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Abstract

Background: Past research has shown that various signals associated with human behavior (eg, social media engagement) can
benefit computational forecasts of COVID-19. One behavior that has been shown to reduce the spread of infectious agents is
compliance with nonpharmaceutical interventions (NPIs). However, the extent to which the public adheres to NPIs is difficult to
measure and consequently difficult to incorporate into computational forecasts of infectious diseases. Soliciting judgments from
many individuals (ie, crowdsourcing) can lead to surprisingly accurate estimates of both current and future targets of interest.
Therefore, asking a crowd to estimate community-level compliance with NPIs may prove to be an accurate and predictive signal
of an infectious disease such as COVID-19.

Objective: We aimed to show that crowdsourced perceptions of compliance with NPIs can be a fast and reliable signal that can
predict the spread of an infectious agent. We showed this by measuring the correlation between crowdsourced perceptions of
NPIs and US incident cases of COVID-19 1-4 weeks ahead, and evaluating whether incorporating crowdsourced perceptions
improves the predictive performance of a computational forecast of incident cases.

Methods: For 36 weeks from September 2020 to April 2021, we asked 2 crowds 21 questions about their perceptions of
community adherence to NPIs and public health guidelines, and collected 10,120 responses. Self-reported state residency was
compared to estimates from the US census to determine the representativeness of the crowds. Crowdsourced NPI signals were
mapped to 21 mean perceived adherence (MEPA) signals and analyzed descriptively to investigate features, such as how MEPA
signals changed over time and whether MEPA time series could be clustered into groups based on response patterns. We investigated
whether MEPA signals were associated with incident cases of COVID-19 1-4 weeks ahead by (1) estimating correlations between
MEPA and incident cases, and (2) including MEPA into computational forecasts.

Results: The crowds were mostly geographically representative of the US population with slight overrepresentation in the
Northeast. MEPA signals tended to converge toward moderate levels of compliance throughout the survey period, and an
unsupervised analysis revealed signals clustered into 4 groups roughly based on the type of question being asked. Several MEPA
signals linearly correlated with incident cases of COVID-19 1-4 weeks ahead at the US national level. Including questions related
to social distancing, testing, and limiting large gatherings increased out-of-sample predictive performance for probabilistic
forecasts of incident cases of COVID-19 1-3 weeks ahead when compared to a model that was trained on only past incident
cases.
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Conclusions: Crowdsourced perceptions of nonpharmaceutical adherence may be an important signal to improve forecasts of
the trajectory of an infectious agent and increase public health situational awareness.

(JMIR Public Health Surveill 2022;8(12):e39336) doi: 10.2196/39336
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Introduction

Forecasting the transmission of infectious agents can support
decisions made by public health officials and key decision
makers [1,2]. Past forecasts of seasonal influenza, Ebola,
dengue, chikungunya, and Zika have helped officials take
short-term action to stymie the spread and burden of disease
and draft policy decisions [3-8]. The COVID-19 pandemic has
further highlighted the importance that forecasts play in support
of public health situational awareness [9-11].

The majority of forecasts of an infectious disease are generated
by computational models; however, past work has shown that
human judgment is also capable of making accurate predictions
of a diverse number of phenomena [12,13], including infectious
agents [14-17].

Work in human judgment predictions can be categorized into
direct and indirect predictions. Direct predictions are collected
by asking humans to estimate the probability of a future event
of interest. Researchers have used various methods to solicit
direct predictions from a lay, expert, or mixed crowd by varying
the format humans use to submit predictions and training
different algorithms to combine individual forecasts [18-21].
Structured elicitation formalizes how a prediction should be
collected to minimize potential biases or undue influences, and
a researcher could use several different protocols to rigorously
collect predictions [19,20,22].

Past work has found middling performance when asking those
with subject matter expertise to make direct predictions [23,24].
As with experts, the performance of predictions made by lay
people has been mixed, and the variability in predictive
performance is likely due to cues in the environment that are
related to the event of interest [25], as well as people’s reliance
on heuristics to make fast decisions with little information
[26-29]. Humans are subject to several cognitive biases that
negatively impact our ability to make sound judgments [30,31].
That said, there are many examples where predictions based on
mental heuristics outperformed computational models [32].

Work on aggregating direct human judgment predictions has
focused on adjusting for correlated predictions between
individuals, assessing the number of individual predictions to
combine, and determining how to appropriately weight
individuals based on past predictive performance [18,21]. Direct
predictions take advantage of a human’s ability to build a
prediction from available structured data and information
typically unavailable to a computational model, such as
subjective information, intuition, and expertise [33].

Indirect predictions of a future event are collected by (1)
extracting human judgment data from a passive source such as

social media [34-37], (2) actively asking a crowd about
covariates that may be related to the target of interest, or (3)
asking a crowd to take actions in a prediction market, which
can be mapped to probabilistic predictions [38,39]. Indirect
predictions offer an opportunity to train a statistical model on
both measured objective data and subjective data.

