, linkage, and follow-up of cases, contacts,
and events. To allow SORMAS users to visualize data, compute essential surveillance indicators, and estimate epidemiological
parameters from such network data in real-time, we developed the SORMAS Statistics (SORMAS-Stats) application.

Objective: This study aims to describe the essential visualizations, surveillance indicators, and epidemiological parameters
implemented in the SORMAS-Stats application and illustrate the application of SORMAS-Stats in response to the COVID-19
outbreak.

Methods: Based on findings from a rapid review and SORMAS user requests, we included the following visualization and
estimation of parameters in SORMAS-Stats: transmission network diagram, serial interval (SI), time-varying reproduction number
R(t), dispersion parameter k, and additional surveillance indicators presented in graphs and tables. We estimated SI by fitting
lognormal, gamma, and Weibull distributions to the observed distribution of the number of days between symptom onset dates
of infector-infectee pairs. We estimated k by fitting a negative binomial distribution to the observed number of infectees per
infector. Furthermore, we applied the Markov Chain Monte Carlo approach and estimated R(t) using the incidence data and the
observed SI computed from the transmission network data.

Results: Using COVID-19 contact-tracing data of confirmed cases reported between July 31 and October 29, 2021, in the
Bourgogne-Franche-Comté region of France, we constructed a network diagram containing 63,570 nodes. The network comprises
1.75% (1115/63,570) events, 19.59% (12,452/63,570) case persons, and 78.66% (50,003/63,570) exposed persons, including
1238 infector-infectee pairs and 3860 transmission chains with 24.69% (953/3860) having events as the index infector. The
distribution with the best fit to the observed SI data was a lognormal distribution with a mean of 4.30 (95% CI 4.09-4.51) days.
We estimated a dispersion parameter k of 21.11 (95% CI 7.57-34.66) and an effective reproduction number R of 0.9 (95% CI
0.58-0.60). The weekly estimated R(t) values ranged from 0.80 to 1.61.

Conclusions: We provide an application for real-time estimation of epidemiological parameters, which is essential for informing
outbreak response strategies. The estimates are commensurate with findings from previous studies. The SORMAS-Stats application
could greatly assist public health authorities in the regions using SORMAS or similar tools by providing extensive visualizations
and computation of surveillance indicators.
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Introduction

Background
During the course of 2020, there was a substantial increase in
the number and use of eHealth applications, mainly in response
to the COVID-19 outbreak [1-3]. These applications are being
used in different areas of digital health intervention, such as
disease surveillance, vaccine delivery, hospital management,
laboratory management, symptom journals, and education [4].

The Surveillance Outbreak Response Management and Analysis
System (SORMAS) is an open-source digital tool that supports
disease control and outbreak management procedures [5-8].
The objective of SORMAS is to ensure the availability of
real-time surveillance data for priority diseases at all
administrative levels. SORMAS supports task management,
complies with data protection and data security standards, and
enhances interoperability with other applications.

Essential epidemiological parameters governing COVID-19
transmissions such as serial interval (SI), instantaneous
reproduction number R(t), effective reproduction number R,
and individual-level variation in transmission are
context-specific, and thus often difficult to estimate precisely
with publicly available data. Studies have been conducted to
estimate these epidemiological parameters during the early
phase of the outbreak, but most focused on coarse, aggregated,
and publicly reported data sources that likely mask local
specificities or are biased toward more severe cases [9-11]. The
lack of easy access to outbreak data containing more
epidemiological and clinical information has been reported as
a limiting factor in improving the performance of
epidemiological models [12]. Since then, most public health
stakeholders used eHealth applications to document rich and
large contact-tracing data in response to the COVID-19
outbreak. Nonetheless, such informative surveillance data are
often not hosted on a centralized hub but scattered on different
databases in the corresponding countries. In addition, the
estimation of epidemiological parameters is frequently not done
in real time and does not account for spatial and temporal
variation, and thus, fails to provide comprehensive and timely
information on outbreak evolution to best inform
decision-making [13]. Further, public health stakeholders faced
challenges in generating reproducible analyses for their routine
situation reports because data are often manually exported from
eHealth applications and analyzed with stand-alone statistical
applications such as R, SAS, SPSS or STATA.

