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Abstract

Background: Traditionally, dengue prevention and control rely on vector control programs and reporting of symptomatic cases
to a central health agency. However, case reporting is often delayed, and the true burden of dengue disease is often underestimated.
Moreover, some countries do not have routine control measures for vector control. Therefore, researchers are constantly assessing
novel data sources to improve traditional surveillance systems. These studies are mostly carried out in big territories and rarely
in smaller endemic regions, such as Martinique and the Lesser Antilles.

Objective: The aim of this study was to determine whether heterogeneous real-world data sources could help reduce reporting
delays and improve dengue monitoring in Martinique island, a small endemic region.

Methods: Heterogenous data sources (hospitalization data, entomological data, and Google Trends) and dengue surveillance
reports for the last 14 years (January 2007 to February 2021) were analyzed to identify associations with dengue outbreaks and
their time lags.

Results: The dengue hospitalization rate was the variable most strongly correlated with the increase in dengue positivity rate
by real-time reverse transcription polymerase chain reaction (Pearson correlation coefficient=0.70) with a time lag of −3 weeks.
Weekly entomological interventions were also correlated with the increase in dengue positivity rate by real-time reverse transcription
polymerase chain reaction (Pearson correlation coefficient=0.59) with a time lag of −2 weeks. The most correlated query from
Google Trends was the “Dengue” topic restricted to the Martinique region (Pearson correlation coefficient=0.637) with a time
lag of −3 weeks.

Conclusions: Real-word data are valuable data sources for dengue surveillance in smaller territories. Many of these sources
precede the increase in dengue cases by several weeks, and therefore can help to improve the ability of traditional surveillance
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systems to provide an early response in dengue outbreaks. All these sources should be better integrated to improve the early
response to dengue outbreaks and vector-borne diseases in smaller endemic territories.

(JMIR Public Health Surveill 2022;8(12):e37122) doi: 10.2196/37122
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Introduction

Dengue is one of the most important vector-borne diseases
worldwide, with 390 million infections, 96 million symptomatic
cases, and 20,000 estimated deaths per year in >125 countries
[1,2]. The disease is mostly endemic in tropical and subtropical
regions (ie, Southeast Asia, the Americas, and the Pacific), with
4 billion people at risk [3]. In Latin America and the Caribbean,
morbidity and mortality increased from 400,519 cases and 92
deaths in 2000 to >3.1 million cases and 1534 deaths in 2019
[4,5]. Dengue prevention and control in these regions rely on
2 main approaches: vector control programs and traditional
surveillance, which is based on passive detection of symptomatic
cases (inpatients and outpatients) [4,6]. Although both
approaches are effective, they are expensive and are hampered
by the delay between case occurrence and case reporting.
Furthermore, some countries do not have routine vector control
measures [7] and national epidemiological surveillance systems
tend to underestimate the true disease burden of dengue [8].

In Martinique, a French overseas territory in the Lesser Antilles
with approximately 360,000 inhabitants, health authorities have
launched the “Monitoring, warning and management of dengue
outbreaks program” (Programme de surveillance, d’alerte et de
gestion des épidémies de dengue [PSAGE]), in which vector
control and traditional surveillance are combined. PSAGE
identifies five main stages in dengue outbreaks: (1) sporadic
transmission, (2) dengue clusters with or without an
epidemiological link, (3) epidemic risk when the number of
symptomatic cases is above the expected threshold, (4) dengue
outbreak, and (5) return to normal. Vector surveillance still
plays a role in this system; however, the change in PSAGE stage
is mainly based on the number of symptomatic cases identified
by general practitioners who are part of the French Sentinel
Network surveillance system [9,10].

Surveillance systems are a key public health tool to detect early
cases of emerging infectious diseases, prevent outbreaks [11]
among populations, and implement measures to reduce
transmission [12]. Traditional surveillance systems are often
expensive because of the time and resources required to process
data collected from public health networks [13]. To improve
these systems and reduce the delay between diagnosis and
reporting, researchers have evaluated novel data sources,
especially real-world data (ie, data not collected in experimental
conditions [14]), such as emergency department visits, mobile
data, and internet-based systems [15-18]. Other studies on
surveillance and forecasting, especially those using climate data
[19-21], have also shown promising results. Scientists mostly
rely on correlation methods to test these data sources [22,23],
but other approaches have also been tested, for instance Naive
Bayes methods [24,25]. Most of these studies were conducted

in Asia (70% of the global dengue burden) [2]. Studies in the
Americas concerned large territories or countries, such as Brazil
and Mexico [24,25], and in the Caribbean, they focused on the
bigger islands of the Greater Antilles [21,26].

