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Abstract

Background: In Wisconsin, COVID-19 case interview forms contain free-text fields that need to be mined to identify potential
outbreaks for targeted policy making. We developed an automated pipeline to ingest the free text into a pretrained neural language
model to identify businesses and facilities as outbreaks.

Objective: We aimed to examine the precision and recall of our natural language processing pipeline against existing outbreaks
and potentially new clusters.

Methods: Data on cases of COVID-19 were extracted from the Wisconsin Electronic Disease Surveillance System (WEDSS)
for Dane County between July 1, 2020, and June 30, 2021. Features from the case interview forms were fed into a Bidirectional
Encoder Representations from Transformers (BERT) model that was fine-tuned for named entity recognition (NER). We also
developed a novel location-mapping tool to provide addresses for relevant NER. Precision and recall were measured against
manually verified outbreaks and valid addresses in WEDSS.

Results: There were 46,798 cases of COVID-19, with 4,183,273 total BERT tokens and 15,051 unique tokens. The recall and
precision of the NER tool were 0.67 (95% CI 0.66-0.68) and 0.55 (95% CI 0.54-0.57), respectively. For the location-mapping
tool, the recall and precision were 0.93 (95% CI 0.92-0.95) and 0.93 (95% CI 0.92-0.95), respectively. Across monthly intervals,
the NER tool identified more potential clusters than were verified in WEDSS.

Conclusions: We developed a novel pipeline of tools that identified existing outbreaks and novel clusters with associated
addresses. Our pipeline ingests data from a statewide database and may be deployed to assist local health departments for targeted
interventions.

(JMIR Public Health Surveill 2022;8(3):e36119) doi: 10.2196/36119
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Introduction

As of December 1, 2021, the state of Wisconsin (WI) confirmed
884,701 cases of SARS-CoV-2 (COVID-19) [1]. At the county
level, health departments use the free-text fields from COVID-19
initial case interview (contact-tracing) forms to identify potential
businesses and facilities where transmission of the virus
occurred and when individuals were infectious. During surges,
public health workers encounter a high caseload and are
overwhelmed with an abundance of free-text information in the
interview forms. Current methods to mine the free-text fields
are manual and a keyword-based approach, without rapid and
systematic methods for finding cluster hotspots for targeted
interventions (ie, guide risk communication, policy to limit
capacity in certain businesses, compliance in enforcing orders
at facilities and businesses). Methods in natural language
processing (NLP) and machine learning have augmented
workflows for COVID-19 care in other settings that are strained
for resources and staffing [2-4], and may prove to be useful for
health departments and their COVD-19 data teams that interact
with the contact tracers and surveillance systems.

Named entity recognition (NER) is an NLP task to classify
words according to a class, for example, identifying a token as
a person, organization, or location. Current systems have
leveraged the strength of pretrained neural language models [5]
trained on a large corpus of data to achieve accuracy scores
above 90% for NER tasks. Many of these systems are publicly
available and have been fine-tuned to be run “out of the box”
for applications, but there remains a paucity in the literature
demonstrating its benefits in public health for outbreak
surveillance work. Prior work in health care has demonstrated
success in using pretrained neural language models for
biomedical and clinical entity normalization [6] and building
computable disease phenotypes [7]. The opportunities for public
health providers and policy makers to leverage methods in NLP
for data analytics is growing and becoming more accessible for
nontechnical departments [8].

We aimed to develop an NLP pipeline that uses a pretrained
NER neural language model applied to contact-tracing interview
forms recorded in the Wisconsin Electronic Disease Surveillance
System (WEDSS) to identify potential outbreaks during the
COVID-19 pandemic. Further, we sought to design a novel
location-mapping tool to identify the most likely address for a
given named entity from our NER tool. The objective of our
study was to measure the precision and recall for both the NER
tool and the location-mapping tool in our NLP pipeline for
identifying new clusters and existing outbreaks. Our pipeline
may serve as a benchmark in public health informatics to assist
contact-tracing efforts for targeted policies during COVID-19
and other pandemics, and provide scaled automation for state
and local health department staff.

