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Abstract

Background: Advances in automated data processing and machine learning (ML) models, together with the unprecedented
growth in the number of social media users who publicly share and discuss health-related information, have made public health
surveillance (PHS) one of the long-lasting social media applications. However, the existing PHS systems feeding on social media
data have not been widely deployed in national surveillance systems, which appears to stem from the lack of practitioners and
the public’s trust in social media data. More robust and reliable data sets over which supervised ML models can be trained and
tested reliably is a significant step toward overcoming this hurdle. The health implications of daily behaviors (physical activity,
sedentary behavior, and sleep [PASS]), as an evergreen topic in PHS, are widely studied through traditional data sources such as
surveillance surveys and administrative databases, which are often several months out-of-date by the time they are used, costly
to collect, and thus limited in quantity and coverage.

Objective: The main objective of this study is to present a large-scale, multicountry, longitudinal, and fully labeled data set to
enable and support digital PASS surveillance research in PHS. To support high-quality surveillance research using our data set,
we have conducted further analysis on the data set to supplement it with additional PHS-related metadata.

Methods: We collected the data of this study from Twitter using the Twitter livestream application programming interface
between November 28, 2018, and June 19, 2020. To obtain PASS-related tweets for manual annotation, we iteratively used regular
expressions, unsupervised natural language processing, domain-specific ontologies, and linguistic analysis. We used Amazon
Mechanical Turk to label the collected data to self-reported PASS categories and implemented a quality control pipeline to monitor
and manage the validity of crowd-generated labels. Moreover, we used ML, latent semantic analysis, linguistic analysis, and label
inference analysis to validate the different components of the data set.

Results: LPHEADA (Labelled Digital Public Health Dataset) contains 366,405 crowd-generated labels (3 labels per tweet) for
122,135 PASS-related tweets that originated in Australia, Canada, the United Kingdom, or the United States, labeled by 708
unique annotators on Amazon Mechanical Turk. In addition to crowd-generated labels, LPHEADA provides details about the
three critical components of any PHS system: place, time, and demographics (ie, gender and age range) associated with each
tweet.

Conclusions: Publicly available data sets for digital PASS surveillance are usually isolated and only provide labels for small
subsets of the data. We believe that the novelty and comprehensiveness of the data set provided in this study will help develop,
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evaluate, and deploy digital PASS surveillance systems. LPHEADA will be an invaluable resource for both public health researchers
and practitioners.

(JMIR Public Health Surveill 2022;8(2):e32355) doi: 10.2196/32355
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Introduction

Digital Public Health Surveillance
Almost two-thirds of the world’s population now uses the
internet, taking the global total to 4.57 billion (59%) by July
2020 [1]. Overall, 87% of internet users and 65% (3.96 billion)
of the world’s total eligible population (ie, aged >13 years) now
use social media. The combined time that these users spend on
social media adds up to more than 1 million years every day
[1], contributing to a large amount of user-generated data on
different social media platforms. In 2020, Twitter alone reported
500 million tweets generated per day from 145 million daily
active users. The low-cost data stream available on social media
and other internet-based sources serves to makes research
advances on digital public health surveillance (DPHS) more
accessible for public health officials, clinicians, patients, and
the public. This helps disseminate insights into different aspects
of public health and promote healthy lifestyles and health
policies [2,3]. The open access to the public data about users
and their opinions, the ease of use, and a large user base have
made Twitter one of the most popular data sources for studying
different aspects of public health [4,5], with Google Scholar
indexing 1.32 million articles mentioning Twitter and public
health. Moreover, more than 85% of Twitter users, with a wide
breadth of demographic groups [4], also use Facebook,
Instagram, and YouTube (this number for other platforms varies
between 52% and 82%) [1], indicating that Twitter users
reasonably represent active social media users in general.

Since 2011, Twitter has been the most popular form of social
media used for public health communication [6,7]. A recent
scoping review of 755 articles on DPHS shows that Twitter is
the most studied of all platforms and most used platform to
study communicable diseases, behavioral risk factors, mental
health, drug use, and vaccine [7].

Limitations of Digital Public Health Data
However, a number of limitations that mainly stem from the
limitations associated with the data are still the major obstacles
toward the adoption of digital data for public health surveillance
(PHS) [4,7]. Given the main aims of any PHS system are to
measure, monitor, and improve the overall health status of their
target populations, the systematic incorporation of time,
demographics (ie, age and gender), and place data into the
surveillance process is critical to the reliability and
generalizability of this process [8,9]. However, nearly one-third
(32%) of the DPHS studies published between 2005 and 2020
(with the majority of them related to behavioral risk factors
surveillance) did not capture age, gender, or place information
for their analyses [7]. Moreover, most studies on DPHS do not

consider whether their findings are associated with the user’s
personal experience (self-reported or not), leading to content
bias, incorrect results, and potentially flawed interpretations
[7].