To address these challenges, we envisaged an approach whereby
standardized statistical analysis methods are brought to where
the rich and detailed surveillance data are hosted. To assist
stakeholders (SORMAS users) with a reactive analytic platform
that leverages the rich and detailed data documented in

SORMAS, we developed the SORMAS Statistics
(SORMAS-Stats) application. SORMAS-Stats is a user-friendly
R Shiny web application to estimate epidemiological parameters,
compute country or region-specific indicators, and provide
visualizations in real time.

Objective
This study aims to describe the essential visualizations,
epidemiological parameters, and surveillance indicators
implemented in the SORMAS-Stats application. We illustrated
its application in response to the COVID-19 outbreak using
surveillance data captured with SORMAS in the
Bourgogne-Franche-Comté region of France.

Methods

Design Process of SORMAS-Stats
We gathered the requirements essential to supporting outbreak
response through SORMAS user requests (from Nigeria, Ghana,
France, and Germany), which thus guided the design of
SORMAS-Stats. SORMAS users are public health personnel
of a country, such as field investigators and epidemiologists.
We identified user requests through GitHub issues created by
SORMAS users, the SORMAS user support platform, and the
minutes of sprint planning meetings. The sprint planning
meetings took place every 3 weeks, matching the software
release cycle of SORMAS. In parallel, we conducted a rapid
review of epidemiological publications and situation reports.
Subsequently, we combined the essential requirements obtained
from the review and the users’ requests, implemented them,
and released a beta version of the SORMAS-Stats application.
Further, we conducted a field test of the beta version, got users’
feedback, implemented them, and deployed a stable version.
The time from requirement gathering to deployment was 12
months (July 2020 to June 2021).

Overview of SORMAS-Stats
SORMAS-Stats is a web application that can be installed locally
and uses advanced visualization and statistical analysis methods
to analyze surveillance data in real time. SORMAS-Stats assists
public health officials in managing outbreaks and permits the
execution of reproducible routine epidemiological analysis. The
workflow of SORMAS-Stats consists of the preprocessing phase
and the analytics phase.

In the preprocessing phase, SORMAS-Stats imports
pseudonymized data from an external database. The default
integration of SORMAS-Stats is with the SORMAS PostgreSQL
database. Only the records and associated attributes reported
within the time interval specified in the SORMAS-Stats
configuration file are extracted from the external database.
Further data processing steps are the deletion of error records,
deduplication, categorization, and the computation of derived
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variables. In the analytics phase, SORMAS-Stats analyzes the
preprocessed data. We classified the analytics phase into two
types: (1) data visualization and the computation of summary
statistics and (2) the estimation of essential disease-specific
epidemiological parameters through statistical modeling.

Epidemiological Data
The SORMAS-Stats application analyzes the entity-based
surveillance data routinely collected by public health workers.
Generally, surveillance data include the following entities: case
person (a person infected with a disease), contact person (a
noninfected person exposed to a case person), and event (any
exposure or gathering that poses a threat to human health or
may lead to the spread of diseases). The collection of all
probable transmission chains (pairs of entities: case
person–contact person or event–persons exposed to an event
[event participants], that can result in disease transmission)
forms the network data of the disease. During contact follow-up,
a contact person or event participant may become symptomatic
and meet the case definition of the disease in question, thus
being converted or reclassified as a case. In such instances, 2
types of infector (ie, index case) and infectee (ie, secondary
case) pairs are formed (infector-infectee pairs): first, between
the case person and contact person, and second, between the
event and the event participant.

The data used to illustrate the application of SORMAS-Stats
consisted of confirmed cases of COVID-19 and their contacts
documented using SORMAS between July 31 and October 29,
2021, in the Bourgogne-Franche-Comté region of France.