Methods

Data Source
WEDSS is a secure web-based system designed to facilitate
reporting, investigation, and surveillance of communicable
diseases, which includes data on COVID-19 since January 2020.
WEDSS encompasses all of Wisconsin, but this study was a
collaboration with Public Health Madison & Dane County
(PHMDC), which serves the second-largest county in Wisconsin
by population. Both structured and unstructured fields were
extracted from WEDSS for our analyses, including the text
fields from the county-level data containing relevant
contact-tracing fields from the case interview forms. The case
interview forms contained the followings sections: (1)
symptoms; (2) laboratory and clinical information; (3) medical
conditions; (4) COVID-19 risks, including travel; (5) residential
and occupation settings; (6) potential sources of illness; (7)
isolation and quarantine measures; (8) facility intervention; (9)
contact-tracing details; and (10) investigation notes. The text
fields included addresses for businesses, facilities, and schools
where the exposed individual may have entered or worked. The
investigation note field was the longest text field with a median
token count of 127 (IQR 67-233) and frequently included dates
and names of places visited by the individual during their
exposure period. For the pipeline development, 26 structured
and unstructured text fields from WEDSS data extracts were
concatenated into 1 document as input into our language model.
There was 1 document per case, and model runs were at the
case level. Postprocessing of the named entities included the
removal of frequently occurring named entities (ie, “Wisconsin,”
“GMT”) identified from 12 months of posttesting case interview
forms and removal of duplicate named entities.

Confirmed cases were individuals with a positive molecular or
polymerase chain reaction (PCR) test result detecting
SARS-CoV-2 RNA, filtered by the date of the test result. In
alignment with the Centers for Disease Control and Prevention
(CDC) case definition [9], individuals who tested positive were
counted each time they had a new COVID-19 infection (defined
as a positive test 90 days or more after their previous COVID-19
infection). Therefore, people may have been counted more than
once, but this occurred in less than 1% of cases. Probable cases
were cases not positive by a confirmatory laboratory test method
(ie, PCR or molecular test) but met 1 of the following: (1) test
positive using an antigen test method, (2) have symptoms of
COVID-19 and a known exposure to COVID-19 (ie, being a
close contact of someone who was diagnosed with COVID-19),
or (3) have COVID-19 or SARS-CoV-2 listed on the death
certificate.

There is no standard definition for a “cluster” or “outbreak”
(the terms are interchangeable), and the CDC states the
definition for outbreaks is relative to the local context [10].
Therefore, we followed the PHMDC definition for a cluster,
which is 2 or more cases associated with the same location,
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group, or event around the same time [11], which we examined
across 7-day intervals. Henceforth, we use the term “cluster”
for a cluster identified from our NER tool and “outbreak” as
the cluster that is identified and validated by the PHMDC
COVID-19 data team following standard operating procedures
and recorded in WEDSS.

The NER Tool
We used a pretrained cased Bidirectional Encoder
Representations from Transformers (BERT) base model [12],
which was fine-tuned on the data set from the Conference on
Computational Natural Language Learning (CoNLL)-2003 NER
shared task [13]. This English data set remains 1 of the largest
corpora in the public domain for NER, with 1393 Reuters news
stories with a total of 35,089 annotated labels (5648 in the test
set) across the categories of location, organization, person, and
miscellaneous. The pretrained BERT model implemented in
the Python Transformers library is maintained on the
HuggingFace model repository [14-16]. The model reported an
F1 score of 91.3, with a recall of 91.9 and a precision of 90.7,
on the CoNLL-2003 test data set. At the time of this publication,
the model represented the state of the art in NER [15]. We used
the “out of the box” model and did not attempt to further
fine-tune the models or adjust hyperparameters.

