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Abstract

Background: Population size estimates (PSE) provide critical information in determining resource allocation for HIV services
geared toward those at high risk of HIV, including female sex workers, men who have sex with men, and people who inject drugs.
Capture-recapture (CRC) is often used to estimate the size of these often-hidden populations. Compared with the commonly used
2-source CRC, CRC relying on 3 (or more) samples (3S-CRC) can provide more robust PSE but involve far more complex
statistical analysis.

Objective: This study aims to design and describe the Shiny application (shinyrecap), a user-friendly interface that can be used
by field epidemiologists to produce PSE.

Methods: shinyrecap is built on the Shiny web application framework for R. This allows it to seamlessly integrate with the
sophisticated CRC statistical packages (eg, Rcapture, dga, LCMCR). Additionally, the application may be accessed online or run
locally on the user’s machine.

Results: The application enables users to engage in sample size calculation based on a simulation framework. It assists in the
proper formatting of collected data by providing a tool to convert commonly used formats to that used by the analysis software.
A wide variety of methodologies are supported by the analysis tool, including log-linear, Bayesian model averaging, and Bayesian
latent class models. For each methodology, diagnostics and model checking interfaces are provided.

Conclusions: Through a use case, we demonstrated the broad utility of this powerful tool with 3S-CRC data to produce PSE
for female sex workers in a subnational unit of a country in sub-Saharan Africa.
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Introduction

Background
Accurate knowledge of population size is critical in many areas
of science but a challenge whenever complete counts are too
difficult or expensive to be obtained. One such area is the HIV
pandemic, which increasingly is driven by high-risk behaviors
that define “key populations” (KP), among them, female sex
workers (FSW), men who have sex with men (MSM), and
people who inject drugs (PWID) [1]. Global, national, and local
HIV control efforts all require knowing the size of these
high-risk populations to monitor the epidemic in terms of density
and distribution of populations over time and to inform effective
and appropriately scaled program development, target setting,
and resource allocation. Yet, there is no gold standard to derive
reliable population size estimates (PSE). Instead, public health
teams and stakeholders use a wide range of methods, many of
which are not based on empirical data nor sound statistical
concepts [2,3], potentially producing poor-quality estimates.
Estimates of population sizes derived from programmatic
mapping [4,5] enumerate members of the population attending
venues during the exercise but often fail to account for the less
socially visible, resulting in underestimates. Other nonempirical
subjective methods such as Wisdom of the Crowd [6,7] and the
Delphi methods [3,8] are susceptible to bias and the influence
of individuals.

Capture-recapture (CRC) globally has seen wide use for PSE,
including for the HIV pandemic [9-18]. The basic idea behind
CRC is to engage in 2 or more encounter events or sources
(these might also be referred to as samples, captures, or lists),
recording which individuals appear in which events and relating
the number of individuals sampled once to those sampled
repeatedly. Most CRC exercises include 2 encounter events
with the key assumption being that the 2 samples (2S) are
independent [19]. Unfortunately, many such 2S-CRC exercises
may suffer from violating this assumption resulting in
overestimates (negative dependence between 2 samples) or
underestimates (positive dependence between 2 samples)
[3,19,20]. CRC with 3 (or more) samples (3S-CRC) relaxes this
assumption, as interaction terms may be added to the statistical
models to address source dependencies. Given sufficient overlap
of samples and independence of samples, 3S-CRC allows for
more sophisticated analysis compared with 2S-CRC [18,21],
resulting in more accurate PSE. Statistical support for these
analyses might not be available, creating a critical challenge for
field epidemiologists to produce robust PSE.

Several statistical models satisfy the requirements to perform
the aforementioned sophisticated analysis of 3S-CRC data:
log-linear models, Bayesian model averaging, and Bayesian
nonparametric latent-class models. Log-linear models are a
classic methodology for the analysis of multiple source CRC
data. Variants are implemented that allow for varying capture
probabilities across events and heterogeneous capture
probabilities among members of the population. Bayesian model
averaging allows the analyst to flexibly account for list
dependency by creating models for all possible dependencies
and averaging over them in a way that is proportional to the

probability that the dependence is correct. The Bayesian latent
class model deals with heterogeneity in a novel way. It posits
that there are unobserved subgroups in the data with different
capture probabilities for each capture event. The number of
these groups and their probabilities are unknown. The algorithm
uses a Bayesian framework to estimate these, along with the
population size. Application of these 3 types of statistical models
requires computational expertise. This is a barrier to the use of
CRC involving 3 or more sources, as it typically requires
knowledge of specialized software [22] or programming in
languages such as R [23]. To fill this need, we present a
graphical user interface, shinyrecap, that guides the user through
sample size estimation, data preparation and exploration, and
PSE using CRC studies.