Considering the location-dependent nature of health policies,
along with the essential role of place data in assessing the
representativeness of a PHS system, the impact of a PHS system
can vary considerably with geographical location [10-13].
However, the number of DPHS studies that have stratified their
results by a more granular geographic region is small [7].
Because of a lack of annotated data sets for the development of
automatic models, more than two-thirds (69%) of DPHS studies
published before 2020 are limited by labor-intensive, manual,
and abstract analysis methods (eg, manual coding, qualitative
analysis, and rule-based natural language processing [NLP]),
which makes these studies limited in terms of sample size,
scope, and generalizability [7].

Given that all of these challenges are data-oriented, an increase
in both data quality and quantity enriched with concrete
demographics and location information can help deal with all
these challenges. Moreover, to facilitate the development and
evaluation of robust machine learning (ML) models to address
the limited scope of manual data analysis techniques, annotated
data sets for various PHS aspects are required. However, only
a handful of annotated data sets are publicly available for
research on DPHS [14-21]. Jimeno-Yepes et al [15] provided
an annotated data set of 1300 tweets related to disease symptoms
and pharmacologic substances. The open data set developed by
Aphinyanaphongs et al [16] contains 13,146 labeled tweets
resulting from hashtag filtering and covers a time span from
January 2010 to January 2015. This data set is developed for
training binary classifiers to detect tweets that indicate
e-cigarette use for smoking cessation. Crowdbreaks [18], an
open health tracking platform, crowdsources the labeling of
vaccine sentiment and COVID-19–related tweets to the public.
Although the data set provided by this system, compared with
other open DPHS data sets, is in a better position in terms of
size, it lacks demographics and geospatial data, and each tweet
is labeled by only 1 annotator (without any control over their
labeling quality).

Objective
Given that in addition to physical inactivity, as the leading risk
factor for noncommunicable diseases and premature death [22],
prolonged sedentary behavior and inadequate sleep are also
important risk factors for chronic diseases [23], this work
presents a multicountry and fully labeled digital public health
data set (LPHEADA [Labelled Public Health Dataset]) of tweets
related to physical activity, sedentary behavior, and sleep
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(PASS) that originated in Australia, Canada, the United
Kingdom, or the United States. We selected these countries
because they have some of the highest proportions of social
media users in the world (Australia, 71%; Canada, 66%; the
United Kingdom, 66%; the United States, 69%; and world,
51%) [1]. LPHEADA comprises 366,405 labels, labeled by 708
unique annotators on Amazon Mechanical Turk (AMT), for
122,135 unique tweets generated by 72,749 unique users
between November 28, 2018, and June 19, 2020. AMT is a
software service operated by Amazon that allows users (ie,
requesters) to crowdsource work, broken into microtasks called
human intelligence tasks (HITs), to a large number of workers
who are compensated for each HIT completed [24]. As
LPHEADA was collected and labeled in collaboration with the
Public Health Agency of Canada to develop PASS indicators
for the Canadian population, 80.83% (98,722/122,136) of the
tweets included in our data set were collected from Canada.
Tweets from the United States and the United Kingdom make
up 8.35% (10,193/122,136) and 7.49% (9154/122,136) of the
data set, respectively, and Australian tweets make up the
remaining 3.33% (4067/122,136) of the data set.

Along with the labeled tweets, we provide detailed information
on users’gender, age range, and geospatial information, whether
the tweet was self-reported, and whether it was posted by an
organization. We evaluated the quality of the data set and its
labels using latent semantic analysis, linguistic analysis, ML
models, and truth inference models. The data set we provide in
this paper can be used to develop unsupervised or supervised
ML models for digital PASS surveillance.

Methods

Collection and Preparation of the Data Set
We collected the data of this study from Twitter using the
Twitter livestream application programming interface (API)
between November 28, 2018, and June 19, 2020. The entire
data set (ie, 1,902,980,841 tweets) was filtered for Canadian
tweets potentially relevant to PASS. From 22,729,110 collected
Canadian tweets, 0.46% (103,911/22,729,110) were selected
using keywords and regular expressions related to PASS
categories. To define the search strings and regular expressions,
we used NLP techniques (eg, topic modeling, language
modeling, and linguistic analysis) to detect latent word patterns
relevant to PASS-related contexts. Moreover, we pilot-tested
the labeling process first to validate the extracted keywords and
iteratively updated the list of keywords for each category after
manually reviewing the labels and the filtered tweets.
Multimedia Appendix 1 provides a complete list of the words
used for generating regular expressions and filtering the data
set. Each of these 103,911 tweets was labeled by 3 AMT
workers, from which 95.01% (98,722/103,911) of tweets
received 3 valid labels (ie, multiple or missing labels were
invalid and rejected), with almost half of them related to physical
activity. For the Canadian data set, 610 unique workers
participated in our data labeling tasks and completed 103,911
HITs, from which 4.99% (5189/103,911) HITs were removed
as they did not receive 3 valid answers. The majority of these
workers (530/610, 86.9%) completed less than 100 HITs each,

among which 30.9% (164/530) completed only 1 HIT each.
Among all 610 workers, 1 (0.2%) worker completed 21,801
HITs, and 3 (0.5%) workers completed between 5000 and
10,000 HITs.