Estimation of Epidemiological Parameters and
Surveillance Indicators

Serial Interval
We computed the observed SI as the difference in the number
of days between symptom onsets of infector-infectee pairs. We
excluded infector-infectee pairs for which the infector was an
event or if one of a pair had missing data for symptom onset
date. However, we only included symptomatic transmissions
with available data for the date of symptom onset for both
infector and infectee in a pair, as transmission data are often
generated during contact-tracing under symptomatic settings
[14]. We estimated the SI distribution by fitting lognormal,
gamma, Weibull, and normal distributions to the observed SI
data. The choice of these distributions was based on previous
studies [15,16]. For all 4 types of distributions, we excluded
observed SI greater than 30 days. For lognormal, gamma, and
Weibull distributions, which do not take negative values, we
dropped negative values before fitting the distributions. For
each fitted distribution, we computed the goodness-of-fit criteria

(Akaike information criterion and Bayesian information
criterion) and goodness-of-fit statistics (Kolmogorov-Smirnov,
Cramer-von Mises, and Anderson-Darling) [17]. We chose the
distribution with the best fit by several approaches: the smallest
Akaike information criterion, a plot of the density function of
the fitted distribution with the histogram of observed data, and
a plot of the empirical and theoretical cumulative distribution
functions of each fitted model. We calculated the 95% CI of
the mean SI using the formula μ ± 1.96 × (σ / √n), where μ is
the estimated sample mean, σ the estimated sample SD, and n
the sample size. The analysis was performed using the R
statistical software (R Foundation for Statistical Computing)
package fitdistrplus [17].

Instantaneous Reproduction Number
We estimated R(t)—on a weekly basis—using the approach
proposed by Cori et al [18,19]. This method mainly requires
the incidence and contact-tracing data, which are the types of
data captured by SORMAS. We implemented 2 approaches to
specify the SI distribution used to estimate R(t). First, a
parametric distribution for SI with values for the mean and SD,
and second, a parametric distribution for SI and the observed
data of infector-infectee pairs. For the second approach, we
estimated the SI distribution by applying the Markov Chain
Monte Carlo method. The possible choices of the parametric
distribution for SI were gamma, Weibull, and lognormal. We
computed the summary statistics of the posterior mean and
plotted the posterior mean and 95% credible interval for R(t).
The analysis was performed using the R statistical software
package EpiEstim [19].

Variation in Transmission Heterogeneity and Effective
Reproduction Number
Using the data for infector-infectee pairs of cases, we computed
the observed offspring distribution as the number of infectees
per infector. We applied the approach described by Lloyd-Smith
et al [20] and fitted a negative binomial distribution to the
observed offspring distribution. We estimated the effective
reproduction number R and the variation in transmission
heterogeneity as the mean and dispersion parameter k of the
negative binomial distribution, respectively [20]. In addition,
we computed the median and 95% percentile CI of both
parameters using bootstrap. We performed the analysis using
the R statistical software package fitdistrplus [17].

Visualizations and Surveillance Indicators
We computed 6 surveillance indicators that may be informative
in managing disease outbreaks using transmission network data.
Table 1 presents the definition of visualizations and surveillance
indicators implemented in the SORMAS-Stats application.
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Table 1. Description and application of epidemiological parameters, surveillance indicators, and visualizations in SORMAS-Stats application.

Applications in disease surveillanceDescriptionName of output or indicator

Epidemiological parameters

To distinguish disease variants, design follow-up and
quarantine duration, and determine time window for effec-
tive intervention strategies.

The difference in the number of days between
symptom onsets of infector-infectee pairs (see
Methods).

Serial interval (SI)

To assess the impact of intervention measures.

R(t)>1 signify an increase in infectiousness at time t, R(t)<1
signify a decrease in infectiousness [18].

The average number of infectees per infector at a
particular time t (see Methods).

Instantaneous reproduction
number R(t)

Similar to R(t).The average number of infectees per infector (see
Methods).

Effective reproduction num-
ber (R)

To assess the evidence of superspreading events or forma-
tion of clusters. This can help to devise relevant control
measures. Smaller values of k indicate higher levels of
dispersion, thus suggesting evidence of superspreading.

A measure of how the number of infectees per infec-
tor (offspring distribution) is distributed around the
mean value (see Methods).