The text fields from WEDSS were preprocessed to remove
nonmeaningful entities, such as contact tracers’ names.
Postprocessing of the named entities included the removal of
frequently occurring terms (ie, “Wisconsin,” “GMT”), the
removal of duplicate named entities within 1 document, the
removal of subword tokens that are occasionally tagged by the
model, and the removal of patterns that were not informative.
A WordPiece tokenizer was used to build groups of up to 512
tokens from each document, which were then fed into the model.
For all case IDs from the extracted WEDSS data that had the
same named entity reported, the average predicted probability

was provided as the score for the likelihood of identifying it as
a person, organization, location, or miscellaneous.

Entities found by the NER pipeline that were associated with
an outbreak already discovered by contract tracers were
identified through fuzzy matching. Known outbreak names and
entities from the NER tool that shared an incident ID were also
matched via the token sort ratio (each string to compare is
tokenized and sorted alphabetically, and then similarity is
calculated as similarity = [2 × number of matching
characters/total number of characters] × 100). Entities and
outbreaks with a token sort ratio of 70 or more were deemed to
be matches.

The Location-Mapping Tool
During the development of our NER pipeline, we noted many
named entities containing common business names that may
have multiple locations within a county, such as “McDonald’s”
or “Walmart.” Therefore, we developed a location-mapping
tool into the pipeline using the Google Places Application
Program Interface (API) to determine probable matches for
locations that were near 1 or more case IDs within a cluster
(Figure 1). The Google Places API requires searches to be within
a circular zone with a maximum radius of 30 km. A sample
search is shown in Figure 2. Multiple successive searches were
permitted, although each search will increase API costs, and
saturating a large search area with API calls would neither be
optimal nor efficient. The commute distances for over two-thirds
of the businesses in 36 major metropolitan areas in Wisconsin
were between 0 and 24 miles [17], so 1 assumption of the
mapping algorithm was that the named entity would be within
commuting distance from the individual's home residence.
Therefore, the individual’s latitude/longitude coordinates for
each case ID in the cluster were extracted from WEDSS, and a
k-means unsupervised approach was applied to identify the
centroid coordinates from Google Places for the cluster of case
IDs for a particular named entity.
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Figure 1. Process map for NER tool and location-mapping tool. ETL: extract, transform, and load; NER: named entity recognition.

Figure 2. Location-mapping example for a cluster of COVID-19 clusters in Dane County as of October 2021. The grey dots show incident cases for
a possible or known cluster/outbreak. The white dot shows the calculated centroid point of this cluster. The black dot shows the obfuscated centroid
latitude/longitude point that is submitted to the Google Places API, which is shown by the larger gray circle. API: Application Program Interface.
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The location mapper provided the most likely address for the
named entity. If an exact match could not be made, then the top
3 results were filtered using fuzzy string matching. In either
case, a predicted probability for each business address match
was provided, and these results were then merged into a final
report to provide an address associated with a named entity for
use in contact tracing. Named entities that mapped to city names
across the states of Wisconsin, Minnesota, Iowa, Michigan, and
Illinois were filtered out because they were not specific enough
to determine a precise location.

To comply with the Google Places API terms of service, we
extracted the organizations and location names from the fields
of all COVID-19-related forms in the WEDSS data to create an
internal database of named entities for mapping between our
NER tool and the Google Places API results. Therefore, no
Google data were cached. The search algorithm only used the
Google Places API to perform a search for named entities that
matched our internal database of named entities. The full process
map for the pipeline and reporting system is displayed in Figure
1.

The process map begins with the WEDSS data source and
proceeds with an extract, transform, and load (ETL) procedure
onto an on-premise Health Insurance Portability and
Accountability Act (HIPAA)-secure computing environment
at the University of Wisconsin (UW). The relevant fields from
the case report interview forms go through feature engineering
and the WordPiece tokenizer for the pretrained neural language
model to classify named entities as business names and facilities.