Objectives
The objectives of this paper were to describe shinyrecap, a free,
web-based application facilitating the format and analysis of
CRC data for PSE.

Methods

Overview of the Capture-Recapture Method
The application of ratio estimation for PSE from multiple
encounters dates to at least 1787 [24] and gained popularity
primarily among animal ecologists more than a century later
[25-27], although applications abound in other areas, including
epidemiology [28,29]. Early applications were restricted to
sampling on 2 occasions or from 2 lists, wherein individuals
encountered during the first survey are offered an identifying
mark. For KP CRC, these identifiers are inexpensive but
memorable unique objects or “gifts” such as brightly colored
rubber bracelets or distinctive key chains. The number of
individuals who accept the unique gifts are documented. The
same process is repeated during a second survey, during which
individuals are also asked about having received a gift during
the previous capture. Estimation of the unknown number of
population members from 2 samples requires the strong
assumptions that (1) the population is static over the sampling
interval, (2) the identifying unique objects or gifts are not lost
nor misidentified, (3) individuals are sampled independently
during the surveys (list independence), and (4) every population
member shares a common and constant probability of encounter
during the surveys (homogeneity). The first assumption is
well-approximated by sampling over short time intervals.
However, the remaining assumptions are unlikely to hold.

The next major innovation was the extension of estimation to
data collected from 3 or more samples [30,31]. This enables
relaxation of the third and fourth assumptions using statistical
models that account for sampling dependence and various forms
of inhomogeneity (ie, nonuniform) in encounter probabilities
[27,30,32-35]. To understand why more samples allows for the
assumption relaxation, consider a 3S-CRC where each capture
is the same size. If the population is homogeneous and all
individuals have the same probability of being captured in each
sample (p1), then the probability of being captured in all 3

samples would simply be p1
3. On the other hand, if half the

population has a capture probability of p1 and the other half has
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probability p2, then the probability of a random person being

captured in all 3 would be 0.5(p1
3 + p2

3). By comparing the
counts of individuals captured in all 3 samples to what would
be expected if there was homogeneity, we can measure and
model it. Log-linear models, Bayesian model averaging, and
Bayesian Dirichlet process mixture models (nonparametric
latent-class models) and each model heterogeneity in different
ways, allowing for the production of more accurate estimates
in the presence of inhomogeneity.

Overview of Relevant Statistical Models

Log-Linear Models
Models for capture probabilities originated in the discipline of
animal ecology [27,34]. The natural logs are modeled as linear
combinations of factors representing various forms on
inhomogeneity. Four general classes of models are produced,
representing a wide range of model complexity: Captures have
the same probability, and individuals are uniform (M0); captures
might have different probabilities, and individuals are uniform
(Mt); captures have the same probability, and individuals may
be heterogeneous (Mh); and captures may have different
probabilities, and individuals may be heterogeneous (Mth).
Selection of a single “best” model is typically done using either
the Akaike or Bayesian information criterion (AIC and BIC,
respectively) [36]. For these, lower values indicate a “better”
model fit.

For heterogeneous models, log-linear models require the
specification of a parametric distribution for the population’s
log odds of being captured. These are typically set to be either
Normal, Poisson, Gamma, or Darroch. Additionally, the Chao
(lower bound) correction can be used to obtain a lower bound
on the population size rather than an estimate of it.

The “Normal” model incorporates heterogeneity as a Gaussian
mixing distribution [37]. The Poisson, Darroch, and Gamma
options incorporate different heterogeneity correction columns
into the design matrix. The Darroch, and especially the Gamma,
correction may produce distinctly large heterogeneity corrections
and estimates of population size. Unfortunately, the correct
model specifications are frequently not identifiable (roughly,
parameters are not informed by the data), and so choosing based
on any information criteria can lead to misspecified models
[38].