The aim of this study, carried out in Martinique, was to
investigate whether heterogeneous real-world data sources could
help to reduce reporting delays and improve dengue monitoring
in a smaller endemic region.

Methods

Data Sources

Overview
We used several types of data that had been routinely collected
during the study period (from January 1, 2007, to February 28,
2021): epidemiological surveillance reports from the French
National Public Health Agency (Santé Publique France),
reimbursement claims and laboratory data from Martinique
University Hospital, entomological data from the Martinique
Mosquito Control and Entomological Research Center (Centre
de Démoustication et de Recherche Entomologique [CEDRE]),
and relative search volumes (RSV) from Google Trends.
Entomological, clinical, and laboratory data are available within
24 to 48 hours. Google RSV and epidemiological surveillance
data are available in real time and at the end of each week,
respectively. All used data were anonymized.

Epidemiological Surveillance Data
We obtained weekly dengue surveillance reports from the
French Public Health Agency. These reports are based on data
collected by general practitioners from the French Sentinel
Network. They also provide the official start and end dates of
each dengue outbreak and the weekly PSAGE stage during the
outbreak. These reports are not continuously published but only
if the dengue risk level is above stage 1 (ie, the baseline stage).
We used the PSAGE stage described in each report to create
the PSAGE ordinal variable with 4 levels. Indeed, although the
PSAGE program has 5 levels, stage 5 (“back to normal”) was
used only 5 times in the last 15 years, and experts prefer to use
stage 1 (“sporadic transmission”) after stage 4 (“dengue
outbreak”). Moreover, when stage 5 was used, it was for 1 week,
except once in 2021, when it lasted 2 weeks. Thus, we combined
stages 1 and 5 into a single stage (stage 1 or 5, sporadic
transmission).

Clinical and Laboratory Data
We obtained weekly aggregated data from Martinique University
Hospital: (1) inpatient data (age and diagnoses associated with
dengue disease or dengue symptoms), (2) administrative data
(outpatient medical consultations, hospitalizations, and
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emergency department visits), and (3) laboratory data—dengue
virus (DENV) detection by real-time reverse transcriptase
polymerase chain reaction (RT-PCR).

All included diagnoses were coded using the French version of
the International Classification of Diseases, 10th edition
(ICD-10):

• Dengue or severe dengue
• Possible coding errors associated with dengue: fever and

unspecified viral hemorrhagic fever
• Severity symptoms: hemorrhage, shock, and dehydration
• Thrombocytopenia
• Hepatic symptoms: hepatitis, hepatomegaly, hepatic failure,

and elevation of transaminase
• Neurological symptoms: encephalitis and encephalopathy

We selected these diagnoses with the help of infectious disease
physicians. All reimbursement claims data were obtained from
the Martinique University Hospital, where the only infectious
disease department for the whole island is located. The relevant
ICD-10 codes are listed in Multimedia Appendix 1.

We normalized all administrative data as follows:

where x is the weekly number of hospitalizations, consultations,
or emergency department visits and min and are the minimum
and maximum values observed in the data set, respectively.

For laboratory data, we used the DENV positivity rate
determined by RT-PCR. Laboratory results were concerned
about both inpatients and outpatients because the Martinique
University Hospital is the reference center for DENV screening
using RT-PCR in Martinique.

Entomological Data
We used data from the CEDRE surveillance database, such as
the weekly number of entomological interventions and where
they were carried out. Entomological interventions were defined
as all vector control interventions and measures taken by
CEDRE: information and education of the households, physical
vector control (ie, eliminating mosquito sites, such as old
containers filled with water), and chemical vector control with
insecticides [26]. This agency manages entomological
surveillance and vector control in Martinique and collects data
on each intervention.

Google RSV
We used data from Google Trends [27], which provides
real-time and archived information on Google queries from
2004 onward. These queries are normalized by Google as RSV
by dividing the total search volume for a query in a geographic
location by the total number of queries in that region at a given
point in time [28]. We used this tool to retrieve information on
the search interest for keywords associated with dengue during
our selected time frame (January 2007 to February 2021).
However, we could not retrieve weekly data for the Martinique
region, especially for the first years of the study period, because
there were not always enough RSV (as indicated by the Google
error message “Sorry, not enough search volume to show

graphs”). Therefore, we based our methodology to retrieve
Google Trends data on previously published methodology
frameworks, indicating that Google Trends data should be
retrieved for exactly the same period as the other data under
study and as a single data set rather than as individual queries
for each year [29]. As data for our study period were only
available at monthly intervals, we considered that interest was
constant over each week of the month for each query.