Only named entities that meet the criteria for a cluster with >2
incident IDs are sent to the location-mapping tool. The
location-mapping tool identifies the centroid longitude/latitude
of the cluster with a random shift for deidentification purposes.
Next, the Google Places API is executed for the shifted centroid
location, and proximity results of business and facility names
are run against the named entities from the NER tool. An
extended search radius is processed if no addresses are returned
on the initial run. The top 3 results are shown from a
fuzzy-matching schema with priority scores and shared in a
report that is sent back to a web-based reporting system at the
Wisconsin Department of Health Services (DHS). Any health
department employee may view the report through the
web-based reporting system.

The Extended Location Algorithm
Some named entities that were submitted to the
location-mapping tool were outside the 30 km search radius,
but they may still be relevant for identifying novel clusters. For
the named entities outside the search radius, we developed an
extended search algorithm that covered a larger search radius
and located business or organization names that would map to
a given named entity not found within the initial 30 km search
radius. The algorithm created and utilized a grid of interlocking
equilateral triangles. The search grid first extended outward
from the original latitude/longitude centroid point and then
rotated in a clockwise manner around this centroid point,
creating interlocking triangles (Figure 3). Each vertex of each
triangle in the grid would become a new latitude/longitude
starting point for an API call.
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Figure 3. Framework for the extended location-mapping algorithm. If a named entity is not found within the initial search radius, additional search
radii are created extending outward from the original search by creating a series of interlocking equilateral triangles, where each vertex of the triangle
is a new API starting search point. The extended search stops when at least 1 match is found or the maximum distance is reached. API: Application
Program Interface.

The curvature of the earth would mean that this grid would not
follow straight lines, so we used an implementation of the
haversine formula to create polygons with curved shapes in our
grid [18]. Creating polygons by drawing outward would
necessarily mean that the end of each rotation of the grid may
not be the start of the rotation, so we set the search radii of each
API call to overlap to ensure total coverage from the searches,
and to account for this distance error between the starting point
and ending point of the rotation. The extended searching stopped
when either of the following occurred: (1) at least 1 search result
was found by the API call, or (2) the grid reached a maximal
range of 250 km from the original centroid latitude/longitude
point.

Evaluation of the NER Tool in the NLP Pipeline
All confirmed and probable individual cases in Dane County
between July 1, 2020, and June 30, 2021, served as the
retrospective validation data set. The NER tool was evaluated
against confirmed outbreak facility/business names or valid
business addresses linked to cases that were recorded in the
WEDSS database. The named entities produced from the NER

tool that met the criteria for a cluster (>2 instances of the named
entity) within a 1-week period and matched a confirmed
outbreak in WEDSS were labeled as true positives (TPs). In
addition, named entities with >2 instances within a 1-week
period that had a valid business address in WEDSS were also
included in the TP group and represented novel clusters. The
rationale to include both confirmed and unconfirmed outbreaks
(potentially novel clusters) into the TP group was because they
met the PHMDC definition for a cluster and contained a valid
address that warranted an investigation (unverified outbreak)
or avoided a redundant investigation (verified outbreak). Named
entities that were produced from the NER tool without an
address match in WEDSS were labeled as false positives (FPs).
False negatives (FNs) were defined as confirmed outbreaks in
the WEDSS data set that did not have a corresponding named
entity from the NER tool. Evaluation metrics were report as
precision = [TP/(TP + FP)] and recall = [TP/(TP + FN)]. These
metrics are also known as positive predictive value and
sensitivity, respectively. Evaluation of the NER tool was
performed across a study period of 12 months. The precision
and recall across the 12 months were reported to provide the
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largest sample size for reporting metrics. Monthly metrics were
also reported to represent seasonal variation and various public
health policies that affected case rates and prevalence, which
would also affect precision [19].