In addition to the Canadian tweets, we filtered a random subset
of the data set for tweets that originated in the United Kingdom,
the United States, and Australia. This data set spans the same
data collection period as the Canadian data set and contains
70,239 labels collected for 23,413 tweets (ie, 3 labels per tweet).
Adding the data from these countries will provide an important
epidemiological diversity that can be used for implementing
comparative studies and evaluating the generalizability of the
PASS surveillance models trained on the Canadian data set.

Labeling Process
We implemented a pipeline to create the crowdsourcing tasks,
referred to as HITs by AMT, post them on AMT, collect the
labels through a quality-check process, approve or reject the
HITs, and store the results. To minimize noisy and low-quality
data, we added a qualification requirement to our tasks and
granted the labeling access to workers who had demonstrated
a high degree of success in performing a wide range of HITs
across MTurk (ie, master qualification). In addition, we added
a simple qualification question to each HIT to detect spammers
or irresponsible workers. Each HIT contained 4 questions,
including the qualification question, and was assigned to 3
workers. Through different iterations of data labeling, workers
were paid from US $0.03 to US $0.05 after completing each
HIT. We collected the labels for the 122,135 tweets used in this
study through different iterations, from April 2019 to November
2020. We regularly checked the quality of the submitted tasks
to detect low-quality workers during each iteration and revoke
their access to our tasks. Before the formal initiation of the
process, we pilot-tested the design, response time, and
complexity of the HITs in 2 iterations and revised the workflow
accordingly. To label the data set provided in this paper, we
used AMT as a crowdsourcing service and did not collect any
personally identifiable information from the workers
(participants) during the data labeling task. The experiments
were carried out in accordance with relevant guidelines and the
University of Calgary Conjoint Faculties Research Ethics
Board’s regulations. We implemented the entire workflow in
Python (Python Software Foundation) and used Boto3 Python
Software Development Kit to connect to and work with AMT.

Time Adjustment
The Twitter API returns the date and time that a tweet is
published in the Universal Time Coordinated. To adjust this
time zone based on each tweet’s location, we used the bounding
box of coordinates, which enabled spatial mapping to tweets’
respective city locations, and used a time zone finder in Python.
Given that daytime, month, and weekday can be influential
factors in twitting about each of the PASS categories, and to
better use the date-time data (%a %b %d %H:%M:%S %Y),
we extracted weekday (a), month (b), and hour (H) fields and
stored them as separate features. Figure 1A shows the temporal
distribution of tweets for each of the PASS categories in the
Canadian data set. Moreover, the stacked area charts presented
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in Figures 1B-1D detail the frequency of tweets for each of PASS categories for the top 10 Canadian cities.

Figure 1. The temporal distribution of tweets for the Canadian data set. To make fair comparisons, we used data from December 1, 2018, to May 31,
2020, for these visualizations and removed data collected during the last 2 days of November 2018 and the first 2 weeks of June 2020.

Location Inference
The geospatial metadata provided by the Twitter API are derived
from three main sources: (1) geotagged location, (2) profile
location, and (3) mentioned location in the tweet text. Geotagged
location can be defined by exact location (ie, device location)
at the time of tweeting, by the assigned Twitter place (ie, at the
neighborhood level), or both. Although the exact location field
provides the highest level of precision, it is not a default setting,
and only a small portion of users share their exact latitude and
longitude (eg, only 1%-2% of tweets are geotagged [25]). Thus,
to infer the location of each tweet in LPHEADA, we proposed

and developed a 5-step process that uses tweet-neighborhood
location (ie, place.name and place.full_name), profile
information (ie, profile description and location), and tweet text
to map Twitter’s geospatial metadata for each tweet to physical
locations in the form of 〈ci,pi|si〉, where c denotes the city of a
tweet and p|s represent its corresponding province or state,
respectively (Figure 2). To demonstrate the proposed process,
we used the Canadian geographical names data set (ie, location
dictionary) provided by the Geographical Names Board of
Canada. Each geographical name provided by this data set is
mapped to a province and is classified to a geographic area such
as city, town, village, lake, administrative sector, or recreational
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center. As illustrated in Figure 2, for each ti, we first used a
simple search function to map the place name field associated
with each tweet to its corresponding ci in the location dictionary.
If found, the corresponding province field pi was defined using
equation 1:

where denotes the second component of the field
when the first component is ci (eg, Ontario in the illustrative
example of Figure 2). This will detect geographical areas with
the same names but in different provinces (eg, Leduc is a town
or city in both Alberta and Quebec).

Steps 3-5 of the process deal with unstructured text objects that
can come from all 3 sources of geospatial information. To
extract the location information from these fields, we developed
a string-matching function to detect the longest common
substring between the unstructured text of the data set and the
area field of the location dictionary (eg, first time boating in
Lake Louise #AB is mapped to 〈Lake Louise,Alberta〉 instead
of to 〈Louise,Quebec〉). To manage the complexity of
information extraction from unstructured text, we only used a
subset of areas listed in the location dictionary with high
population density (eg, city, municipality, town, village, and
country). Thus, we excluded areas classified as lake, mountain,
river, bridge, or park.

Figure 2. Five-step location inference process. The location dictionary is an external regional geographical metadata used to extract the exact locations
of tweets. The area field in this process refers to regions at different scales such as city, region, municipality, town, township municipality, municipal
district, dispersed rural community, village, or country.