For data retrieval, relevant keywords were selected with experts
in the field. Normally, all spelling variations should be included
in the research to limit the risk of missing data. However, in
our case, combining all possible spelling variants of some
keywords into a single query was impossible, and an error
message from Google indicated that the available data were
insufficient. Nevertheless, we retrieved results using the “topic”
option from Google that includes various keywords associated
with a category.

As Martinique (and the other islands in the Lesser Antilles) are
small regions, we tried 2 strategies to explore the geographic
region of our keywords: we selected “Martinique” as the region
in the tool and we added “Martinique” as a keyword in our
query, with the region selected as “worldwide.” Moreover, we
selected our keywords in 3 different languages (French, English,
and Spanish) because the Lesser Antilles is a multilingual
region.

Data Processing
Clinical and laboratory data were already aggregated into a
structured database and did not require data processing.
Similarly, data from Google queries are normalized by Google
as RSV. Conversely, most of the information in the CEDRE
database was unstructured and required processing. Indeed, the
CEDRE database is a comprehensive database with some
structured data (eg, the date of an entomological intervention),
but the details associated with entomological interventions (ie,
the type of insecticide used or the number of old containers
removed) were in free text; we needed this information to count
the number of weekly interventions. Therefore, we used
rule-based natural language processing methods (ie,
part-of-speech tags) to process the data and extract relevant
information for our study. All statistical analyses were
performed using R (version 4.1.0; R Foundation for Statistical
Computing) [30] (tidytext [31],stopwords, and SnowballC
packages).

Statistical Analysis
A total of 4 dengue outbreaks were recorded in Martinique
between 2007 and 2021: from August 20, 2007, to January 14,
2008; from February 22, 2010, to October 25, 2010; from July
22, 2013, to April 14, 2014; and from November 18, 2019, to
February 8, 2021. The fourth dengue outbreak was the largest
in Martinique over the last 20 years.

During the same period, there was a chikungunya outbreak in
2014, a Zika virus outbreak in 2016, the first COVID-19 wave
in March 2020, and the second COVID-19 wave from
September to December 2020. The last dengue outbreak was
concomitant with the second COVID-19 wave. Consequently,
the PSAGE stages did not vary much over the years, making it
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difficult to study correlations with this categorical variable.
Therefore, it is necessary to find a good continuous estimator
for time series analyses. To this end, we assessed the DENV
RT-PCR positive rate performance for PSAGE stage prediction
using a repeated stratified k-fold cross-validation approach.
First, we divided the data into 10 stratified folds, then built a
logistic regression model to predict the PSAGE stages. Finally,
we repeated the process 10 times and evaluated its performance.
The original PSAGE variable was an ordinal variable with 4
levels, but the data were not evenly distributed among the levels.
Therefore, we ran 4 binary logistic regression analyses, rather
than a single multinomial regression model, to assess how
RT-PCR positive rates can predict each level. We calculated
the predicted probability of a PSAGE stage by using the
following equation:

where X is the vector of the predictor values, β1 is the vector
of the regression coefficients, and β0 is the intercept of the
model. As the data set was imbalanced, we also used stratified
sampling in the PSAGE stage for k-fold cross-validation.

The metrics used to assess the logistic model performance were
accuracy, specificity, precision, recall, F1-score, and area under
the curve (AUC).

Accuracy assesses the overall effectiveness of the logistic
regression model and can be defined as the ratio of the correct
number of predictions to the total number of predictions:

where TP are true positive, TN are true negative, FP are false
positive, and FN are false negative results.

Specificity is the model’s capacity to predict that a week is not
in the PSAGE stage and is defined as the ratio between correctly
predicted negative classes and all items that are actually
negative:

where TN is true negative, and FP is false positive.

Precision (or positive predictive value) is the agreement between
the true stages and the stages predicted by the RT-PCR positive

rate and is defined as the ratio between the correctly predicted
positive classes and all items predicted to be positive:

where TP is true positive, and FP is false positive.

Recall (or sensitivity) is the model’s capacity to identify the
true stages and is defined as the ratio between correctly predicted
positive classes and all items that are actually positive:

where TP is true positive, and FN is false negative.

The F1-score is the harmonic mean of precision and recall. The
AUC represents the capacity of the model to avoid false
classification into a stage.