Evaluation of the Location-Mapping Tool in the NLP
Pipeline
For the location-mapping algorithm, a separate set of precision
and recall measures were reported. TPs were defined as a
business address in our internal database of addresses from
WEDDS that mapped to a Google Places API address for a
named entity produced by the NER tool. An FP was a Google
Places API address that did not map to the WEDSS database
of addresses. An FN was defined as a named entity from the
NER tool that mapped to our internal database of business names
but returned no Google Places API address when a plausible
API result could be found. Due to limitations on cost and
computational resources, validation for the location-mapping

algorithm was only performed for 1 month (October 2020). For
both NER and location mapping validation, precision and recall
measures were generated with bootstrapped 95% CIs.

Report Generation for the COVID-19 Data Team at
the Health Department
The goal of the pipeline was to generate a summary report from
the contact-tracing forms collected in WEDSS across any time
interval and identify potential clusters. A sample report is shown
in Table 1 as a weekly report. Each cluster in the report also
included the associated case IDs to guide the COVID-19 data
team and the predicted probability for that cluster. Known
outbreaks that were already identified by the COVID-19 data
team or were under investigation were also extracted from
WEDSS and included in the report to prevent redundancy in
targeted policy efforts. The most likely address for each named
entity was also provided from the location-mapping tool, along
with a predicted probability.

Table 1. Example summary report for contact tracers for the county health departmenta.

Predicted

probability 2h
AddressgOutbreak entityfCase IDsePredicted

probability 1d
FrequencycTypeNamed entityb

100.0—iSun Prairie12345,
12346

0.6712PlaceSun Prairie

95.2Keys and Things, 21 Sci-
ence Dr., Madison, WI

Retailer 00112347,
12349,
22221

0.547OrganizationLocal retailer

87.1Circuited City, 1561 Rocky
Rd., Verona, WI

Boxstore 0813347,
18349,
22221

0.453OrganizationBig-box store

88.2Burger Time 1234 State St.,
Madison, WI

—17247,
18149,
29121

0.712OrganizationFast-food place

aThe example is based on fictitious data and not sourced from the original Wisconsin Electronic Disease Surveillance System (WEDDS) data due to
privacy restrictions.
bNamed entity: result from the named entity recognition (NER) pipeline. Named entities only qualified as cluster outbreaks if they had >2 case IDs
associated with them.
cFrequency: unique mentions of NER across available case IDs from the reporting period.
dPredicted probability 1: average predicted probability from the classifier for the type of named entity.
eCase IDs: unique case IDs for lookup by the contact tracer.
fOutbreak entity: known outbreak exposures.
gAddress: matched named entity using the longitude/latitude for the address from k-means clustering from Google Places Application Program Interface
(API).
hPredicted probability 2: predicted probability from the location-mapping tool.
iNo result from the NER or location-mapping tool.

The Institutional Review Board at the UW approved this study,
and a data use agreement was established between the Wisconsin
DHS and the UW. No data were shared outside the approved
UW research environment and its approved users without
explicit permissions by the UW and the DHS. The pipeline is
currently available in the State of Wisconsin’s public health
reporting system, and the source code is open source and
publicly available [20].

Results

Characteristics of COVID-19 Cases and Noncases
Of the 46,902 confirmed and probable cases, only 1595 (3.40%)
were probable cases and the remainder were confirmed cases
of COVID-19. In Dane County, non-Hispanic Whites accounted
for 30,423 (64.87%) of the confirmed and probable cases, and
the median age was 30 years (IQR 20-47); see Table 2. The
most frequently reported occupation was student, but the
missingness of the occupation variable in our WEDDS extract
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was high at over 75%. Additional demographics for the WEDSS
data set are shown in Table 2. The 7-day moving average for
cases and noncases in Dane County are shown in Figure 4 with
delineation of the mask mandate policies between January 2020

and September 2021. The gray-shaded region represents the
12-month validation period in which we analyzed the NER tool
for this study.

Table 2. Characteristics of COVID-19 cases and noncases in Dane County, Wisconsin, between July 1, 2020, and June 30, 2021.