Bayesian Model Averaging of Log-Linear Models
Bayesian model averaging is geared to be robust to list
dependence. Ideally, one would like to have all capture events
be independent draws from the population. In many cases,
however, some capture events may be related. For example, in
a citywide survey of PWID, it might happen that the first 2
capture events were more heavily concentrated in one area of
the city than the third event, introducing potential dependence.
When list dependence is present, the interactions between events
should be considered.

The natural logs of expected frequencies of observable encounter
combinations can be modeled as linear combinations of main
and interaction effects of the sampling events [32,35]. This

allows the model to flexibly account for list dependence among
the various samples. Bayesian model averaging enumerates all
possible models of list dependency and then puts a prior on the
likelihood that each model is the true one, with more complex
models typically having lower prior probability than less
complex models. Combining this prior with a prior for
population size allows one to calculate a posterior estimate of
population size averaging over all possible models. In this
posterior, estimates from each model are weighted by the
posterior probability of the model, yielding a single estimate
that includes model uncertainty. Some form of model averaging
is important given that there may be limited information in the
data available to identify the true model out of the large number
of potential models [22].

The first step in the analysis is to specify a prior distribution
for population size. This represents the analyst’s prior
knowledge about population size along with uncertainty. By
default, a “noninformative” improper prior is used, which is
proportional to 1 divided by the population size. Typically,
analysts will have access to at least a rough idea of the range
of possible population sizes from previous PSE reports or
literature reviews. This information can be incorporated into
the prior parameterized as a log-normal distribution with a
truncation at a specified maximum population size. The “delta”
parameter controls the prior, favoring simple models in the
model averaging. This parameter is more difficult to interpret,

and it is set to 2–k by default, where k is the number of encounter
events. Lower values indicate less prior weight on more complex
list interactions. Once the prior is specified, the posterior
probability distribution of the population size can be calculated.

Bayesian Nonparametric Latent-Class Models
Instead of assuming a parametric probability function for capture
probability, as is done by traditional log-linear models, this
approach posits that the population is divided into a number of
groups, with members in each group having the same
homogeneous capture probability. The number of homogeneous
strata in a population is uncertain, and covariates that identify
those classes may not be available. Thus, the strata are said to
be latent, and strata identities are treated as missing data.
Estimation is naturally accomplished using mixtures of
distributions. A clever implementation of Bayesian
nonparametric latent-class modeling can then be used to estimate
population size [21]. Both the number of strata and the strata
capture probabilities are inferred via Bayesian inference, with
a stick-breaking Dirichlet process prior enforcing model
parsimony such that models with fewer latent strata are
preferred.

The degree to which fewer strata are preferred is controlled by
a prior on the stick-breaking process parameterized as a Gamma
distribution with shape and scale values. The relationship
between the Gamma distribution and the number of latent groups
is complex and mediated by a stick-breaking process. In general,
the default values of 0.25 for both the shape and scale
parameters result in a reasonably diffuse prior.

Estimation is based on the posterior distribution of population
size, of which a sample is constructed using Markov chain

JMIR Public Health Surveill 2022 | vol. 8 | iss. 4 | e32645 | p. 3https://publichealth.jmir.org/2022/4/e32645
(page number not for citation purposes)

McIntyre et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Monte Carlo (MCMC) simulation. MCMC algorithms start
from initial values and produce serially correlated “chains” of
samples from some distribution. That distribution converges to
the joint posterior distribution only after some potentially large
number of “burn-in” iterations. Therefore, valid inferences can
be made only after discarding the burn-in iterations.

shinyrecap Application User Interface
shinyrecap was developed using the Shiny [23] web framework
for R [39]. Shiny is a flexible, open-source toolkit used to build
web applications with rich interactivity that can easily produce
tables, visualize data, and create dashboards. The advantage of
this framework is that it makes it easy to expose advanced
algorithms and packages written in R to a noncoding audience.
In shinyrecap, we leveraged the algorithms from the Rcapture
[40] package for log-linear modeling, the dga package for
Bayesian model averaging [41], and the LCMCR [21] package
for Bayesian latent-class modeling. Whereas it would normally
take substantial experience with R to use those packages,
shinyrecap provides easy access to a wider audience with “the
click of a button.”