Past work that incorporated social media data in a model often
mapped behaviors to a set of random variables and included
these random variables in a statistical model [34-37,40]. Most
studies have framed these human and social media sources as
passive signals that can be mined to contribute to more accurate
forecasts. For example, a recent study leveraged mobility data
gathered from Twitter to improve forecasts of incident
COVID-19 cases at multiple geographic levels [41]. Digital
interaction and engagement data beyond social media may be
useful predictive signals as well, as a recent study found that
Google search trends related to COVID-19 symptoms improved
both nowcasting and forecasting of COVID-19 incident cases
and deaths [42]. Compartmental models have also been proposed
that take into account human behavior by estimating the contact
network between individuals, and the reproductive and recovery
rates, or by building a more complicated function between
disease states that takes into account human behavior [43].
Prediction markets are another approach for aggregating human
judgment, which ask a pool of participants to place bets on the
potential of future events with an incentive for each participant
to optimize their total earnings [38,39]. The goal of creating a
prediction market is not to link behavior to outcomes of interest
but to take advantage of an individual’s ability to extract
alternative data sources that are not accessible to computational
models and respond to the aggregate behaviors of a market.
Models that include indirect predictions report improved
performance compared to models that do not include indirect
predictions; however, performance varies by the infectious agent
and type of data collected. Human behavior and perceptions
can also be used to predict social media engagement and
community behavior that might benefit decision-making of
policy makers and community leaders. For example, past work
has looked at which types of messages from organizations shared
on Twitter foster the strongest public engagement [44], as well
as which sources for health-related information are likely to be
sought out based on demographics and how these factors
contribute to adherence to social distancing guidelines [45].

In this work, we study how crowdsourced questions related to
nonpharmaceutical interventions (NPIs) in one’s community
can contribute to an improved forecast of COVID-19 incident
cases at the national level. We posed 21 questions related to
NPIs to a representative sample from the United States over a
period of 36 weeks. These crowdsourced data were used to
estimate the association between perceptions of adherence to
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NPIs and incident cases at the US national level 1-4 weeks in
advance. In addition, we fit a predictive model and showed that
adding crowdsourced data on perceptions of adherence improves
forecast accuracy for incident cases when compared to a control
that does not include perceptive data.

To the current literature, we contribute a novel data stream of
community-scale perceptive information [46] that shows (1)
strong associations with incident cases 1-4 weeks ahead at the
national level and (2) improved predictive accuracy of
out-of-sample predictions 1-3 weeks ahead when included in a
computational model.

Methods

Ethical Considerations
We obtained retroactive clearance from Lehigh University’s
institutional review board (IRB) to publish the data
(#1808500-1). The IRB determined obtaining informed consent
was not necessary because the data were recorded in such a
manner that the identity of human subjects cannot be readily
ascertained directly or through identifiers linked to the subjects.
Data that have been made publicly available are similarly
deidentified [46]. Participants completed surveys either (1) on
a volunteer basis or (2) in exchange for compensation.
Compensated participants earned credits from the survey
platform that could be redeemed for gift cards or donated to
charity.

Survey Logistics

Participants and Recruitment
There were 10,852 responses to the survey over the course of
36 weeks starting August 30, 2020, and ending April 28, 2021
(281 responses per week on average with an SD of 119). Paid
participants were initially recruited through the SurveyMonkey
platform (4405/10,852, 40.5%) from September 23, 2020,
through February 15, 2021. SurveyMonkey is a survey platform
with access to more than 140 million participants globally. The
platform requires a fee per service and comes with assurance
that paid participants will be a representative sample from the
locale of interest. A survey can be sent to a set of participants
who meet specific criteria (called a targeted audience), such as
country of origin, age, socioeconomic factors (income, marital
status, and employment), etc. Participants in this study were
required to reside in the United States and be at least 18 years
old. Survey design, distribution, and data collection were
managed via SurveyMonkey software.

From February 16, 2021, to April 27, 2021, participants were
recruited from the Pollfish survey platform (3295/10,852,
30.4%). This change was made due to SurveyMonkey delivering
a highly variable number of responses per week and, in some
weeks, failing to deliver the number of responses ordered.
Pollfish is another fee per response survey platform that allows
the researcher to specify a targeted audience and guarantees a
representative number of responses. The goals and services of
SurveyMonkey and Pollfish are similar, though Pollfish software
collects higher resolution spatial data about respondents. The

Pollfish platform collected responses from participants who met
the same criteria as those for SurveyMonkey.

Compensated respondents from SurveyMonkey and Pollfish
accounted for approximately 70% (7700/10,852, 71.0%) of the
responses, and the final approximately 30% (3152/10,852,
29.0%) of participants were recruited as volunteers and
participated through the SurveyMonkey platform from August
30, 2020, to April 28, 2021. These volunteers were mostly
recruited via word of mouth and social media.

We removed participant responses from the analysis if (1) more
than half of the questions (ie, 11 of the 21 questions) were left
blank or had a response of “Don’t know” (4.7% [511/10,852]
of responses) or (2) a participant gave the same response to
every question (2.3% [331/10,852] of responses). All blank and
“Don’t know” responses were excluded from the analysis (9.7%
[20,569/214,200] of total question responses [ie,
NParticipants×21]).

Survey Timeline
A total of 36 weekly surveys were sent to participants beginning
on September 6, 2020, and ending on April 30, 2021. Surveys
were distributed to unique participants each Monday,
Wednesday, and Friday, and surveys were closed on Sundays.
Surveys were not sent to the same participant more than once
in a week.

SurveyMonkey surveys were open to participants for
compensation from the 4th week of the survey period
(September 2020) to the 21st consecutive week of the survey
(February 2021), and SurveyMonkey surveys were open to
volunteers over the entire 36-week survey period. Pollfish
surveys were open to participants from the 21st week of the
survey period (February 2021) until the 36th consecutive week
of data collection (the end of the survey period; April 2021).

In July and August 2020, surveys were sent to participants to
(1) fill out the survey and (2) solicit feedback about whether
the questions asked in the survey were worded clearly. Feedback
from these first 2 pilot surveys was used to update and finalize
surveys sent between September 2020 and April 2021.

