
Original Paper

A Smartphone-Based Platform Assisted by Artificial Intelligence
for Reading and Reporting Rapid Diagnostic Tests: Evaluation
Study in SARS-CoV-2 Lateral Flow Immunoassays

David Bermejo-Peláez1*, PhD; Daniel Marcos-Mencía2*, MD; Elisa Álamo1, MSc; Nuria Pérez-Panizo3,4, NP; Adriana

Mousa1, MSc; Elena Dacal1, PhD; Lin Lin1,5, MSc; Alexander Vladimirov1, MSc; Daniel Cuadrado1, MSc; Jesús

Mateos-Nozal3,4, MD, PhD; Juan Carlos Galán2,4,6, PhD; Beatriz Romero-Hernandez2,4,6, PhD; Rafael Cantón2,4,7,

PhD; Miguel Luengo-Oroz1, PhD; Mario Rodriguez-Dominguez2,4,6, PhD
1Spotlab, Madrid, Spain
2Servicio de Microbiología, Hospital Universitario Ramon y Cajal, Madrid, Spain
3Servicio de Geriatría, Hospital Universitario Ramon y Cajal, Madrid, Spain
4Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
5Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
6CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
7CIBER en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
*these authors contributed equally

Corresponding Author:
Miguel Luengo-Oroz, PhD
Spotlab
P.º de Juan XXIII, 36B
Madrid, 28040
Spain
Phone: 34 916256927
Email: miguel@spotlab.ai

Abstract

Background: Rapid diagnostic tests (RDTs) are being widely used to manage COVID-19 pandemic. However, many results
remain unreported or unconfirmed, altering a correct epidemiological surveillance.

Objective: Our aim was to evaluate an artificial intelligence–based smartphone app, connected to a cloud web platform, to
automatically and objectively read RDT results and assess its impact on COVID-19 pandemic management.

Methods: Overall, 252 human sera were used to inoculate a total of 1165 RDTs for training and validation purposes. We then
conducted two field studies to assess the performance on real-world scenarios by testing 172 antibody RDTs at two nursing homes
and 96 antigen RDTs at one hospital emergency department.

Results: Field studies demonstrated high levels of sensitivity (100%) and specificity (94.4%, CI 92.8%-96.1%) for reading IgG
band of COVID-19 antibody RDTs compared to visual readings from health workers. Sensitivity of detecting IgM test bands was
100%, and specificity was 95.8% (CI 94.3%-97.3%). All COVID-19 antigen RDTs were correctly read by the app.

Conclusions: The proposed reading system is automatic, reducing variability and uncertainty associated with RDTs interpretation
and can be used to read different RDT brands. The web platform serves as a real-time epidemiological tracking tool and facilitates
reporting of positive RDTs to relevant health authorities.

(JMIR Public Health Surveill 2022;8(12):e38533) doi: 10.2196/38533
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Introduction

To control COVID-19 pandemic, timely and accurate
early-detection strategies of SARS-CoV-2 infections have been
critical to slow down the spread of the virus. The use of rapid
diagnostic tests (RDTs), both for detection of antibodies and
antigens, has contributed to improve COVID-19 testing capacity,
reducing costs of diagnosis, and allowing for fastest results [1].
First, COVID-19 RDTs were intended to be used just by
professional health workers who have extensive experience in
the use of this tool for different infectious diseases [2,3]. Later,
multiple health ministries approved home testing kits, improving
the accessibility to testing and taking pressure off health
institutions. Nevertheless, self-testing strategies have some
limitations; the general population is not familiar with the use
of RDTs; and a minimum training is needed for sampling,
testing, and result interpretation. Furthermore, as it has been
seen during the latest waves [4], many results go unreported,
impairing posttesting counseling and epidemiological
surveillance.

Combining RDTs with digital tools, artificial intelligence (AI)
and mobile health approaches can help standardize result
interpretation and facilitate immediate reporting and monitoring
of results [5]. Several works have been proposed to
automatically interpret photographs of RDTs using different
image processing approaches, from classical methods, such as
morphology-based methods, to more sophisticated machine
learning or deep learning methods [6-21]. Nevertheless, these
approaches are not capable of handling 2-band and 3-band RDTs
indistinctly, are not connected to a cloud platform that enables
the collection of mass screening results, and many require
additional hardware. In this paper, we describe the development
and field validation of a mobile-based tool (exhaustively tested
with a variety of phone models and different lighting conditions)
that could be used with any smartphone for reading and
reporting multiple types of SARS-CoV-2 RDTs and is connected
to a real-time epidemiological monitoring web platform (Figure
1).

Figure 1. TiraSpot system is composed of (1) a mobile app for test digitization and result recording, (2) an artificial intelligence (AI) model for rapid
diagnostic test (RDT) result interpretation, and (3) a web platform where all collected data can be visualized, allowing for result corrections in the cases
in which a discrepancy exists between AI and user interpretation. Ab: antibody; Ag: antigen.
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Methods

Procedure
This study was divided into 2 phases: first, the training and
validation of an AI algorithm for the automatic interpretation
of RDTs; second, 2 field studies to assess the performance of
the AI-based system for reading both COVID-19 antibody and
antigen RDTs in real-world scenarios.