Demographic Attribute Inference
The demographic variables of age and gender and the
information about the source of each tweet (eg, organizations
vs real users) were not available within the data set collected
from Twitter. We estimated these variables for each tweet using
the M3inference package in Python [26], which uses a
multimodal deep neural architecture for joint classification of
age (binned into four groups: 18, 19-29, 30-39, and 40 years),
gender, and information source of social media data. This
approach uses 4 sources of information, namely, username,
screen name, biography, and profile image of public profiles,
to develop 2 separate pipelines for processing a profile image
and each of the 3 text sources of information. The models
provided in this package are trained on 14.53M, 2.61M, and
23.86M profiles for each of the gender, age, and organization
categories, respectively.

Results

Data Records

Overview
LPHEADA is released in accordance with Twitter’s terms and
conditions, and the developer’s agreement and policies [27],
which prohibits the verbatim release of the collected tweets.
However, releasing the tweet IDs is allowed. Data access
requires a data use agreement between the data user and Twitter
to govern the access and use of the licensed material returned
by the Twitter API. Once approved, using the Tweet ID field,
Twitter metadata can be rehydrated and downloaded as a JSON
(JavaScript Object Notation) file to be mapped to other subsets
of data provided in this study (eg, labels, location, time, and
demographics). A detailed and demonstrative tutorial on
rehydration of the data set using tweet IDs is described on the
GitHub page of the data set [28].
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LPHEADA comprises 366,405 labels for 122,135 unique tweets
generated by 72,749 unique users between November 28, 2018,
and June 19, 2020. This data set is organized into 12 subsets (3
PASS categories for each of the 4 countries). Table 1 provides
the demographics of the data set, including the number of tweets
per PASS category for each country, labels’ characteristics, and
demographics characteristics of the users. Each unique tweet is

assigned a unique integer, known as TweetID. Each ID is
mapped to the core Twitter metadata and to 3 crowd-generated
labels for binary and multi-class classification tasks. Figure 3
visualizes this hierarchy. As illustrated in this figure, for each
labeled tweet, LPHEADA provides the following data
categories.
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Table 1. Characteristics of the data set.a

Australia (N=4067)United Kingdom (N=9154)United States (N=10,193)Canada (N=98,722)Variable

SBSQPASBSQPAPASQPASBdSQcPAb

539
(13.25)

1312
(32.26)

2216
(54.49)

2077
(22.69)

3001
(32.78)

4076
(44.53)

2074
(20.35)

3065
(30.07)

5053
(49.57)

17,367
(17.59)

32,779
(33.2)

48,576
(49.2)

Tweets, n
(%)

Labels

Binary, n (%)

75
(13.91)

499
(38.03)

729
(32.9)

356 (17.14)766
(25.52)

1092
(26.79)

731
(35.25)

1032
(33.67)

1196
(23.67)

6514
(37.51)

11,814
(36.04)

15,337
(31.57)

Yes

469
(87.01)

813
(61.97)

1487
(67.1)

1721
(82.86)

2235
(74.48)

2984
(73.21)

1343
(64.75)

2033
(66.33)

3857
(76.33)

10,853
(62.49)

20,965
(63.96)

33,239
(68.43)

No

Multi-class, n (%)

97 (18)566
(43.14)

846
(38.18)

468 (22.53)934
(31.12)

1227
(30.1)

831
(40.07)

1150
(37.52)

1431
(28.32)

7174
(41.31)

12,818
(39.1)

17,298
(35.61)

YY

147
(27.27)

404
(30.79)

905
(40.84)

916 (44.1)1017
(33.89)

1037
(25.44)

623
(30.04)

1104
(36.02)

1445
(28.6)

1895
(10.91)

7720
(23.55)

6583
(13.55)

YN

33 (6.12)72 (5.49)208
(9.39)

118 (5.68)332
(11.06)

226
(5.54)

147
(7.09)

215
(7.01)

634
(12.55)

1471
(8.47)

2242
(6.84)

4407
(9.07)

NY

258
(47.87)

258
(19.66)

233
(10.51)

572 (27.54)694
(23.13)

1559
(38.25)

469
(22.61)

564
(18.4)

1512
(29.92)

6502
(37.44)

9339
(28.49)

19,622
(40.39)

NN

4 (0.74)12 (0.91)24 (1.08)3 (0.14)24 (0.8)27
(0.66)

10
(0.48)

32
(1.04)

31 (0.61)325
(1.87)

660
(2.01)

666
(1.37)

NC

Users, n

5171004173520022653381020482994491111,49016,98422,601Unique

517858153118402157261417592614366010,91214,91921,772Valid

Gender, n (%)

205
(39.65)

401
(46.74)

520
(33.96)

625 (33.97)1068
(49.51)

911
(34.85)

860
(48.89)

1537
(58.8)

1448
(39.56)

4486
(41.11)

7270
(48.73)

8471
(38.91)

Female

312
(60.35)

457
(53.26)

1011
(66.04)

1215
(66.03)

1089
(50.49)

1703
(65.15)