Survey Content and Questions
Surveys between September 2020 and April 2021 asked
participants to answer the same set of 21 “core” questions (see
Textbox 1 for a list of core questions). Core questions asked
participants about their perceptions of their community
members’ adherence to NPIs, such as mask wearing, and their
adherence to public health guidelines related to testing,
quarantine, and large gatherings. Participants gave responses
to survey questions on a Likert scale with the following options:
“None/not adopted,” “Few/20%,” “Some/40%,” “Many/80%,”
“All/100%,” and “Don’t know.”

In addition to the 21 core questions, several weeks included
topical questions asking participants about their perceptions of
behavior during specific events (eg, the size of holiday
gatherings). Because these questions were not consistent
throughout the duration of the study, we chose not to include
them in the analyses. At the end of the survey, participants were
also asked for optional thoughts and feedback about how
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COVID-19 is being addressed in their community and how the
survey may be improved in the future (for summary reports of
the data composed in real time, see a previous report [47]).

The order in which questions were presented was randomized
across all 21 questions in the Pollfish surveys, and

SurveyMonkey questions were randomized within 5 categories
that asked participants about individual NPI behaviors,
adherence to guidelines associated with community businesses,
testing and quarantine, awareness, and restrictions or policies
related to educational institutions (see Multimedia Appendix
1).

Textbox 1. List of the 21 “core” questions that were presented to participants in every survey from September 6, 2020, to April 30, 2021.

Questions

What percent of people in your community do you notice are usually:

1. Wearing a mask in public

2. Maintaining social distance

3. Staying at home

How common is it in your community for:

4. Restaurants to have reduced seating

5. Businesses to be closed – work from home only

6. Hairdressers and barbers to be open with restrictions

7. Visitors to senior living facilities to be restricted

8. Commonly touched surfaces to be sanitized

9. Hospitals to have special protection in areas that treat COVID patients

In your community, how common is it for people to follow recommendations or requirements to:

10. Get tested for active virus

11. Get antibody testing to detect prior infection

12. Quarantine people who have been in close contact with people with positive tests

13. Quarantine people with positive tests

14. Quarantine travelers from higher infection places

15. Limit large gatherings of people

How many people in your community are aware of:

16. Local level of COVID infections

17. Statewide targets for reducing COVID spread

18. Local approach to limiting COVID spread

In your state, what percent of:

19. Colleges are closed or holding only remote classes

20. Schools (K-12) are closed or holding only remote classes

21. Violations of COVID restrictions result in fines or police enforcement

Data Acquisition and Availability
Survey data were acquired retrospectively from a team of
actuaries (Daniel Ingram and David Ingram) who were interested
in the study of human behavior, crowdsourcing, and how
perceptions may be predictive of the spread of SARS-CoV-2.
There were several limitations to survey collection: (1)
participant identifiers were not collected longitudinally and so
we cannot track individuals who contributed to the survey, and
(2) the wording of survey instructions was slightly different
across the SurveyMonkey and Pollfish platforms, which could
bias responses.

Individual respondent data of all 21 questions for all 36 weeks
are available in a previous report [46]. The data are in wide

format where each row represents a single survey response, and
columns are present for the date the survey was completed and
the 21 answers to survey questions.

We obtained approval from Lehigh University’s IRB to publish
these data on an open-source platform.

Epidemiological Data
Incident cases per epidemiological week (epidemic week) at
the national level were collected from the Johns Hopkins
University CSSE GitHub repository [48]. This repository stores
cumulative cases per day from January 22, 2020, to the present
for all 50 states and a set of 5 territories. To compute incident
cases for day D, we subtracted cumulative cases at day D from
cumulative cases at day D+1. We computed incident cases for
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day D at the national level by summing incident cases for all
50 states and all 5 territories. Daily incident cases at the national
level were summed to arrive at incident cases per epidemic
week, where an epidemic week began on Sunday and ended on
Saturday.

Assessing Whether the Crowd was Representative of
the US Population
We assessed graphically whether our sample was representative
of the US population by plotting for all states (s) the pair (rs,es),
where rs is the total number of observed participants for state s
and es is the estimated expected number of responses from state
s.

Our estimate es assumes that rs was drawn from a random
variable Rs ∼ Bin(N,θs), where N is the total number of
participants across all surveys and θs is the probability of
choosing at random a citizen registered in state s. We estimated

θs, , as the census estimate for state s divided by the sum of

census estimates for all states. The value es is .

We included an estimated correlation coefficient between the
observed and expected number of participants sampled across
all states. For each state, we also compared the relative
difference between the observed and expected proportions of
participants (Multimedia Appendix 2).

Statistical Setup
We suppose a survey response to question q from participant i,
at time t, xt,i,q, was generated from a random variable Xt,i,q which
has support supp(Xt,i,q) = {0,1,2,3,4} corresponding to 5 different
levels of adherence. The value 0 corresponds to no adherence
or adherence not adopted in the community, and the value 4
corresponds to complete adherence (the response “All/100%”
on the survey). Random variables at time t for question q
between 2 participants are considered independent.

Mean perceived adherence (MEPA) is defined for a specific
question q and at a specific time t as the average of xt,i,q over
participants, or

where N is the number of responses for question q at time t.
MEPAq,t is intended to measure an aggregated adherence to a
specific type of NPI. Though individual responses are discrete,
MEPAq,t is a continuous value. If we define the random variable
MEPAq,t as the average of N independent random variables with
finite variance, then we expect MEPAq,t to have a bell-curved
distribution that resembles the normal distribution restricted to
the closed interval from 0 to 4.