Total (N=370,326)Probable/confirmed cases
(N=46,902)

Negative cases (N=323,424)Individual characteristics

31 (20-51)30 (20-47)32 (20-51)Age (years), median (IQR)

Sex, n (%)

176,358 (47.62)23,506 (50.12)152,852 (47.26)Male

188,796 (50.98)23,314 (49.71)165,482 (51.17)Female

5172 (1.40)82 (0.17)5090 (1.57)Unknown

Race/ethnicity, n (%)

230,052 (62.12)30,423 (64.87)199,629 (61.72)Non-Hispanic White

17,568 (4.74)3266 (6.96)14,302 (4.42)Non-Hispanic Black

30,540 (8.25)6662 (14.20)23,878 (7.38)Hispanic

92,166 (24.89)6551 (13.97)85,615 (26.47)Other

Occupation, n (%)a

348,892 (94.21)37,083 (79.06)311,809 (96.41)Not recorded

5490 (1.48)2391 (5.10)3099 (0.96)Nonuniversity student

2064 (0.56)903 (1.93)1161 (0.36)University student

1041 (0.28)468 (1.00)573 (0.18)Retired

931 (0.25)429 (0.91)502 (0.16)Unemployed

11,908 (3.22)5628 (12.00)6280 (1.94)Other

City, n (%)

183,932 (49.67)23,949 (51.06)159,983 (49.47)Madison

26,389 (7.13)3722 (7.94)22,667 (7.01)Sun Prairie

19,087 (5.15)2983 (6.36)16,104 (4.98)Fitchburg

17,829 (4.81)1838 (3.92)15,991 (4.94)Middleton

16,969 (4.58)1745 (3.72)15,224 (4.71)Verona

106,120 (28.66)12,665 (27.00)93,455 (28.90)Other

aMultiple responses were possible.
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Figure 4. Trend over time of COVID-19 cases and noncases in Dane County, Wisconsin, between January 1, 2020, and October 31, 2021. Data are
retrieved from the WEDSS. Line graphs of categories are aggregated by day and averaged in a moving 7-day window between January 2020 and October
2021. The CDC declared COVID 19 a global pandemic on March 11, 2020. The Public Health Madison and Dane County Initial mask mandate (Order
1) went into effect on May 13, 2020, and was updated and modified until June 2, 2021. Mandate 2 (Face-Covering Emergency Order) went into effect
on August 19, 2021. The vertical dashed lines are demarcations for health policy changes. The gray-shaded area represents the validation period for our
pipeline analysis. CDC: Centers for Disease Control and Prevention; WEDSS: Wisconsin Electronic Disease Surveillance System.

The validation data set comprised 4,183,273 total BERT tokens
and 15,051 unique BERT tokens across the free-text fields in
the contact interview forms. The longest field was
“InvestigationNotes” with a median token count of 126.5 (IQR
67.0-232.5).

Across 12 months of validation, the recall was 0.67 (95% CI
0.66-0.68) and precision was 0.55 (95% CI 0.54-0.57). Of note,
the precision and recall scores were variable from month to
month as COVID-19 surges waxed and waned. The best
performance was during surge months with a high volume of
cases. Between October 2020 and January 2021, when caseloads
ranged between 3300 and 7100, respectively, the recall was
between 0.69 and 0.72, respectively. However, during months
with fewer cases, such as between May 2021 and June 2021

(caseloads ranged between 149 and 410), the recall dropped
down to 0.33 and 0.29, respectively. A similar trend was
observed for precision, with a peak at 0.64 and a trough at 0.30
(Table 3). Across all months, the NER tool identified more
potential outbreaks than were confirmed in WEDSS.

During the 1-month location-mapping tool validation period
(October 2020), the F1 score was 0.93, with a recall of 0.93
(95% CI 0.92-0.95) and a precision of 0.93 (95% CI 0.92-0.95).
There were 355 named entities that did not return a result for
the Dane County search radius, but the extended location
algorithm matched addresses in 202 (56.9%) of those named
entities to our internal database of named entities for potentially
novel clusters.
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Table 3. Results from the NERa tool by month for Dane County, Wisconsin, between July 1, 2020, and June 30, 2021.