899
(51.11)

1077
(41.2)

2212
(60.44)

6426
(58.89)

7649
(51.27)

13,301
(61.09)

Male

Age range (years), n (%)

68
(13.15)

132
(15.38)

114
(7.45)

136 (7.39)248
(11.5)

136
(5.2)

318
(18.08)

518
(19.82)

490
(13.39)

1361
(12.47)

2372
(15.9)

1772
(8.14)

≤18

152
(29.4)

301
(35.08)

421
(27.5)

539 (29.29)784
(36.35)

639
(24.45)

841
(47.81)

1450
(55.47)

1469
(40.14)

3358
(30.77)

5575
(37.37)

5804
(26.66)

19-29

139
(26.88)

209
(24.36)

421
(27.5)

486 (26.41)540
(25.03)

705
(26.97)

302
(17.17)

363
(13.89)

761
(20.79)

2605
(23.87)

3265
(21.88)

5609
(25.76)

30-39

158
(30.56)

216
(25.17)

575
(37.56)

659 (35.82)585
(27.12)

1137
(43.5)

298
(16.94)

283
(10.83)

940
(25.68)

3588
(32.88)

3707
(24.85)

8527
(39.16)

≥40

Top 5 cities

SydneySydneySydneyGlasgowLeedsCardiffLos
Ange-
les

Hous-
ton

Los Ange-
les

TorontoTorontoToronto

Mel-
bourne

Mel-
bourne

Mel-
bourne

ManchesterSheffieldEast
Mid-
lands

Hous-
ton

Los
Ange-
les

HoustonCalgaryCalgaryOttawa

BrisbaneBrisbaneBrisbaneSheffieldLondonBristolBrook-
lyn

San
Anto-
nio

Manhat-
tan

OttawaEdmon-
ton

Calgary

PerthAdelaidePerthLeedsLiver-
pool

Lam-
beth

Chica-
go

Chica-
go

ChicagoEdmon-
ton

OttawaVancou-
ver
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Australia (N=4067)United Kingdom (N=9154)United States (N=10,193)Canada (N=98,722)Variable

SBSQPASBSQPAPASQPASBdSQcPAb

AdelaidePerthAdelaideEdinburghScot-
land

Liver-
pool

Flori-
da

Brook-
lyn

FloridaVancou-
ver

MontréalEdmon-
ton

Source, n (%)

26 (5.0)22 (2.56)135
(8.82)

143 (7.77)94
(4.36)

368
(14.08)

76
(4.32)

97
(3.71)

63 (1.72)1105
(10.13)

727
(4.87)

3109
(14.28)

Organiza-
tion

491
(95.0)

836
(97.44)

1396
(91.18)

1697
(92.23)

2063
(95.64)

2246
(85.92)

1638
(93.12)

2551
(97.59)

3391
(92.65)

9807
(89.87)

14,192
(95.13)

18,663
(85.72)

Individual

aThe 3 labels collected for each tweet were consolidated into a single label using majority voting. The discrepancy between the numbers of binary and
multi-class labels is because of how majority voting calculates the truth label for each of these categories.
bPA: physical activity.
cSQ: sleep quality.
dSB: sedentary behavior.

Figure 3. Overview of information tracking using TweetID. Each tweet or text is identified by a unique TweetID (provided by LPHEADA). This ID
is mapped to metadata that includes user_id, place_name, place_full_name, user_description, and created_at. A total of 3 labels are provided for each
TweetID that can be used for developing machine learning models. user_id was used to infer the demographics of each tweet, including gender, age
range, and source. Adjusted time (month/day/hour) was extracted using created_at, and text, place_name, place_full_name, and user_description were
used to identify the city and state or province mapped to each TweetID. LPHEADA: Labelled Digital Public Health Data Set.
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Labels
Let L denote the set of j unique class labels,t represent the tweet

text, and wk represent the kth worker who labeled the tweet,
where k ∈ {1,2,3}. Each lj ∈ L is defined based on two
conditions: whether the tweet is self-reported (c1 ∈ {0,1}) and
whether the tweet reports a recent PASS experience (c2 ∈ {0,1}).
For each PASS category across the 4 countries, the data set
contains the following 2 subsets of labels for each tweet.

Multi-class Labels
In this subset, each tweet t is mapped to quadruple L =
〈tweetID,(w1, lj1),(w2,lj2),(w3,lj3)〉, where j=5 and each lj is
defined based on the values of both c1 and c2 conditions and
can be formulated as {11,10,01,00}. We also let workers choose
a fifth option, called unclear, to ensure they do not give random
labels to tasks that they are not confident of performing
successfully. The 11, 10, 01, 00, and unclear labels correspond
to the YY, YN, NY, NN, and NC labels, respectively, presented
in Table 1.

Binary Labels
Each label lj in this subset is defined based on logical AND
relationship between conditions c1 and c2. Thus, l1=1 if the tweet

presents self-reported PASS surveillance and l1=0 otherwise.
Like the multi-class category, each tweet is mapped to a
quadruple, and there is a class called unclear (l3) with j=3. The
binary labels did not directly come from the AMT workers and
were generated by dichotomizing the collected labels.