Incident US national COVID-19 cases at epidemiological week
t, (ct), are assumed to be generated from a corresponding random
variable Ct, and we make no additional assumptions about this
time series.

Estimating the Correlation Between MEPA and
Incident Cases
For each survey question, we estimated the correlation
coefficient between MEPA at epidemiological week t and US
national incident cases at epidemiological week t, t+1, t+2, t+3,
and t+4. Line lists of the estimated correlation coefficient at
each week-ahead time point and 95% CIs are available in
Multimedia Appendix 3.

Clustering Questions
We fit a hierarchical clustering algorithm to all 21 MEPA time
series for 2 through 10 clusters. Dissimilarity between 2 time
series was computed using the Euclidean distance. The
Silhouette coefficient was used to assess the quality of fitting
2 clusters, 3 clusters, and so on (up to 10 clusters) [49]. A
dendrogram was plotted to visualize the clustering, and MEPA
time series were grouped and plotted over the epidemiological
week.

Forecast Models With and Without Crowdsourced
Perceptions

SIR Plus Vector Autoregression Moving Average
An SIR (susceptible, infected, and removed) model was fit to
the number of US incident cases to produce an estimated number
of incident cases It, and residuals ( t=ct−It) were modeled with
a vector autoregression moving average (VARMA) model that
included one or more MEPA time series.

The SIR model estimates at time t the number of individuals
existing in the susceptible (St), infected (It), and removed (Rt)
compartment according to

with initial values S0, I0, and R0, and parameters β>0 and γ>0.
We chose S0 equal to the number of individuals in the United
States, according to the most recent census. The initial value I0

was set equal to the reported number of infections for the first
epidemiological week in which survey data were collected
(August 30, 2020, to September 05, 2020), and R0 was set to 0.
The initial value problem above was integrated by the
Runge-Kutta-Fehlberg method, and parameters β and γ were
estimated by minimizing the least squares solution between It

and the reported number of incident cases (estimates of the SIR
model at 4 different time points can be found in Multimedia
Appendix 4).

Residuals were generated as et=ct−It, and we assumed that these
residuals together with one of the MEPA time series can be
modeled as a VARMA model. VARMA assumes the residuals,
and the MEPA time series Mq follows

θ(L)Yt = ψ(L)Ut
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where Yt=[ t, mq,t]', Ut is a random vector following a white

noise process or Ut ∼ N(0,Σ), the operator θ(L)=B1L+B2L
2+···

and Bk is a matrix of coefficients, the operator ψ(L)=A1L+A2L
2

+··· and Ak is a matrix of coefficients, and the operator Lj is the

lag operator or LjYt=Yt−j. We assumed the covariance between
any Ys and Yt is fixed and equal to Σ.

The optimal number of lags for θ and for ψ was estimated every
week through each of the 36 weeks by computing the Akaike
information criterion (AIC) for models fit with all combinations
of 1 through 3 lags for θ and 1 through 3 lags for ψ. The
combination that resulted in the lowest AIC was picked.

SIR Plus Random Forest Plus VARMA
To incorporate all MEPA time series into a model, we first fit
an SIR model to the original time series and computed the
residuals et=ct−It. Next, we trained a random forest regression
f with 5000 trees, where the desired output is  t as a function of
et−1, and all the MEPA time series values, smoothed using
LOWESS, with a lag of 1. The residuals

δt=e5;t−f(et−1,M
ˆ
1,t−1,M

ˆ
2,t−1,··· ,Mˆ

21,t−1), where Mˆ
q,t is the

LOWESS smoothed MEPA time series value for question q at
time t, were computed and were assumed to follow an
autoregressive integrated moving average (ARIMA) process,
or θ(L)δt=ψ(L)ut. Lags were chosen at each week based on the
AIC in the same manner as with the above SIR plus VARMA
model.

Control Model
Our control model followed the same SIR “detrending” of the
original incident case time series and then fit an ARIMA to the
residuals. The ARIMA followed a similar approach as the
VARMA model when modeling

Yt ∼ et

Θ(L)Yt=ψ(L)ut

where ut ∼ N(0, σ2). The only addition to this model is that we
may “difference” Yt by successively subtracting the values of
Y at time t-1 from the values of Y at time t for all times. The
difference computes dt=∇Yt=Yt −Yt−1, fits the model above,
generates forecasts of dt+1, dt+2,···, and then recovers Yt+l by
computing Y(t+l)−1 + d(t+l).

The ARIMA process is a first attempt model in many time series
applications. If models that include MEPA variables cannot
improve upon the above SIR plus ARIMA model, then MEPA
may not add any predictive value over using lagged values of
incident cases alone.

The above VARMA and ARIMA models were fit using the
statsmodels package in Python [50].

Predictive Scoring
Forecasts were scored using the weighted interval score (WIS)
over K central quantiles [51].

where the interval score (ISαk) is

and where F is a predictive cumulative distribution function,
1(x) is an indicator function, the value u represents the (1–α/2)
quantile of F, l represents the α/2 quantile of F, m represents
the median or 0.50 quantile, and c is the eventually reported
truth [52]. Moreover, weight w0 equals 1/2 and wk=αk/2.

The WIS and interval score are negatively sensed, with larger
values indicating worse predictive performance compared to
smaller values. The best possible WIS is 0, and the worst
possible WIS is positive infinity.