Dispersion parameter (k)

Surveillance indicators

To devise relevant control measures similar to the disper-
sion parameter k. To assess the quality of contact tracing
and better allocate resources.

The proportion of exposed persons—among all ex-
posed persons—that converted to cases by exposure
types.

Proportion of exposed persons
who became cases

To determine the quality of contact-tracing. A smaller
proportion indicates a greater coverage of identified link-
ages between infectors and infectees.

The proportion of index infectors among all infector
nodes (infector person, infectee person, or event).

Proportion of index infectors

Similar to k. VMR>1 indicates higher levels of dispersion
and thus signaling evidence of superspreading.

The variance divided by the mean of the observed
offspring distribution [21].

Variance-to-mean ratio
(VMR)

To assess the impact of control measures on overall societal
behavior. Higher values may signify higher social interac-
tions.

The ratio of the number of edges (links between 2
nodes) and the maximum number of possible edges
[22]. It represents how connected the nodes of the
network diagram are to each other.

Edge density

Similar to proportion of index infectors.The total number of transmission chains or index in-
fector nodes in the network diagram.

Number of individual trans-
mission chains

Visualizations

To prioritize investigation and follow-up of events with
known confirmed cases.

A directed graph of all disease transmission chains
consisting of the following types of nodes: case per-
sons, contact persons, events, and event participants.

Network diagram

To gauge the efficacy of control measures in place and the
need to implement new ones.

A bar graph or line plot of entity counts over time
(day, week, or month).

Time series plots

To target intervention measures to specific areas of the
country such as hotspots.

Tables of entity count, proportions, or incidence
proportions by administrative area (regions, districts,
community).

Tables

To protect vulnerable groups.Pie charts and bar graphs of entity counts or propor-
tions by entity attributes (eg, age and sex).

Charts

Similar to tables.Spatial-temporal display of entity counts, proportion,
and incidence proportion on a map by administrative
area (regions, districts, community).

Maps

Architecture of SORMAS and SORMAS-Stats
The SORMAS application was developed on the VAADIN
framework, JAVA EE, Payara server, and PostgreSQL database.
SORMAS consists of 2 components: the mobile app and the
web application. The mobile app communicates with the server
via a REST-API and the VAADIN web client application. The
SORMAS-Stats application analyzes the surveillance data
documented in the PostgreSQL database of SORMAS. We
developed SORMAS-Stats based on the R Shiny framework
[23]. To secure the server hosting the application, we used an
architecture with the following configuration: https-portal or

secure proxy, 2-factor authentication with Keycloak, and the
default authentication of SORMAS-Stats (Figure 1). The default
authentication of SORMAS-Stats used the shinyauthr R package
authentication module to hash the user password [24,25].
SORMAS-Stats can be executed as a default R Shiny application
or a Docker application. We deployed SORMAS, SORMAS
PostgreSQL, and SORMAS-Stats applications as separate
Docker containers and managed them with one Docker-compose
file. The test version of SORMAS-Stats based on demonstration
data is available online [26]. The code and description of
deployment are hosted on GitHub [27].
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Figure 1. Server setup for the SORMAS-Stats application. SORMAS: Surveillance Outbreak Response Management and Analysis System.

Ethical Considerations
The Agence Régionale de Santé de Bourgogne Franche-Comté,
France, as an administrative public health institution, granted
permission for using the anonymized COVID-19 outbreak data
in this study, under article 11 of Law No. 2020-546 of May 11,
2020. Under this law, the secondary data used in this study did
not require individual informed consent.

Results

Contents of the SORMAS-Stats User Interface
The SORMAS-Stats application has multiple dashboards with
filters, permitting users to execute analysis and download the
output. Table 1 depicts the contents of the SORMAS-Stats user
interface and their applications in disease surveillance or
outbreak management. The contents of the interface are
visualizations, epidemiological parameters, and surveillance
indicators.