shinyrecap has been made available for public use [42] and does
not require installation of or experience with R. Client-server
communication occurs over a secure-sockets layer (SSL)
protocol connection. Required data inputs are minimal and can
be aggregate or individual-level. Any data provided to
shinyrecap persist only for the session; neither input nor output
data are saved on the web server. This provides users with
security protection against third-party traffic analysis and any
security intrusions into the server not concurrent with the user’s
session. shinyrecap offers a tutorial video and manual, and help
buttons are presented where input information is required in
each shinyrecap module.

Alternatively, R users can launch the interface locally from any
computer by entering the following into the R console:

shinyrecap is structured in 3 parts. First, it supports the design
of CRC studies by providing a tool for sample size estimation.
Second, it provides a data formatting tool to assist with the data
processing of CRC surveys. Finally, it provides the analysis
tool to generate the estimates and outputs required for PSE.

Results

Application User Interface

Sample Size Estimation
When designing a CRC study, it is important to collect enough
data to achieve sufficient precision for PSE. shinyrecap's sample
size estimation tool does this by allowing the user to specify
population parameters such as guesstimates of the target
population size and the amount of capture heterogeneity in the
population, as well as sample characteristics such as the number
of capture events and their expected sample sizes. It then
simulates CRC studies in this population and estimates the

population size using log-linear modeling for each of the
simulations. Precision is estimated from the simulation results.
The application supports simulation and estimation using the
Mt model if homogeneity is assumed. If heterogeneity is
allowed, simulation and estimation are performed using the Mth

model with normally distributed capture probabilities.

Given the input parameters, the interface provides the user with
the distribution of a log-linear population size estimator across
the simulations. A table is also provided that summarizes the
percent of times simulated estimates were within different ranges
of accuracy. A user might find it acceptable to have their
estimate within 10% of the true value 90% of the time, whereas
they might choose to collect more samples if the calculator says
that their estimate will only be within 10% of the true value
50% of the time.

Data Formatting
The first barrier encountered by a practitioner is putting their
CRC data into the right format for analysis. shinyrecap is able
to read 2 data types: individual and aggregate. We focus on the
capture history format (aggregate data) here to demonstrate the
data formatter tool. Individual-level data files have 1 row per
encounter, with each column representing a sampling event (eg,
3 columns for 3S-CRC) and, within the columns, the successful
encounter event result (ie, the individual accepts the unique
object; individuals who refuse the object during the encounter
are not counted). The usual data format used by CRC analysis
programs is the capture-history format. In this format, each
column should represent a successful encounter event, and each
row should be an encounter history. A “1” indicates a successful
encounter (capture), and “0” indicates absence, so the following
history represents 80 individuals who were encountered and
accepted the unique object during the 2nd events, but not during
the 1st or 3rd:

When the aggregate data type is specified, the last column
represents the total number of individuals with that capture
history. A properly structured 3S-CRC data set would look
something like Figure 1.

From the first row, we see that there were 30 individuals who
were observed at event 1 but not at the 2nd and 3rd events:

There were 10 individuals captured in all 3 events, as seen in
the following row:

Note that there is no row for the following history because that
pertains to the unknown number of population members who
were not observed at any event:

For k encounter events, there are 2k – 1 observable event
histories and 1 unobservable history. Analysis of CRC data

requires enumeration of all 2k – 1 observable counts (which
may contain observed values of 0 but not missing values).
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The capture-history data format is easily recorded from
individually identifiable population members. However, in many
epidemiological studies, unique individuals are not identified;
rather, data are aggregated. These accumulated data files consist
of counts of individuals who were encountered at each sampling
event and the subsets of those who were encountered at any
preceding sampling event(s) (Figure 2). No identifying
information is collected on any subject at any event. During the
1st sampling event, only the count of individuals present and
who were offered and accepted a unique (to the event) identifier
is recorded. During the 2nd event, observed population members
are tabulated by whether they received the identifier distributed
during the first event, and those individuals are given a second

(and different) aggregate identifier. At the 3rd event, the
observed population members are cross-tabulated by whether
they received the event-specific identifier distributed during
each of the 2 previous events. We call this event-count formatted
data. Although 7 counts have been recorded, the counts are
aggregated differently from the required format shown in Figure
1. Note that the sum of samples should always be larger than
the sum of count data.