Results

Overview
Comparison of the response rates across the 2 survey platforms
(ie, SurveyMonkey and Pollfish) revealed that sample sizes
each week were consistently higher following the switch to
Pollfish. The sample was mostly geographically representative
of the US population with slight oversampling in the Northeast.
MEPA values were more variable at the beginning of the survey
period than at the end, suggesting either that responses became
more consistent over time or that larger sample sizes throughout
the survey period resulted in lower response variability. A
clustering analysis revealed that survey questions could be
clustered into 4 groups based on question type, suggesting that
future surveys might be more efficient by targeting these
question types using fewer questions. A correlation analysis
revealed reasonably strong correlations between several MEPA
time series and incident COVID-19 cases 1-4 weeks ahead.
Several MEPA time series also increased the predictive accuracy
of a forecasting model of incident COVID-19 cases 1-4 weeks
ahead.

Survey Platform Response Rates
SurveyMonkey surveys received an average of 236.06 (SD
81.14) compensated responses per week and an average of 88.80
(SD 22.68) volunteer responses per week, revealing that
response rates for paid surveys were higher but more variable
across weeks than volunteer survey responses. Pollfish surveys
received an average of 272.55 (SD 7.80) compensated responses
per week, and volunteer responses were not collected on the
Pollfish system. Overall, sample sizes each week were
consistently higher following the switch to Pollfish (Figure 1A).
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Figure 1. (A) The number of participant responses per epidemic week for the Pollfish platform (red) and for those who submitted responses on
SurveyMonkey who were compensated (green) and who were volunteers (blue). (B) The proportion of participants who responded to each question in
a given epidemic week. Volunteers made consistent contributions each week as did the Pollfish participants who were compensated, while the number
of compensated participant contributions on the SurveyMonkey platform varied. Questions with a lower proportion of responses corresponded to those
questions that asked about nonpharmaceutical intervention behaviors that were more difficult to observe, such as visitation rules at senior living facilities
(question 7), whether members of the community received antibody testing (question 11), and quarantine of recent travelers (question 14).

Question Response Rates
The mean percentage of questions that a participant answered
was 87.89% (SD 6.15%) (Figure 1B). Questions 1 through 5
and question 15 were answered on average 94.98% (SD 1.47%)
of the time, while questions 7, 9, 11, 14, and 21 had the lowest
probability of responses, with an average response rate of
78.63% (SD 2.09%).

Representative Sampling
States from which most responses were collected included
California (956/10,120, 9.5%), New York (876/10,120, 8.7%),
Pennsylvania (678/10,120, 6.7%), Texas (645/10,120, 6.4%),
and Florida (456/10,120, 4.5%).

The correlation between the observed frequency of responses
and expected frequency was 0.90 (95% CI 0.84-0.94; P<.001)
and suggested that the response rates were proportional to the
population at the state level. We compared for each state the
proportion of observed responses to the proportion of individuals
in that state according to the census (see Multimedia Appendix
2 for the observed proportion, expected proportion, and relative
difference).

Seven states deviated from the expected response rates by more
than 9 SDs. Four states were underrepresented (Mississippi,
Puerto Rico, Florida, and Texas), and 3 states were
overrepresented (Minnesota, Pennsylvania, and New York)
(Figure 2). Pennsylvania was the most overrepresented state.

When both compensated and volunteer responses were included,
the response frequency in Pennsylvania was 10 SDs above the
expectation and when volunteer responses were removed the
response frequency decreased to 3.5 SDs below the expectation.

To assess how switching survey platforms in the midst of data
collection may have impacted the results, we analyzed whether
the representativeness of the sample changed depending on the
survey platform. We computed the average relative difference
between expected and observed responses across all states, and
compared this measure across survey platforms. This analysis
revealed that the state residency of paid participants (ie, not
volunteers) from SurveyMonkey was more representative of
the US population (mean −0.599, SE 0.015) compared with the
state residency of paid participants from Pollfish (mean −0.751,
SE 0.019; t51=7.58; P<.001).
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Figure 2. The number of observed responses to the surveys summed over the survey period (vertical axis) compared to the expected number of total
responses according to the census (horizontal axis). The dashed line indicates if the observed and expected numbers of responses equal one another.
Some states are oversampled and undersampled.

MEPA Over Time
MEPA increased the most from the start to the end of the survey
for the following 3 questions: question 21
(∆mean21=mean21,week36 – mean21,week1=1.29) that asked
participants about knowledge of their state policies and whether
“violations of COVID restrictions result in fines or police
enforcement;” question 11 (∆mean11=1.24) that asked how
frequently community members follow recommendations to
seek “[...] antibody testing to detect prior infection;” and
question 14 (∆mean14=0.57) that asked participants how
frequently members of their community quarantine after
traveling (Figure 3A).

MEPA decreased the most from the start to the end of the survey
for the following 3 questions: question 7 (∆mean7=−1.07) that
asked participants how frequently restrictions are placed on
visiting senior living facilities; question 4 (∆mean4=−0.83) that
asked how frequently restaurants have reduced seating capacity;
and question 9 (∆mean9=−0.81) that asked about the frequency
of special protection in hospitals when treating patients with
COVID-19.

The SD between MEPA values at the beginning of the survey
period (SDbeginning=0.89) was larger than the SD between MEPA
values at the end of the survey period (SDend=0.33) (Figure 3A).
The mean MEPA value over all 21 questions remained similar
over the course of the survey (meanbeginning=3.15, meanend=3.14).
This result could be due to either a convergence in perceptions
over time or reduced variability due to increased sample sizes
throughout the survey period.