Ethics Approval
Ethics approval for the study was obtained from the Clinical
Research Ethics Committee of the Ramón y Cajal University
Hospital (127/21).

Algorithm Training and Validation Data Set
Ensuring standardized image acquisition is a key step in
developing robust AI algorithms. With this purpose, all
inoculated RDTs were digitized using the TiraSpot mobile app
(Spotlab), which guarantees image quality and correct
positioning of RDTs in the image by using a simple augmented
reality system that displays a mask with the exact geometry of
a given RDT in the screen of the smartphone, helping users to

correctly align the RDT before making the picture (screenshot
of the mobile app is presented in Figure 1). Each RDT brand
has its own mask that guides the user to take a standardized
picture. In addition, after the picture is taken, the user is
presented with the picture and asked to confirm that it is aligned
and on focus. If the user rejects the picture, the user is allowed
to take another one. The mobile app also allows users to record
sample metadata, which together with the images and their
initial visual interpretation are uploaded to the cloud platform.
To gain robustness and generalizability, a total of 11 different
smartphone models, ranging from low- to high-range devices,
were used in this study.

An AI algorithm was developed to predict test results based on
a picture of the RDT. With this purpose, the image is first
preprocessed by cropping the original image to extract a region
of interest that contains the relevant part of the picture (strip of
the RDT). Then, image normalization and contrast enhancement
(Contrast Limited Adaptive Histogram Equalization method)
were applied to highlight faint bands. Finally, the processed
region of interest is introduced into a convolutional neural
network (MobileNet V2 [22]), which then predicts the test result
(Figure 2).

Figure 2. Image processing pipeline. Original image acquired with the TiraSpot app is first cropped to extract region of interest. The cropped image
is then preprocessed and introduced to a convolutional neural network, which predicts rapid diagnostic test (RDT) result. AI: artificial intelligence.

For generating the training image data set, 12 human sera from
patients with positive SARS-CoV-2 polymerase chain reaction
tests (infected between March and May 2020) and with a
positive enzyme-linked immunosorbent assay (ELISA) test
were used. Each serum sample was serially diluted with
reference human sera (H5667; Sigma-Aldrich) until it reached
a negative result when inoculated in a COVID-19 antibody test.
Each dilution was tested in 3 replicates for each of the 3 brands
tested (ie, 2019-nCoV IgG/IgM Rapid Test Cassette, Hangzhou
AllTest Biotech Co., Ltd.; Panbio COVID-19 IgG/IgM Rapid
Test Device, Abbott; and UNscience COVID-19 IgG/IgM Rapid
Test, Wuhan UNscience Biotechnology Co., Ltd.), resulting in
433 RDTs inoculated (61 positive for both IgG and IgM; 166
positive for IgG and negative for IgM; 43 negative for IgG and
positive for IgM; and 164 negative for both IgG and IgM).
Additionally, 12 COVID-19 antigen RDTs (Panbio COVID-19
Ag Rapid Test Device, Abbott; 6 positive and 6 negative) were

also included to train the algorithm to read not only 3-band tests
(such as the COVID-19 antibody tests used in this study) but
also 2-band RDTs, such as COVID-19 antigen tests. The entire
training data set consisted of 3614 images.

For collecting the independent validation data set, 240 human
sera samples independent from the ones used for training were
used to inoculate 720 COVID-19 antibody RDTs (each serum
was tested in triplicate using the aforementioned brands). The
samples were selected ensuring all possible results are well
represented along the data set (108 positive for both IgG and
IgM; 321 positive for IgG and negative for IgM; 27 negative
for IgG and positive for IgM; and 264 negative for both IgG
and IgM).

Each RDT was visually read by multiple observers (3 to 5), and
the ground truth was established as the majority result from
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total analyzers. All sera samples were collected between May
and June 2020.

Field Validation Studies
The workflow for the field studies was as follows: a health
professional digitized the RDTs by using the app and was asked
for recording the visual interpretation of the test result; images
were uploaded to the cloud platform and processed by the AI
algorithm; and discrepancies between the interpretation made
by the health professional and that obtained by the algorithm
were subsequently reviewed by an external health professional
through the platform.

The first field study used the system as part of a seroprevalence
study conducted in two nursing homes in Madrid, Spain. A total
of 172 vaccinated health care personnel were included in this
study; a finger-prick blood sample was taken from them and
inoculated into SARS-CoV-2 Rapid Antibody Test (Roche). A
trained nurse digitized the RDTs and recorded their results using
the app.

The second field validation study tested the system to read also
COVID-19 antigen tests (ie, Panbio COVID-19 Ag Rapid Test
Device, Abbot) composed of 2 bands (ie, control and test). This
study was carried out at the emergency department of the Ramón
y Cajal Hospital in Madrid, Spain, where 96 individuals’ nasal

swabs were inoculated in antigen tests and digitized by
experienced health professionals using the app.

All images were acquired in very diverse real-world conditions
involving different users, including different environmental
illuminations (eg, different lighting color temperatures and a
wide range of lighting), and using different smartphone models
that ranged from low- to high-range devices. This was done
with the purpose of developing and validating the robustness
of the algorithm that may change in real life.