Description of the Epidemiological Data Used to
Illustrate SORMAS-Stats
We used SORMAS-Stats to estimate epidemiological parameters
and surveillance indicators by analyzing the contact-tracing data
documented in SORMAS between July 31 and October 29,
2021, in the Bourgogne-Franche-Comté region of France. Figure
2 presents a network diagram constructed from the
contact-tracing data consisting of 63,570 unique nodes,
comprising 1.75% (n=1115) events, 19.59% (n=12,452) case
persons, and 78.66% (n=50,003) exposed persons. Of the 50,003
exposed persons, 6390 (12.78%) subsequently converted to
cases. The network diagram consisted of 3860 transmission
chains, with each chain comprising a minimum of 1 exposed
person and a source infector node (case person or event). The
length of the longest directed chain was 4 generations of
infection. The average number of exposed persons per node
(node degree) was 1.73 (IQR 1-228), whereas the
variance-to-mean ratio was 4.65.
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Figure 2. Screenshot of SORMAS-Stats showing the COVID-19 transmission network diagram and surveillance indicators for 63,570 entities reported
between July 31 and October 29, 2021, in the Bourgogne-Franche-Comté region of France. The diagram comprises 1115 events (blue gear node), 12,452
case persons (nongreen person node), 50,003 exposed persons (green person node), and 54,929 exposures (directed arrow from infector node).
SORMAS-Stats: Surveillance Outbreak Response Management and Analysis System Statistical application.

Epidemiological Parameters and Surveillance
Indicators
After subsetting the network diagram by considering chains
with resulting cases only, 10,250 unique nodes remained,
comprising 9.30% (n=953) events and 90.70% (n=9297) case
persons. Of the 9297 case persons, 68.73% (n=6390) were
infectees. There were 3860 transmission chains, with 24.69%
(n=953) having an event as the index infector. The average node
degree was 1.36 (IQR 1-36), whereas the variance-to-mean ratio
was 1.05. The edge density of the complete or reduced network
diagram considering chains with only resulting cases was <0.01.

Considering infector-infectee pairs consisting of person entities
only (event nodes excluded) resulted in 1238 infector-infectee
pairs, of which 31.26% (n=387) had available data for symptom
onset date. Of the 387 pairs with available data for symptom

onset date, 20.41% (n=79) were pairs of asymptomatic
transmission for which the onset date of the infectee preceded
or was on the same date as that of the infector. After excluding
negative SIs, the mean of the observed SI was 3.96 (IQR 0-27)
days. The distribution with the best fit to the observed SI data
was the lognormal distribution with a mean of 4.30 (95% CI
4.09-4.51) days (Figure 3). The mean of the observed offspring
distribution was 1.36 (IQR 1-36). By fitting a negative binomial
distribution to the observed offspring distribution, we estimated
a dispersion parameter k of 21.11 (95% CI 7.57-34.66) and a
reproduction number R of 0.9 (95% CI 0.58-0.60). Using the
observed transmission data with a lognormal distribution for
SI, the estimate of the average weekly posterior mean for R(t)
was 0.98 (IQR 0.80-1.61) (Figure 4). The estimated range of
R(t) was congruent with the values obtained when plugging in
values for SI mean and SD obtained from the literature (5.19
and 4.23 days, respectively) [9].
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Figure 3. Screenshot of SORMAS-Stats showing the COVID-19 serial interval distribution for 1238 infector-infectee pairs reported between July 31
and October 29, 2021, in the Bourgogne-Franche-Comté region of France. AIC: Akaike information criterion; BIC: Bayesian information criterion;
SORMAS-Stats: Surveillance Outbreak Response Management and Analysis System Statistical application.

Figure 4. Screenshot of SORMAS-Stats showing an estimate of COVID-19 time-dependent reproduction number (line) with 95% credible interval
(grey band) for 12,452 case persons reported between July 31 and October 29, 2021, in the Bourgogne-Franche-Comté region of France. SORMAS-Stats:
Surveillance Outbreak Response Management and Analysis System Statistical application.