The estimated correlation between MEPA values at time t and
t−l was greater than 0.35 for lags of up to 4 weeks (l=4) for a
majority of MEPA time series (Figure 3B) and suggested that
many MEPA time series contain more structure than a random
walk. Responses to the following 5 survey questions had a mean
absolute autocorrelation greater than 0.2: question 3 ([...] staying
at home), question 4 ([...] restaurants complying with Centers
for Disease Control and Prevention [CDC] recommendations
to have reduced seating), question 9 ([...] special protection in
hospital areas that treat COVID patients), question 10 ([...] get
tested for active virus), and question 11 ([...] get antibody testing
to detect prior infection). The mean absolute autocorrelation
for these 5 questions across 34 lagged weeks was above 0.2. A
more detailed view of autocorrelation for a lag of 1 week has
been provided in Multimedia Appendix 5.
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Figure 3. (A) Mean perception of adherence (MEPA) for 21 questions asked over the survey period. (B) Autocorrelation for all 21 MEPA time series
for a lag of 1 to 34 weeks. Perceptions of adherence for questions that asked about state policies (question 21) and antibody testing practices (question
11) show an increase over the survey period, while perceptions of adherence for questions that asked about restrictions placed on senior living facilities
(question 7) and restaurants (question 4) show a decrease. Mean absolute autocorrelations for 5 questions across 34 lagged weeks are above 0.2. The
estimated correlation between MEPA values at time t and t−l is greater than 0.35 for lags of up to 4 weeks (l=4) for a majority of MEPA time series.
MEPA time series appear to contain more structure than a random walk, suggesting that crowdsourced perceptions may be a useful signal for predicting
incident cases.

Clustering Questions According to Similarities in
Responses Over Time
MEPA time series were grouped into the following 4 clusters
(Figure 4A and B): (1) cluster of questions with values between
2.5 and 3.5 (ie, low to medium adherence; Figure 4C), (2) cluster
with values that decreased over time (Figure 4C), (3) cluster
with values near 2.25 at the beginning of the survey and that
increased over time (Figure 4C), and (4) cluster with values
near 1.25 at the beginning of the survey and that increased over
time, ending above 2.50 by the end of the survey (Figure 4C).

Cluster quality as measured by the silhouette coefficient was
the highest when grouping MEPA time series into 4 clusters;
however, the silhouette coefficient for 4 clusters was similar to
the silhouette coefficient for 2 and 3 clusters (Figure 4A). In
the cluster in Figure 4C, there may exist 2 clusters—one with

increasing adherence over time and another with decreasing
adherence over time.

MEPA time series within the same cluster asked participants
about similar adherence behaviors. Questions corresponding to
avoidance behaviors (questions 2, 12, and 15) were more similar
to one another than the other questions, as were questions that
asked about limitations to businesses (questions 4 and 6),
awareness of the high infectivity rate of the virus at a local level
(questions 2 and 13), and awareness at the state level (questions
16 and 17). These results suggested that participants might have
considered groups of questions in similar ways (eg, those related
to avoidance), which suggests that future surveys might benefit
from targeting these factors more directly.

For autocorrelations between MEPA responses 1-4 weeks ahead
across the different clusters, see Multimedia Appendix 6.
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Figure 4. Hierarchical clustering of 21 mean perception of adherence (MEPA) time series using Euclidean distance as a measure of dissimilarity
between 2 time series. (A) Silhouette coefficients for 2-10 clusters of MEPA time series. (B) Dendrogram that reports questions on the horizontal axis
and dissimilarity between individual questions or clusters on the vertical axis. (C) MEPA time series clustered into 4 groups corresponding to the highest
silhouette coefficient. Because MEPA time series can be separated into similar groups, a smaller survey may be able to capture the same patterns of the
US public’s perceptions of adherence to nonpharmaceutical interventions.

Correlation Between Perceptions of Adherence and
Reported Incident Cases
The estimated correlation (ρ) between the MEPA time series
representing responses to the question “What percent of people
in your community do you notice are usually maintaining social
distance?” and incident cases 1 week ahead was −0.46 (95%
CI −0.69 to −0.15). Moreover, the correlation (ρ) was −0.3 (95%
CI −0.67 to −0.12) for incident cases 2 weeks ahead, −0.35
(95% CI −0.61 to −0.02) for those 3 weeks ahead, and −0.26
(95% CI −0.55 to 0.08) for those 4 weeks ahead (Figure 5). The
MEPA time series for the question “In your state, what percent

of colleges are closed or holding only remote classes?” had an
estimated correlation (ρ) of 0.46 (95% CI 0.15 to 0.69) for cases
1 week ahead. Moreover, the correlations (ρ) were 0.36 (95%
CI 0.04 to 0.62), 0.27 (95% CI −0.07 to 0.55), and 0.15 (95%
CI −0.19 to 0.46) for reported incident cases 2 weeks, 3 weeks,
and 4 weeks ahead, respectively, at the US national level (Figure
5, row 19). Correlation coefficients and 95% CIs for each
question are available in Multimedia Appendix 3. Taken
together, these results show that changes in the perceptions of
NPI compliance (ie, MEPA time series) are associated with
changes in COVID-19 incident cases.