User’s Demographic Data
In the demographic data set, each tweet t is mapped to quadruple
D = 〈tweetID,a,g,o〉, where g ∈{male, female} represents the
gender of the user who posted the tweet, a ∈
{≤18,19-29,30-39,40≤} represents their age range, and o ∈
{0,1} shows the source of the tweet (ie, o=1 if the tweet was
posted by an organization and o=0 otherwise). Table 2 shows
the demographic distribution of the Canadian data set based on
gender and age range of the unique users associated with tweet
IDs. We can see that 79.24% (16,027/20,227) of female users
in this data set are inferred to be aged <40 years, whereas this
number for the male users is 57.55% (15,754/27,376). In
addition, the most populated age category for female users
across all PASS categories is 19-29 years, whereas this range
for male users is ≥40 years. Excluding the (female, sleep quality)
category, the age range ≤18 years, regardless of the user sex, is
the least populated category across all PASS categories.

Table 2. Demographic information of users associated with the tweets originated in Canada (N=42,603).

Age group, n (%)

TotalAge≥40 yearsAge 30-39 yearsAge 19-29 yearsAge≤18 years

Physical activity (n=21,772)

8471 (38.91)2124 (9.76)2408 (11.06)3160 (14.51)779 (3.58)Female

13,301 (61.09)6403 (29.41)3201 (14.7)2704 (12.42)993 (4.56)Male

Sedentary behavior (n=10,912)

4486 (41.11)949 (8.7)1108 (10.15)1822 (16.7)607 (5.56)Female

6426 (58.89)2639 (24.18)1497 (13.72)1536 (14.08)754 (6.91)Male

Sleep quality (n=14,919)

7270 (48.73)1127 (7.55)1569 (10.52)3307 (22.17)1267 (8.49)Female

7649 (51.27)2580 (17.29)1696 (11.37)2268 (15.2)1105 (7.41)Male

Inferred Location Data
Each row of the location data set is presented in the form of A
= 〈tweetID,c,p〉, where c and p denote the city and province or
state associated with each tweet, respectively. Using the
TweetID parameter, the location data can be mapped to other
data sets, including labels, user demographics, time, and Twitter
metadata. Each of the c and p variables is inferred based on the
raw variables in Twitter metadata, including text, place objects,
and user’s profile description (Figures 2 and 3). For example,

Figure 4 shows the distribution of labeled tweets for each PASS
category across Canadian provinces (ie, p). For the top 5
provinces, the overall size of the data set is directly proportional
to the population size of each province. However, as only
English tweets from Twitter users are included in the data set,
LPHEADA represents only English-speaking Quebecor’s and
Francophone Quebecor’s tweets in English, placing the province
in fourth place. Moreover, with a lower population than British
Columbia, Alberta had more sedentary behavior and sleep
quality tweets and places in second place (Figure 4).
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Figure 4. Geospatial details of the Canadian data set.

Temporal Data
The temporal data set inferred from the created_at field of the
Twitter metadata presents the adjusted time of each tweet based
on the tweet’s location. Each row of this data set is presented
in the form of T = 〈tweetID,h,d,m〉, where h, d, and m represent
the hour, weekday, and month associated with each tweet,
respectively. The year value does not need any adjustment and
can be extracted directly from the original created_at field. For
example, Figure 1 represents the frequency of tweets in each
PASS category across Canada at the national (Figure 1A) and
city levels (Figures 1B-1D). The highlighted area in Figure 1A
demonstrates the data set’s temporal windows that can be used
to compare different aspects of PASS surveillance between
2019 and 2020.

Twitter Metadata
In addition to the inferred data records mentioned above,
TweetIDs presented in LPHEADA can be used to retrieve
Twitter metadata. This metadata, in addition to the tweet text,
place object, time of the tweet, and user IDs, provides more
details on the tweet and user objects, including the following.

User Object
This object comprises user’s screen name, description, follower
count, friend count, listed count (ie, the number of public lists
that the user is a member of), tweet count (ie, the number of
tweets issued by the user), and profile characteristics (eg, image,
color, and URLs).

Tweet Object
This object comprises hashtags mentioned in each tweet, emojis,
user mentions, URLs, and media (eg, images and videos). For
example, Figure 5 illustrates the distribution of the top 10
hashtags per label for each of the PASS categories in the entire
data set. Hashtags are basically keywords or word strings
prefixed with the symbol # that are used for categorizing and
communicating tweets pertaining to the same topics. Although
the high level of intersection between the hashtags of positive
and negative classes in our data set makes this feature a less
discriminating feature for the development of ML models (eg,
annotated hashtags in Figure 5), this field can still be used by
PASS-related advocacy campaigns on Twitter to brand their
movement and open up their campaigns to users who need more
information about the context [29]. As tagged tweets are easily
archived and accessible, the hashtag field can be effectively
leveraged to improve the public’s engagement in digital PHS
discussions.
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Figure 5. The distribution of the top 10 hashtags per label for each of the physical activity, sedentary behavior, and sleep quality categories. The label
on top of each bar graph shows the class of tweets presented in the graph. For example, the YY category presents all tweets that are self-reported and
describe a recent PASS experience. Similarly, YN presents all self-reported tweets but does not present a recent PASS experience. NC presents tweets
with an unclear label. The number at the end of each bar presents the frequency of its corresponding hashtag. The intersections between 2 classes of
labels for each PASS category are annotated using filled circles (•). Same hashtags are tagged with the same number of circles. This figure is based on
all data collected from Canada, the United States, the United Kingdom, and Australia. PASS: physical activity, sedentary behavior, and sleep.