It takes some thought to figure out how to convert the data to
the required format, and the process becomes much more
difficult if there are more than 3 events. The shinyrecap data
formatting tool makes that conversion easy and reliable for any
number of encounter events.

Figure 1. Example capture-history data format for 3 encounter events (3S-CRC). Absence or presence is denoted by 0 or 1, respectively.

Figure 2. Aggregated capture histories in event-count format for 3-source capture-recapture (3S-CRC).

Analysis
shinyrecap guides the user through the analysis process for
log-linear modeling, Bayesian model averaging, and Bayesian
latent-class modeling. All analyses may be exported as
downloadable reports in HTML, Word, or PDF documents. To
facilitate analysis transparency and reproducibility, R code to
replicate the analysis is included in all reports by default.

Log-Linear Models
The log-linear section of the application has 3 sections. The
first section, “Model Comparison,” displays population size,
standard error, AIC, and BIC for each potential model
formulation. The “Model Selection” section allows the user to
select one of these models and calculate a confidence interval.
The “Descriptives” section provides output to help the user
understand the model and diagnose potential problems. Two
diagnostic plots help explore the heterogeneity structure. The
first diagnostic plot displays a function of the number of units
captured i times for different values of i. It should be roughly
linear except in the case where the data were generated by an
Mth model. The second diagnostic plot shows the number of
individuals captured for the first time at the ith sampling event.
It should be linear in the case of the M0 model and concave

down in the case of an Mh model. Any other form may indicate
an Mt or Mth model.

Bayesian Model Averaging
The first step in the Bayesian model averaging interface is to
set a prior distribution for the population size. This is set to a
noninformative 1/N distribution, but it is recommended to
change this to something relevant to the population under study.
To do this, the user can specify their beliefs for the median
population size (ie, they believe that there is a 50% chance the
population size is above it and 50% chance it is below) and the
90th percentile (ie, there is only a 10% chance the true
population size is above this value). The application then
parameterizes these beliefs as a log-normal distribution. The
user may also specify a maximum population size to put an
upper bound on the prior.

Once the prior is set, the user can go to the “Posterior Population
Size” tab to obtain posterior estimates and credible intervals.
The “Posterior Model Probabilities” tab allows the user to
explore the different individual models that are averaged
together and see their influence on the posterior.

Bayesian Nonparametric Latent-Class Models
The Bayesian nonparametric latent-class model is the most
computationally intense analysis method. The user may control
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the Gamma distribution stick-breaking prior as well as set the
maximum number of latent groups. Increasing the number of
latent groups increases the computation time but, since the
number of groups is determined by the algorithm, does not affect
the results so long as it is set sufficiently large. Although 10 is
a good default value, the user can increase that to ensure that
this limit does not affect the results.

There is a number of MCMC sampling options available to the
user. There are 2 primary considerations that the user should
be aware of. First, the MCMC process must be at equilibrium.
To ensure this, the first samples generated by the algorithm
should be thrown out. The number of samples thrown out is
controlled by the “burn-in” option. If there are any trends in the
trace plot (available in the Diagnostics tab), the burn-in period
may need to be increased. Second, the sample size must be large
enough that the posterior is not dominated by sampling noise.
With MCMC sampling, each sample is correlated with the last
sample, so the effective sample size (also in the Diagnostics
tab) is often much lower than the raw number of samples
generated by the process. Typically, the user should aim for an
effective sample size greater than 1000. The effective sample
size can be increased by increasing the number of samples
generated or the number of MCMC steps taken between
samples, which reduces correlation.

After specifying the prior on the number of strata and the
MCMC sampling parameters, a sample from the posterior
distribution is produced by pressing the “Run” button. A
progress bar displays the progress of each computational
operation. A posterior summary will be displayed.