Results

AI Algorithm Training and App Validation
All images acquired with the app were uploaded to a cloud
platform, where the AI algorithm processed the photographs to
predict the result interpretations. As shown in Table 1 (part 1),
when comparing the visual interpretations (used as ground truth)
against the AI algorithm, the performance was high for all
brands of RDT tested, obtaining a mean sensitivity and
specificity of 98% and 100%, respectively, for the detection of
the IgG band; and a mean sensitivity and specificity of 80%
and 89%, respectively, for the detection of the IgM band. No
significant differences were found in algorithm performance
between different smartphone models or across different lighting
conditions, pointing out the robustness of the readout algorithm.
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Table 1. Performance of the artificial intelligence algorithm for predicting rapid diagnostic test (RDT) results with respect to human visual reading in
(1) the validation set, (2) the field study for reading antibody (Ab) RDTs, and (3) in the field study when reading antigen (Ag) RDTs.

Tests, nSpecificity (95% CI)Sensitivity (95% CI)AUCa (95% CI)Evaluation data

PositiveNegative

1: RDT manufacturer (Ab) and band

Abbott

14594100 (100-100)96.4 (94.1-98.8)99.5 (98.7-100)IgG

5518490.7 (87.0-94.3)80.8 (75.8-85.8)92.5 (85.4-99.6)IgM

UNScience

140100100 (100-100)100 (100-100)100 (100-100)IgG

2621488.6 (84.6-92.6)80.0 (74.9-85.1)89.5 (83.7-95.2)IgM

AllTest

14496100 (100-100)97.9 (96.1-99.7)99.8 (99.4-100)IgG

5418686.0 (81.6-90.4)79.6 (74.5-84.7)90.6 (85.0-96.1)IgM

Global

429290100 (100-100)98.1 (97.1-99.1)99.8 (99.5-100)IgG

13558489.0 (86.2-90.9)80.0 (77.1-82.9)90.8 (87.4-94.3)IgM

2: RDT manufacturer (Ab) and band

Roche

1541894.4 (92.8-96.1)100 (100-100)100 (100-100)IgG

616695.8 (94.3-97.3)100 (100-100)99.6 (96.0-100)IgM

3: RDT manufacturer (Ag) and band

Abbott

2868100 (100,100)100 (100,100)100 (100,100)Test

aAUC: area under the curve.

Validation in Real-world Scenarios
From the 172 RDTs used in this study (5 positive for both IgG
and IgM; 149 positive for IgG and negative for IgM; 1 negative
for IgG and positive for IgM; and 17 negative for both IgG and
IgM), we only found 9 discrepancies between test result
interpretations made by health professionals and those made by
the AI algorithm. From these 9 cases, 2 were incorrectly
classified by the algorithm due to an incorrect image acquisition
with the app. The remaining discrepant cases were further
reviewed by a second professional, and the AI-based system
allowed for the detection and modification of the result with
respect to the initial health professional interpretation in 4 cases
by confirming the result predicted by the algorithm.

The overall performance of the algorithm with respect to the
ground truth is shown in Table 1 (part 2). It should be noted
that the performance of the system is high even when used with
an RDT different from those used for training the algorithm,
suggesting its potential use with any RDT on the market. The
slight disparity in the performance of IgM band identification
in antibody RDTs between the validation set and this field study
may be explained by the presence of very faint signals that were
almost invisible in the photographs.

Regarding the second field study for reading COVID-19 antigen
RDTs, we found that all tests used and digitized using the
TiraSpot app (ie, 58 negative and 30 positive) were correctly
interpreted by the proposed system (Table 1, part 3),
demonstrating that the system can also be applied for reading
2-band (ie, control and test) and 3-band (ie, IgG, IgM, and
control) tests.

Discussion

We described the usefulness of an app for reading and result
interpretation of lateral flow RDTs for SARS-CoV-2 testing.
The results are sent to a cloud platform that allows for case
identification and confirmation, quality control, and real-time
monitoring.

Our AI algorithm demonstrates excellent performance,
especially in prospective validation of real-life scenarios and
for both antibody and antigen detection tests. The algorithm
performed as well in RDT brands that were not used at all for
training purposes, making the solution suitable for other RDTs,
including other diseases. Compared with previous studies [6-21],
our system is able to identify individual bands of the RDTs,
allowing for complex result reading and sending them in
real-time to a cloud platform. A requirement and limitation of
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the proposed system is the correct acquisition of the image
(acquisition error in the field studies was <0.8%).

In conclusion, the use of TiraSpot (Figure 1) is a useful tool for
reporting, real-time monitoring, and quality control, as the
results can be reviewed by specialists when needed. This is
especially important in contexts where massive testing is to be

done and the likelihood of subjectivity and errors in the
interpretation of the result is higher. It is also important in the
validation of self-diagnostic tests performed by untrained users,
as it avoids the loss of information in case the user does not
report it, and it provides an efficient system to confirm and
report data, which has been a key challenge during the latest
pandemic waves.
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