General Release Notes
We have made our data set publicly available, along with
instructions and Jupyter Notebooks [30,31] to illustrate the
application of the data. All data and code (written in Python 3)
used in this study are available through our GitHub repository
[25]. We provide all necessary instructions, required libraries,
and sample Jupyter Notebooks, allowing replicating our
experiments and using the data set.

Discussion

Technical Validation
To verify the quality of crowd-generated labels and set a
baseline for the data set, we conducted 4 studies. First, we used
a series of statistical inference models to verify the quality of
the labels provided in this data set. Second, we evaluated the
semantic consistency between the data sets collected from the
countries included in our repository. Third, we trained and tested
12 binary classifiers using the labels provided in the data set.
Finally, to investigate the structural differences between all
subsets of LPHEADA, we conducted linguistic and lexical
analysis and visualized the results for further comparisons.
Moreover, to address unseen technical issues of the data set, we
provide a public issue tracker for handling bug reports,
describing solutions to technical issues, data updates, and other
issues and contributions.

Methods of Label Agreement
To measure the consistency of labels generated by AMT
workers, we calculated label consistency (LC) as the average
entropy of the collected labels for each PASS category [32].
For each tweet ti ∈ Ts, where Ts denotes the set of all tweets
related to surveillance category s ∈ {physical activity, sleep

quality, sedentary behavior} and s ∈ {physical activity, sleep
quality, sedentary behaviour}, nij defines the number of answers

given to the jth choice (j ∈ {1,2,3,4,5}), as we have 5 choices
for each tweet), we calculate LC as follows:

|s| denotes the size of the surveillance category s, and as we
collect 3 labels for each tweet, the denominators in the entropy
formula receive the constant value of 3.LC ranges from 0 to 1,
and the values close to 0 show less consistency between
workers’ input. After calculating LC for each PASS category,
we had LC>0.52 for the multi-class labeling and LC>0.73 for
the binary labeling task.

To consolidate the collected labels for each tweet, we used the
majority voting (MV) technique (Table 1). Defining the

estimated label as , and the submitted label by worker w as

lw, the MV approach for a binary labeling task assigns 1 to 

if and assigns 0 if otherwise. The discrepancy
between the number of binary and multi-class labels presented
in Table 1 is caused by the way that MV approach calculates
the truth label for each of these categories. In addition to MV,
there are models, such as those by David and Skene [33] and
Raykar et al [34] and the generative model of labels, abilities,
and difficulties [35], that incorporate the error rate of annotators
(workers), task complexity, and context-sensitive features into
the inference process and can be used to predict truth labels
from crowd-labeled data.

Semantic Consistency
To validate the semantic consistency of the data sets collected
from different countries, we transformed the data set of each
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PASS category into a semantic space of low dimensionality
using latent semantic analysis. For the vector presentation of
each data set, to capture high-level semantics of the text, we
ran the PASS category of each country through a pretrained
word2vec embedding model. This model contains
300-dimensional vectors of 3 million words and phrases trained
on 100 billion words from a Google News data set. The resulting
300-dimensional vectors were then averaged for each tweet.

For each tweetT composed of words 〈w1,w2,...,wn〉, with 
defining the embedding of wi, the embedding of tweetT can be
calculated as:

We then applied truncated singular value decomposition on the
new vectorized data set and kept the top 2 dimensions of the
data set containing the most variance (eg, those directions in
vector space of the data set that contain more information). The

scatterplots presented in Figure 6 illustrate our data sets in a
2-dimensional latent semantic space. The high level of overlap
between the data sets of each PASS category indicates that the
data from different countries cover similar semantic space, but
the space is scaled differently based on the size of the data sets.

Moreover, to further investigate the internal consistency of the
data sets presented in this paper, we trained 3 convolutional
neural network multi-class classifiers (ie, 1 for each PASS
category) to classify tweets into Canada, US, Australia, or UK
classes. Given the highly imbalanced distribution of the classes
in our data set due to the highly unequal number of samples
from each country, we used the average precision (AP) metric
to measure the discrimination ability of our predictive models.
The poor performance of these classifiers (APPA, 37%; APSB,
32%; APSQ, 31%) in detecting each tweet’s country implies a
high level of semantic and syntactic cohesion among the 4
countries in our data set.

Figure 6. Scatter plots of the first 2 dimensions of latent semantic analysis performed on physical activity, sedentary behavior, and sleep categories,
and classified based on the geographic source of the data.