To investigate the association between the RT-PCR positive
rate and each data source, we plotted their time series. Finally,
for each source, we estimated the Pearson correlation coefficient
(r) and the cross-correlations between the weekly data and the
DENV RT-PCR positive rate. The aim of the cross-correlation
function is to investigate the relationship between time series
and their lag values [32]. In our case, we wanted to determine
whether the increase in the studied variables was correlated with
the DENV RT-PCR positive rate and whether it preceded it.
All statistical analyses were performed using R (version 4.1.0)
[30]. For cross-correlations, significance is determined
graphically when the lines are above (or below) the dotted blue
line.

Ethics Approval
This study was approved by the local Ethics Committee of
Martinique University Hospital (approval number 2022/177).

Results

RT-PCR Positive Rate Performance
The accuracy and AUC values ranged between 0.83 and 0.95
and between 0.55 and 0.89, respectively. Overall, the model
performed better at predicting sporadic transmission (stage 1
or 5: accuracy=0.83; AUC=0.84) and outbreak (stage 4:
accuracy=0.89; AUC=0.89; Table 1).
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Table 1. DENVa RT-PCRb positive rate and PSAGEc stage prediction.

PSAGEMetrics

Stage 4Stage 3Stage 2Stage 1 or 5

0.8880.9530.8790.828Accuracy

0.96110.616Specificity

0.742——d0.827Precision

0.535000.936Recall

0.612——0.878F1-score

0.8880.8280.5460.838AUCe

aDENV: dengue virus.
bRT-PCR: real-time reverse transcriptase polymerase chain reaction.
cPSAGE: Programme de surveillance, d’alerte et de gestion des épidémies de dengue.
dNot enough data available to build a prediction model for these stages.
eAUC: area under the curve.

Hospital Data
We normalized all hospital data to plot the time series to
consider the different scales. As children and adults can be
affected differently depending on the dengue infection type
(primary vs secondary), we stratified our data sets based on the
ward type (adult or pediatric).

Administrative Data
Adult hospitalizations (P=.01) and emergency department visits
(P<.001) were significantly correlated with the DENV RT-PCR

positive rate. We also observed a significant cross-correlation
at −3 and −5 weeks, suggesting that the increase in emergency
department visits preceded the increase in the DENV RT-PCR
positive rate by 3 to 5 weeks. Table 2 shows the correlations
and cross-correlations between the administrative data and
DENV detection rate by RT-PCR. All cross-correlations
between administrative data and DENV RT-PCR positive rate
are listed in Multimedia Appendix 2.

Table 2. Correlations and cross-correlations between administrative data and DENVa RT-PCRb positive rate.

Time lagdMax cross-correlationcP valueCorrelation (95% CI)Data

Hospitalizations

−5 weeks−0.091.07−0.066 (−0.137 to 0.006)Total (n=506,992)

−4 weeks−0.097.01 e−0.095 (−0.165 to −0.023)Adults (n=444,045)

−8 weeks0.118 f.060.067 (−0.004 to 0.139)Children (n=62,947)

Emergency department visits

−5 weeks0.169.0020.111 (0.039 to 0.181)Total (n=1,082,343)

−3 weeks0.216<.0010.181 (0.11 to 0.25)Adults (n=740,282)

−5 weeks0.107.210.046 (−0.025 to 0.118)Children (n=342,061)

Consultations

−2 weeks−0.067.08−0.065 (−0.137 to 0.007)Total (n=2,715,906)

−5 weeks−0.097.09−0.061 (−0.133 to 0.0105)Adults (n=2,467,565)

−5 weeks−0.087.21−0.046 (−0.118 to 0.026)Children (n=248,341)

aDENV: dengue virus.
bRT-PCR: real-time reverse transcriptase polymerase chain reaction.
cMaximum cross-correlation.
dTime lag that results in the maximum cross-correlation.
eItalicized P values are significant.
fItalicized cross-correlations are statistically significant (details in Multimedia Appendices 2-5).
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Inpatient Data
We normalized inpatient data as the percentage of each diagnosis
among all diagnoses for that year. The percentage of dengue
diagnoses among inpatients was significantly associated with
an increase in the DENV RT-PCR positive rate. We also
detected a significant cross-correlation at −3 weeks, indicating
that the increase in dengue diagnoses among hospitalized people
preceded the increase in DENV RT-PCR positive rates by 3
weeks (Table 3). All cross-correlations between dengue
diagnoses in inpatients and DENV RT-PCR positive rates are
listed in Multimedia Appendix 3.

Concerning dengue-related symptoms, thrombocytopenia and
liver involvement in adults and children were associated with
the DENV RT-PCR positive rate.