Pairwise Analysis
The pairwise analysis table displays PSE, standard error, and
95% confidence limits for each possible pair of sampling events
and is used as a diagnostic step to examine sampling events for
homogeneity. Similar PSE across pairwise results indicate the
independence assumption may have been met, whereas
differences across results suggest violations of the assumption.
Any of the models available in the shinyrecap Analysis tool
may be used to incorporate such dependence into models.

Example With FSW Data
Estimates of key population size are critical for HIV program
planning. For this reason, a large 3S-CRC activity was
implemented in a subnational unit (SNU) of a sub-Saharan
African country with high HIV burden and unmet need for
HIV/AIDS treatment services. Using 3S-CRC data collected
from FSW, we demonstrated the utility of the shinyrecap tool
to estimate sample size sufficient for precision, format our data
in preparation for analysis, and produce PSE using several
different statistical models.

Between October 2018 and December 2018, 544 FSW hotspots
in the SNU were sampled, representing 13,344 encounters with
FSW over 3 sampling rounds. During encounters with FSW in
hotspots, FSW distribution teams offered inexpensive and
memorable objects that were unique to each of the 3 capture
rounds. Eligible FSW who consented were considered enrolled
in this PSE activity. In subsequent rounds, 1 week to 2 weeks
apart, FSW were asked to show or describe objects they had
received during previous rounds, and affirmative responses were
tallied upon correct identification of the objects. Distributors
recorded information on tablets and uploaded to a secure central
server after each encounter. Data were aggregated into a table
similar to Figure 1 for analysis.

In the following sections, we work through how the shinyrecap
application was used to assist in the planning, data management,
and analysis of this study.

Sample Size Estimation
Before any study is conducted, it is wise to determine what level
of precision one is likely to get out of a potential sampling plan.
Figure 3 shows the result of using the sample size estimation
tool in the context of the example FSW PSE study. Capture
sample sizes were set at 4410, 2675, and 2519, with a theorized
population size of 20,000. A moderate amount of heterogeneity
was also added, such that 90% of individuals in the population
had capture odds less than 1.2 times the average individual in
the population.

The table in the upper right of Figure 3 summarizes the results
and finds that, 80% of the time, our PSE will be within 7.73%
of the true value.
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Figure 3. The sample size estimation tool applied to the example female sex worker study.

Data Format
After the data were collected, we translated it from event format
to capture history format. Figure 4 shows the result of applying

the data formatter to the example FSW CRC data. Once
translated, the capture history data may be imported into the
analysis tool for inference.
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Figure 4. The data formatter tool.

Analysis

Log-linear Models
The first class of models we apply is log-linear. Figure 5
displays the analysis tool’s result table for all of the various
applicable log-linear models. These may have no effects (0),
effects for time (t), effects for heterogeneity (h), or both (th).
Note that there are multiple listings in the figure for
heterogeneous models (h and th) corresponding to different
functional forms for the differing capture probabilities of
individuals in the population. For most epidemiological studies,

we expect capture probability to vary among individuals or over
time, which means that models Mt and Mth are likely more
appropriate than the simpler alternatives. This is consistent with
the result that the AIC and BIC values are considerably lower
for these compared with the M0 and Mh models. The set of Mth

models has the lowest AIC and BIC, indicating that there may
be heterogeneity in the population.

Poisson2 induces a reasonable amount of heterogeneity and is
generally a good default choice. In this case, it yields a PSE of
18,317, which, as we will see in the following sections, is
consistent with other analyses.
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Figure 5. Log-linear models applied to the example female sex worker study.

Bayesian Model Averaging
Applying a Bayesian model averaging model results in a very
similar estimate compared with the Poisson2 log-linear model
with a posterior estimate of 18,624 (see Figure 6). Here, we
choose a diffuse prior for our analysis with a median population
size of 20,000 and a 90th percentile of 80,000.

Use of the default “Noninformative” prior, which is an improper
prior with mass equal to the inverse of population size, is a
useful robustness check to assess the influence of our choice of
prior. The posterior estimate using the noninformative prior
was 18,608, which is very similar to our original result. Note
that the log-normal prior median input was increased from the
default of 7000 to 20,000 and the 90% upper bound was adjusted
from the default of 10,000 to 80,000.

Figure 6. Bayesian model averaging applied to the example female sex worker study.