Figure 5. Linear correlation between 21 mean perception of adherence (MEPA) time series associated with questions about the perception of adherence
and incident cases 1-4 weeks ahead at the US national level. The correlation between question 2 that asked “What percent of people in your community
do you notice are usually wearing a mask in public?” and incident cases 1-4 weeks ahead was −0.26 or lower, and the correlation between question 19
that asked “In your state, what percent of colleges are closed or holding only remote classes?” and cases 1-3 weeks ahead was 0.27 or higher. Select
crowdsourced perceptions of adherence to nonpharmaceutical interventions correlated with short-range and long-range reported incident cases at the
national level.
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Out-of-Sample Improvement in Forecasting With the
Crowdsourced MEPA
Models that included both historical counts of US national
incident cases and MEPA data changed the forecast trajectory
and the width of prediction intervals compared to a model that
only took into account the past time series of incident US
national cases (Figure 6). The model that included historical
counts and a random forecast regression incorporating all MEPA
data proposed a similar trajectory to the ARIMA (control) model
that included only case data, had wider prediction intervals
before the peak of reported cases, and had a smaller prediction
interval just after the peak of reported cases (Figure 6A and F).

The proportion of times a forecast that included a single MEPA
time series generated a smaller (improved) WIS compared to a
model that did not use MEPA, was above 50% for the majority
of adherence questions for forecast horizons of 1-3 weeks ahead
(Figure 7). MEPA most improved forecasts 2 weeks ahead. The
MEPA time series corresponding to the questions “What percent
of people usually stay home?” “How common do people follow
recommendations to receive antibody testing?” and “How

common do people in your community follow guidelines to
limit large gatherings?” improved 76% (95% CI 58%-94%) of
forecasts 2 weeks ahead. For 3 weeks ahead, the question “What
percent of people usually stay home?” improved 76% (95% CI
58%-94%) of forecasts and the machine learning model that
incorporated all adherence questions improved 76% (95% CI
58%-94%) of forecasts. Including MEPA data improved
forecasts 4 weeks ahead minimally and for only a small set of
questions.

Compared with the control model, including MEPA data
improved forecast accuracy 1-4 weeks ahead (ie, reduced WIS)
at and after the peak reported number of incident cases (Figure
8). Forecasts 1 week ahead showed consistent small gains in
forecast accuracy over time (Figure 8A). Forecasts 2 and 3
weeks ahead showed large gains in forecast accuracy at and just
after the peak number of incident cases (Figure 8B and C), and
improvements in forecast accuracy 4 weeks ahead appeared
near the peak number of cases (Figure 8D). Overall, these results
revealed that certain perceptions of NPI compliance can be
useful signals in a model predicting COVID-19 incident cases.

Figure 6. Forecasts of US national incident cases 1-4 week ahead at 6 time points throughout the survey period by first fitting an SIR (susceptible,
infected, and removed) model and then modeling the residuals by (A) fitting an autoregressive model with 1 lag, (B-E) fitting a vector autoregression
moving average that includes the residual time series and mean perception of adherence (MEPA) values for select questions, and (F) fitting a random
forecast to residuals including MEPA values for all questions asked of participants plus an AR(1) model. AR(1): autoregression with lag of 1; ARIMA:
autoregressive integrated moving average; RF: random forest.
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Figure 7. The proportion and 95% CIs of weighted interval scores (WISs) that were improved (smaller) for an SIR (susceptible, infected, and removed)
plus vector autoregression moving average (VARMA) model that included mean perceived adherence (MEPA) time series 1-21 compared to the control
SIR model without using a MEPA time series for forecasts 1-4 weeks ahead. An additional model, to the right of model number 21, is an SIR model
plus a random forecast that includes all 21 MEPA time series and an ARIMA to model residuals. The majority of MEPA time series improved forecasts
of incident cases 1 and 2 weeks ahead. A smaller number of MEPA time series improved forecasts 3 weeks ahead, and forecasts 4 weeks ahead were
improved only modestly.

Figure 8. The differences in weighted interval scores (WISs) for forecasts of US national incident cases (A) 1 week ahead, (B) 2 weeks ahead, (C) 3
weeks ahead, and (D) 4 weeks ahead between models that included 1 mean perceived adherence time series and the control model that used only past
incident case data to produce a forecast. The differences in WISs correspond to the forecasted epidemic weeks, not when the forecast was generated.
The reported number of incident cases at the US national level is provided in grey. A point represents the difference in the WIS at the specific epidemic
week and is colored red when a model weakens predictive performance and blue when this forecast improves upon the control model. Including
perceptions of human behavior surrounding nonpharmaceutical interventions improves predictions at and after peak incident cases.
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Figure 15. Inline graphic 7.

Discussion

We found that crowdsourced perceptions of adherence to NPIs
correlated with incident cases 1-4 weeks ahead at the US
national level and that including perceptual data into a
computational model improved forecast accuracy 1-3 weeks
ahead. Because responses from a crowd can be collected quickly
(ie, within hours of distributing an online survey), these
responses can be included into a computational model that could
provide real-time weekly forecasts of epidemiological targets
to organizations such as the CDC.

Since forecasts based on public perceptions are rapid and
informative, these forecasts would be highly effective at times
following the issuing of new NPI guidelines from state or federal
agencies to assess the effectiveness of these new guidelines.
Our models could reveal the extent to which people perceive
public compliance with these guidelines and how changes in
compliance impact the trajectory of an infectious agent, thereby
informing public health officials about which interventions are
able to curtail risk-seeking behaviors. These forecasts may also
be valuable for policy makers and community leaders as they
decide, for example, whether college classes should be held in
person or remotely.