Discussion

Principal Findings
We developed and deployed SORMAS-Stats, an open-source
web application for real-time visualization and the estimation
of epidemiological parameters using contact-tracing data

captured with the SORMAS eHealth application.
SORMAS-Stats is easy to deploy and requires no programming
skills to perform analyses. Some epidemiological parameters
included in SORMAS-Stats are SI, time-varying reproduction
number R(t), effective reproduction number R, and dispersion
parameter k. We illustrated the use of SORMAS-Stats by
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analyzing the contact-tracing data for COVID-19 captured
between July 31 and October 29, 2021, in the
Bourgogne-Franche-Comté region of France. The estimated
mean SI was 4.30 days; this was commensurate with findings
from previous studies [9,11]. The estimate for k was 21.11,
whereas the variance-to-mean ratio of the offspring distribution
was >1 (1.05), signifying a probable clustering of infections
compatible with the observation of superspreading events.
However, the estimate was not of the same magnitude as
findings from 2 previous studies that used contact-tracing data
from other countries at the early phase of the pandemic and
reported k of 0.58 and 0.43 [28,29]. This difference in estimates
could be related to various factors that may have prevented
superspreading events, such as (1) intervention measures (such
as the closure of bars, schools, and gatherings) that stakeholders
may have enforced during the study period or (2) differences
in the geographical area. The possibility of estimating k in real
time may assist stakeholders in understanding the current local
infection dynamics and thus inform which, if any, control
measure would be most appropriate. The weekly estimated R(t)
values ranged from 0.80 to 1.61. The maximum value of 1.61
was at the start of the study period; this value was not well
estimated since there were no data for the preceding weeks.
However, the subsequent values were well estimated and
predominantly fluctuated slightly below and above 1, signifying
that the infection dynamics were stable within the study period.
The computed density of the transmission network diagram was
small (<0.01), suggesting low social interactions among the
persons in the population, thus resulting in a low transmission
rate.

The visualizations included in SORMAS-Stats are maps, charts,
tables, time series plots, and network diagrams. Further,
SORMAS-Stats contains several filters to explore the network
diagram by clusters, transmission chains, and superspreading
events. The possibility to filter the network diagram was helpful
to stakeholders, not only to assist the exploration of transmission
chains but to also detect and correct errors created during the
data collection phase. SORMAS-Stats is a stand-alone
application, easily deployable owing to Docker technology and
does not depend on the principal application or method used
for data collection. Thus, users with programming skills in R
statistical software only can easily configure and extend
SORMAS-Stats to cover other types of statistical analyses.

SORMAS-Stats has a public GitHub repository that permits
stakeholders from interested countries to make additional

requests and contributions. In this way, it stays an application
developed by and for public health workers.

Limitations
The current integration of SORMAS-Stats is with the SORMAS
PostgreSQL database. However, with minor adjustment,
SORMAS-Stats can be integrated with other databases or files
that can be read by R statistical software as long as the
relationship between the entities (such as case person, contact
person, event, and event participant) are referenced across the
tables in the database [30]. The range of the length of the
directed transmission chain was 1 to 4; the majority of the chains
had 2 or fewer generations of infection. This might be due to
the short study period since the data for analysis were available
for only 3 months. In France, data older than 3 months are
deleted from the SORMAS database as demanded by the law.
Some transmission chains may have continued to spread after
the study period.

Recommendations for Future Research
Further development of the SORMAS-Stats application can
focus on the following features: (1) implement more
epidemiological indicators that can inform the management of
outbreaks such as statistics on hospitalization, immunization,
or symptoms; (2) integrate data from other eHealth applications
other than SORMAS; and (3) include outbreak detection, change
point detection, or prediction models (eg, compartment models).
In addition, as more public health workers use SORMAS-Stats,
further research can investigate users’ experience, such as
desirability, usefulness, and performance, through incorporating
the concepts of human-computer interaction [31].

Conclusions
We have provided an application for the real-time estimation
of communicable disease parameters, which are essential for
outbreak response. The use of the application requires only basic
statistical analysis skills. SORMAS-Stats may greatly assist
public health authorities in countries using SORMAS or similar
tools by providing extensive visualizations, the computation of
surveillance indicators, the estimation of epidemiological
parameters, and the facilitation of the generation of routine
epidemiological reports. This study also showcases how
epidemiologists with skills in R statistical software programming
only can build a web application, integrate it with a database
of another application, and deploy it in the field for outbreak
response.
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