F1 scoreRecall (95% CI)Precision (95% CI)Total outbreaks identified
by Automated Public Out-
break Localization through
Lexical Operations (APOL-
LO), n (%)

Confirmed out-
breaks, n (%)

Cases, NMonth

0.370.28 (0.23-0.34)0.51 (0.40-0.62)251 (49.4)137 (27.0)508July 2020

0.270.23 (0.17-0.29)0.34 (0.25-0.44)350 (44.7)133 (17.0)783August 2020

0.530.56 (0.51-0.59)0.51 (0.46-0.56)889 (33.0)256 (9.5)2693September 2020

0.660.69 (0.67-0.71)0.64 (0.60-0.67)1267 (27.4)459 (9.9)4619October 2020

0.660.70 (0.68-0.72)0.62 (0.59-0.65)1906 (26.7)564 (7.9)7129November 2020

0.640.70 (0.67-0.73)0.58 (0.54-0.62)1078 (28.6)308 (8.2)3772December 2020

0.610.72 (0.69-0.75)0.53 (0.49-0.58)1062 (31.6)241 (7.2)3361January 2021

0.480.56 (0.51-0.61)0.42 (0.36-0.47)899 (38.4)157 (6.7)2339February 2021

0.430.52 (0.46-0.57)0.37 (0.31-0.43)647 (42.8)134 (8.9)1513March 2021

0.480.50 (0.45-0.55)0.46 (0.39-0.53)639 (43.8)161 (11.0)1460April 2021

0.360.33 (0.23-0.4)0.41 (0.28-0.52)233 (56.8)81 (19.8)410May 2021

0.300.29 (0.11-0.44)0.30 (0.12-0.52)88 (59.1)21 (14.1)149June 2021

aNER: named entity recognition.

Discussion

Principal Findings
We developed a novel pipeline of tools that are able to extract
large amounts of surveillance data and summarize a report to
highlight existing and potential outbreaks and their associated
addresses. The summary report was designed in weekly intervals
and by county to identify outbreaks in a systematic approach
for any region in the state of Wisconsin. We demonstrated the
performance of our pipeline by focusing in Madison & Dane
County, and we showed our pipeline performs best during
high-case-volume periods when automated methods for
contact-tracing efforts may be most needed. In addition, our
pipeline has the potential to identify novel cluster outbreaks not
identified by traditional methods. Ultimately, our tool may
overcome existing limitations for data teams that need to build
keywords and manually scan free-text reports for potential
locations of outbreaks.

Tools leveraging methods in artificial intelligence have emerged
for public health applications during the COVID-19 pandemic
[21-23], and utilizing NLP for targeted policy efforts from
contact-tracing data continues to be an area of interest as more
tools are developed or become available [24,25]. Others have
shown the benefit of pretrained neural language models for
COVID-19 surveillance using nontraditional and unconventional
public health data sources, such as Twitter feeds [26].
Informatics tools using more conventional methods have been
developed using known contact details with a public health
agency [25,27]; however, the study did not identify potential
or novel outbreaks. We demonstrated the utility of an “out of
the box” pretrained neural language model for NER to
automatically scan the contact interview forms of COVID-19
cases and provide contact tracers with a simplified and organized

summary report of existing and potential outbreak clusters. Our
pipeline of tools follows the CDC guidelines for implementation
and use of digital tools to augment traditional contact-tracing
efforts [24]. As traditional approaches continue at the PHMDC
and the state of Wisconsin to investigate and report positive
cases into their surveillance system, our tool may help focus
and guide data teams to clusters during high-volume caseloads.
We also shared a novel location-mapping technology that uses
the raw data from the state’s surveillance system and provides
addresses to further reduce mining efforts from the larger
databases.