Classification of PASS Categories
For the PASS classification experiment, we used a standard
convolutional neural network classifier with 1 layer of
convolution with global max-pooling on top of a word2vec
embedding trained on 100 billion words of Google News. The
vectors have a dimensionality of 300 and were trained using
the continuous bag-of-words architecture [36]. We used the
binary labels of the data set to train and evaluate the model on
each of 12 data sets provided in LPHEADA. Owing to the
imbalanced distribution of binary labels across these data sets
(Table 1), in addition to precision, recall, F1, and area under
the curve (AUC) scores, we used AP to measure the weighted
mean of precision at different thresholds to make the score

robust to heterogeneous and imbalanced class distributions.
Like AUC score, AP is a model-wide and threshold-free
evaluation metric. However, for imbalance class distributions
with the negatives outnumbering the positives, AP is more
informative than AUC, as it mainly evaluates the fraction of
true positive samples among positive predictions and is more
robust to the relationship between false-positive and
false-negative rates [37]. As shown in Table 3, for each of the
Canada, US, and UK data sets, we find a steady increase in the
overall performance of the classifier as the size of the data set
increase (ie, |PA|>|SQ|>|SB|). Interestingly, the UK data set
achieves the highest performance for the PA category among
all the countries.
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Table 3. Binary classification of tweets using bidirectional long short-term memory.a

Country (%)Metrics

AustraliaUnited KingdomUnited StatesCanada

Physical activity

65807578Precision

68817678Recall

64807678F1

64847683AUCROC
b

66817581APc

Sedentary behavior

74796273Precision

86836473Recall

80796273F1

57636276AUCROC

66666578AP

Sleep quality

61737076Precision

60767076Recall

60737075F1

63667081AUCROC

64717283AP

aThe same classifier is used to classify the data from different countries.
bAUCROC: area under the receiver operating characteristic curve.
cAP: average precision.

Linguistic Properties
To understand and validate the linguistic properties of each data
set, we measured and visually compared the following metrics
for each PASS category grouped by country: (1) sentence count,
(2) grammar score (ie, number of grammar errors), (3) the
average number of syllables per word and the average sentence
length (ie, Flesch-Kincaid Grade Level index [38]), (4) the
average number of words per sentence and the percentage of
words with 3 or more syllables (ie, Gunning Fog index [39]),
(5) a combination of average sentence length and percentage
of difficult words (ie, Dale-Chall readability [40]), (6) sentence
length and number of polysyllables (ie, Linsear Write readability
[40]), (7) number of characters (ie, Coleman-Liau Index
[40,41]), (8) the average number of characters per word and
number of words per sentence (ie, automated readability index
[38]), and (9) the text standard score based on number of

sentences, words, syllables, and characters in each tweet (ie,
text readability consensus). Figure 7 illustrates these
comparisons based on the minimum (red), average (pink), and
maximum (light pink) values of each feature. Although all data
sets have similar behavior in terms of each feature’s minimum
value, the Canadian data set has a lower score for the average
number of syllables per word and the average sentence length
for all PASS categories. Interestingly, the sleep quality data set,
compared with other PASS categories, has a higher value for
the maximum number of grammar errors and sentence count
metrics, whereas all data sets show the same behavior for the
minimum and the average values of these metrics. These
location-specific linguistic characteristics should be considered
when using these data sets to train and evaluate PASS
surveillance ML models. For example, a model trained on the
Canadian data set may not present some linguistic features of
a data set that originated in Australia and vice versa.
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Figure 7. Linguistic comparisons across different countries. ar: automated readability index; c: Coleman-Liau Index; d: Dale-Chall readability; f:
Flesch-Kincaid grade level; g: Gunning Fog index; gs: grammar score; l: Linsear Write readability; sc: sentence count; t: text readability consensus.

Limitations
Several limitations should be noted. First, we collected our data
set using Twitter’s free streaming API, which returns a random
sample of about only 1% of global public tweets produced at a
given time. However, our data set spans 19 months of tweets
posted by users from 4 English-speaking countries, which
provides enough diversity and coverage for conducting
retrospective and comparative digital public PASS studies.
Moreover, the search terms used to filter the data set could have
impacted the topics included in our data set, which may
influence the generalizability of the results derived from this
data set. To address this and to ensure the lists of

context-sensitive terms for filtering all the PASS categories are
comprehensive enough, we used domain-specific ontologies,
WordNet [42], and NLP techniques (eg, topic modeling,
language modeling, and lexical analysis) to detect latent word
patterns to identify PASS-related contexts in unstructured text.

Despite these limitations, the curated, validated [43], and labeled
data set provided in this paper will allow researchers and
practitioners to delve into different aspects of digital PASS
surveillance by developing ML, NLP, and exploratory models.
We believe that the novelty and comprehensiveness of this data
set will help the development, evaluation, and deployment of
digital PASS surveillance systems, and it will be an invaluable
resource for both public health researchers and practitioners.
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Abbreviations
AMT: Amazon Mechanical Turk
AP: average precision
API: application programming interface
AUC: area under the curve
DPHS: digital public health surveillance
HIT: human intelligence task
LC: label consistency
LPHEADA: Labelled Digital Public Health Dataset
ML: machine learning
MV: majority voting
NLP: natural language processing
PASS: physical activity, sedentary behavior, and sleep
PHS: public health surveillance
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