This work supports the hypothesis that a crowd may be able to
assign realistic probabilities to outcomes about community
adherence to NPIs in line with recent work, which has shown
that lay people can elicit accurate probabilistic predictions of
diverse real-world phenomena such as box-office income of a
new movie or the impact of an infectious agent [13,53];
however, much more work needs to be completed to assess to
what degree including human judgment perceptions improves
the predictive accuracy of an infectious disease model
(Multimedia Appendix 7). Past literature about lay people’s
ability to make accurate probabilistic predictions is mixed. Some
past work suggests people may not be able to map environmental
cues to accurate probabilities of outcomes [54], while other
work has shown people’s statistical intuitions may overlap with
the statistics of their environment [53].

Evidence from this study suggests that participants were able
to gauge what activities they were able to observe and predict,
and at what spatial level they could make predictions. For
instance, participants were given the option to reply “Don’t
know” or to leave questions blank. Participants responded more
often to questions that were related to their environment, such
as the proportion of people wearing masks, and responded less

often to questions that were not related to their environment,
such as restrictions on visitation to senior living centers. Survey
questions during the initial pilot stage of the study asked
participants to make predictions at the state level rather than
community level, and many participants during this pilot stage
protested that they could not make reasonable predictions at
this level, suggesting that participants have some sense of how
far a local community-level prediction could be extrapolated.
Lastly, strong correlations between weekly responses to specific
NPI questions indicated that the judgment of participants in this
study was consistent (see Multimedia Appendix 5). Our results
may support the idea that human judgment is predictive of
incident cases because people can accurately perceive and make
inferences about their surroundings.

However, relying on human judgment presents challenges that
are absent when using computational models for prediction.
Human judgment is susceptible to a wide array of biases often
triggered by subtle changes in how a judgment prompt is
presented [55]. Seemingly irrelevant information can have large
impacts on judgment. For example, when asked to complete an
irrelevant task, such as writing down the last 2 digits of their
social security number before bidding on common items (such
as a bottle of wine), people with higher social security numbers
bid more money on wine than those with lower numbers [56].
Such findings underscore the importance of carefully crafting
judgment questions to avoid activating judgment biases. Human
judgment data must also be inspected for quality, as participants
in this study often left one or more questions blank in a single
survey and approximately 2% of participants gave the same
response for every question, suggesting that they were not
reading the survey items closely. Lastly, recruiting human
participants demands time, effort, and money. Recruiting
volunteers saves money but demands effort and implies an
uncertain number of responses, which can be challenging when
collecting data in response to a time-sensitive event such as an
epidemic or pandemic. Participation rates in this study tended
to increase throughout the data collection period, which created
difficulties in assessing whether changes in MEPA over time
were driven more by changes in perceived adherence or by
changes in participation rates.

There are several limitations to address in future work. One
limitation that we wish to overcome is that participants were
not traced longitudinally, and so, we could not analyze how
responses from individuals changed over time. Another
limitation is that emails used to solicit volunteer participants
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contained a link to a summary of the findings from previous
months of data collection. While this may have added value to
a participant’s experience in the study, it may have biased their
subsequent responses by anchoring their judgments to those
summary values [56]. Another limitation arose from switching
survey platforms (from SurveyMonkey to Pollfish) in the midst
of data collection. The need for this switch was driven by a
sudden decrease in the ability of SurveyMonkey to provide the
requested number of paid responses each week (see Figure 1A).
This switch seemed to have an impact on the geographical
representativeness of the sample, as Pollfish provided a less
representative sample than SurveyMonkey. Because switching
survey platforms was confounded with both number of responses
and epidemic week, the impact that switching survey platforms
may have had on responses is largely unclear. Additionally,
variable sampling rates across states created difficulties in
estimating predictions at the state level. Oversampling from
states with lower populations would ensure that a predictive
model has sufficient data for estimating reliable predictions.
No other demographic information was consistently collected
throughout the surveys, and so, we were not able to assess
whether the sample was representative for other demographic
dimensions. Finally, there is evidence to suggest that
self-expression may vary by geographic location [57]. Future
research should consider how location and surrounding
demographics may impact perceptions by, for example, leading
to an overestimation of the prevalence of mask wearing in more
densely populated areas.

Future research should explore whether more accurate and
calibrated predictions of incident cases from human judgments

can be made by matching the spatial scale of the questions posed
to the crowd with the epidemiological target of interest. Instead
of predicting incident cases at the national level, much stronger
connections may be observed between state- or community-level
judgments and state- or community-level incident cases. For
example, one could investigate whether the accuracy of forecasts
depends on factors such as the geographical size of the state
(eg, Texas vs Delaware) or ethnic diversity (eg, California vs
West Virginia). Additionally, respondents could be asked to
judge compliance specifically at the level of their county, and
then, these judgments could be added to a model that produces
county-level predictions. Strong predictions at this local level
would be valuable for community leaders when deciding, for
example, whether a town hall meeting should be in person or
remote. A significant challenge to estimating these local
predictions is collecting enough responses from a given
community over time, which, as mentioned above, can be
remedied by targeting and oversampling from areas of interest
to make local predictions. Future research should also explore
whether perceptions of NPI compliance can predict other
epidemiological targets. While we focused on incident cases in
this study, our current methods should scale to other prediction
outcomes of interest, such as COVID-19 hospitalizations and
deaths.

Crowdsourced perceptions of human behavior, such as
nonpharmaceutical adherence, may be a fast and informative
signal that can improve probabilistic forecasts of the trajectory
of an infectious agent and may have important implications for
policy around infectious diseases.
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