Bayesian Nonparametric Latent-Class Models
Applying the latent-class model, as in Figure 7, results in an
estimate of 16,266. This is modestly lower than the other
methods; however, the 95% probability interval using this
method is quite wide, ranging from 10,621 to 23,512, indicating
that the model’s results are compatible with the other 2 methods.
The latent-class model will often have intervals wider than the

other 2 methods as a result of its high level of flexibility in
describing the latent heterogeneity.

Note that the MCMC number of samples was increased to
100,000 from the default of 10,000, thinning was increased
from the default of 10 to 100, and the burn-in was increased
from the default of 10,000 to 100,000. These inputs were
adjusted to increase effective sample size.
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Figure 7. Bayesian latent-class modeling applied to the example female sex worker study.

Pairwise Comparison
The table in Figure 8 displays population estimates using each
pair of capture events. This pairwise analysis may be helpful
to review as a diagnostic step to understand the 3S-CRC data.
Each row is a separate 2S-CRC analysis using only 2 of the
sampling events. For example, pa12 estimates the population
size using only the 1st and 2nd sampling events, pa13 estimates

only the 1st and 3rd sampling events, and pa23 estimates only
the 2nd and 3rd sampling events. The ideal situation is to have
similar PSE for each pair, which would be consistent with
independence of sampling events. Neither the 1st to 2nd nor
the 1st to 3rd comparisons have intervals that overlap with the
interval for the 2nd to 3rd comparison, suggesting that the
independence assumption may be unreasonable for these.

Figure 8. Pairwise analysis of example female sex worker study results.

Discussion

shinyrecap is a new Shiny application for population size
estimation that is easy to use and freely accessible to anyone
with an internet connection and a web browser.

The example using 3S-CRC data from FSW in an SNU of a
sub-Saharan African country demonstrates how computationally
intensive statistical methods are made more accessible to

epidemiologists and others with shinyrecap. The simplicity of
the sample size estimation, data formatting, and analytic tools,
with supporting online manuals and tutorial videos, allows users
to progress through CRC activities when statistical support
might not be readily available. shinyrecap promotes local
ownership of PSE activities, including sample size
determination, formatting data for use in the shinyrecap, as well
as using the various analytical models for estimating population
size. With several key statistical models available to those
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without coding expertise, local public health staff were able to
test various models, compare the results, and interpret the results
given their local knowledge.

Our model results using shinyrecap with 3S-CRC data were
larger than the PSE produced from programmatic mapping and
enumeration among FSW in the same SNU: 9858 in 2013 [43]
and 9745 in 2015 [44]. Both these estimates were smaller than
those produced by shinyrecap: log-linear models; for example,
the Mth Chao lower bound was the smallest of all log-linear
models, at 14,990 (14,620-15,378); the Bayesian model averaged
18,624 (17,625-19,649); and Bayesian latent-class models
averaged 16,266 (10,612-23,512). The ability to produce
confidence bounds is another benefit of shinyrecap compared
with programmatic mapping and enumeration.

Shiny apps offer a solution to the problem of poor-quality
estimates for key population program and policy developers
and elevate the level of sophistication of analysis while building
in-country capacity to implement critical surveillance activities.
Recently, several Shiny apps were introduced that enhance HIV
surveillance efforts to estimate awareness of HIV status over

time [45], synthesize multiple PSE using the Anchored
Multiplier [46], and estimate sample size for biobehavioral
survey-based multiplier methods for PSE [47]. shinyrecap is
unique among this group in that it offers multiple features in
one tool to support population size estimation with 3S-CRC
from sample size estimation to data formatting to multiple model
options for analysis.

Our work was motivated by the needs of epidemiologists and
others who require reliable tools for PSE but may not have the
necessary coding experience or advanced statistical skills needed
to analyze CRC data involving 3 or more samples. The
application facilitates the estimation of sample sizes for captures,
proper formatting of individual-level and aggregate-level data
in preparation for analysis, and various options for analysis of
CRC data from 3 or more sources. In addition, all output can
be saved in HTML, Word, or PDF formats, with an option to
include the R code used by the Shiny to produce the output.
Public health teams now have a powerful tool in shinyrecap to
produce reliable PSE for a broad range of applications without
specialized computing expertise.
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