The motivation for this work began with the COVID-19 data
team at the PHMDC contacting the data science team at the
UW to assist in methods to overcome the difficulties in mining
the many free-text fields in the contact interview forms. Like
other states and counties in the region, Dane County surged
during the fall and winter months and our tool showed recall
rates above 70% during these periods. Although the precision
values were lower due to FPs, reviewing the FPs in our summary
reports may still be less burdensome to data teams than manually
scanning the free-text fields or building customized rule-based,
keyword algorithms of individual reports. The more important
determinant was reducing FNs of potentially missed outbreaks
by having an acceptable recall. The accuracy of our tool dropped
during months with caseloads below several hundreds, but we
anticipate the tool may be less utilized during these periods
because staff have more time to identify and investigate
outbreaks through existing standard operating procedures.
Currently, a version of the report has been incorporated into a
statewide reporting system for beta testing and application across
any county in the state of Wisconsin (Figure 1). First, the data
from WEDSS are fed into the NLP pipeline via an ETL process
in an on-premise, HIPAA-secure computing environment at the
UW. The results are developed as a flat file output and returned
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to the state’s Department of Health Services Office of Health
Informatics in a second ETL process into a statewide reporting
system for access by end users at county health departments via
a web interface. Our next steps are to examine acceptance by
our PHMDC health department data team with pilot validation
testing and to monitor for adoption, similar to what others have
described [28]. We have integrated our pipeline to work in the
existing statewide reporting system for counties.

Although the private sector with companies such as Google has
led the field in geomapping technologies, we leveraged their
location software to support our unique location-mapping tool.
We remained compliant with license agreements by first
building our own internal database of all potential business
names and organizations derived from our WEDSS database.
This allowed us to perform API calls and identify any matches
without storing any of Google’s data and violating any license
agreements to use the tool. We noted some of the NER places
were chain restaurants and stores, so using unsupervised
methods to identify a centroid longitude/latitude within a cluster
allowed us to predict the most likely location of the business
identified from the NER tool. Our precision and recall scores
for this part of the system were high and potentially reduced
the time needed by staff to identify exact addresses.
Contact-tracing interview forms are collected at the county-level
across the state of Wisconsin and recorded into the central
WEDSS database, so we expect our tool may be scaled statewide
to capture more rural regions or cover commute distances that
span multiple counties.

Limitations
Several limitations occurred in our work. First, we ran the NER
tool as an “out of the box” solution without any further tuning.
The training data set for fine-tuning a BERT-base-NER model
came from a specific span of time and may not generalize well

to our domain. However, due to time and resource constraints,
we could not invest in building an internally annotated data set
for fine-tuning. We expect model performance may continue
to improve with domain adaptation, but we opted to develop
our pipeline with the current general-purpose state-of-the-art
tool. Second, we assumed the radius around the centroid of
home addresses for clusters captured all relevant locations from
our location-mapping tool. This does not account for individuals
traveling from out of state or further distances from home. We
did attempt to mitigate this issue with our extended mapping
algorithm that had a radius of 250 km. Lastly, our tool was
flexible for processing contact interview forms spanning
different time intervals, but the delays in transfer of ETL data
from the state of Wisconsin reporting system to PHMDC policy
makers prevented a real-time alert system for the tool. Our
current system can refresh every 24-48 hours from the time case
report forms are entered into WEDSS, which remains useful to
data analysts who are backlogged on reviewing cases during
heavy-load periods. Our data use agreement prevented the
real-time, on-site application of the pipeline by PHMDC staff,
but this remains a future direction in data access and software
development for our tool. Lastly, future work will incorporate
results on the potentially new clusters to verify their relevance
for investigation and confirm an outbreak. Prospective
evaluation of the tool was not possible, given existing staff
demands from the pandemic.

Conclusion
Our automated pipeline ingests data from a statewide database,
and it may be deployed across counties to assist other health
departments in Wisconsin in targeted policies during outbreaks.
The tool is open source and an interoperable resource that may
be used by neighboring states as well. Further, our pipeline may
also be applied for other communicable disease and surveillance
efforts that requires analysis of free-text data.
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