The significant cross-correlation, at time lags ranging between
−2 and −5 weeks, indicated that the increase in
thrombocytopenia and liver dysfunction preceded the increase
in DENV RT-PCR positive rates by 3 to 5 weeks (Table 4). All
cross-correlations between dengue symptoms among inpatients
and DENV RT-PCR positive rate are listed in Multimedia
Appendices 4 and 5.

The weekly hospitalization rates for dengue and
thrombocytopenia during the study period are shown in Figure
1, with DENV RT-PCR positive rate, as a reference.

Table 3. Correlations between dengue diagnoses inpatients and DENVa RT-PCRb positive rate.

Time lagdMax cross-correlationcP valueCorrelation (95% CI)Data

−3 weeks0.710 f<.001 e0.704 (0.665-0.738)Total

−3 weeks0.703<.0010.698 (0.659-0.733)Adults

−3 weeks0.675<.0010.672 (0.631-0.701)Children

aDENV: dengue virus.
bRT-PCR: real-time reverse transcriptase polymerase chain reaction.
cMaximum cross-correlation.
dTime lag that results in the maximum cross-correlation.
eItalicized P values are significant.
fItalicized cross-correlations are statistically significant (details in Multimedia Appendices 2-5).
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Table 4. Correlations between dengue symptoms among inpatients and dengue RT-PCRa positive rate.

Time lagcMax cross-correlationbP valueCorrelation (95% CI)Data

Symptoms

−4 weeks0.081 e.04 d0.077 (0.005 to 0.148)Total

0 weeks0.071.050.071 (−0.001 to 0.142)Adults

−4 weeks0.127.010.093 (0.021 to 0.16)Children

Coding errors

−1 week−0.098.009−0.096 (−0.167 to –0.024)Total

−2 weeks−0.086.05−0.072 (−0.143 to –1.12 ×10−4)Adults

0 weeks−0.043.24−0.043 (−0.115 to 0.0285)Children

Symptom severity

0 weeks0.105.0040.105 (0.033 to 0.175)Total

0 weeks0.068.070.068 (−0.004 to 0.139)Adults

−4 weeks0.279<.0010.263 (0.195 to 0.329)Children

Thrombocytopenia

−2 weeks0.289<.0010.281 (0.213 to 0.346)Total

−2 weeks0.242<.0010.235 (0.166 to 0.302)Adults

−4 weeks0.288<.0010.269 (0.201 to 0.335)Children

Liver dysfunction symptoms

−5 weeks0.179<.0010.152 (0.081 to 0.222)Total

−5 weeks0.153<.0010.123 (0.0517 to 0.193)Adults

−5 weeks0.147<.0010.152 (0.081 to 0.222)Children

Neurological symptoms

−7 weeks−0.061.44−0.028 (−0.100 to 0.0435)Total

−7 weeks−0.068.22−0.045 (−0.117 to 0.0265)Adults

−6 weeks0.034.430.029 (−0.0427 to 0.101)Children

aRT-PCR: real-time reverse transcriptase polymerase chain reaction.
bMaximum cross-correlation.
cTime lag that results in the maximum cross-correlation.
dItalicized P values are significant.
eItalicized cross-correlations are statistically significant (details in Multimedia Appendices 2-5).
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Figure 1. Weekly hospitalization rates for dengue and thrombocytopenia during the different Programme de surveillance, d’alerte et de gestion des
épidémies de dengue (PSAGE) stages from January 2007 to February 2021. The DENV RT-PCR positive rate was used as a reference. Blue curves:
weekly hospitalization rates for the indicated ICD-10 diagnoses. Green areas: PSAGE stage 2 (dengue clusters). Yellow areas: PSAGE stage 3 (epidemic
risk). Red areas: PSAGE stage 4 (dengue outbreak). Red dashed lines: official dates of dengue outbreaks that were decided retrospectively by the French
Public Health Agency at the end of each outbreak. DENV: dengue virus; RT-PCR: real-time reverse transcription polymerase chain reaction.

Entomological Data
The weekly number of entomological interventions was
significantly (P<.001) associated with DENV RT-PCR positive
rate (r=0.591; 95% CI 0.542-0.636). They were also
significantly cross-correlated (0.627 at −2 weeks), indicating
that their increase preceded an increase in the DENV RT-PCR
positive rate by 2 weeks.

We did not find any significant correlation or cross-correlation
between the intervention zones and the RT-PCR positive rate.

Google RSV
We considered that interest was constant over each week of the
month for each query to compute our weekly data, but RSV
could have high variability across weeks. Therefore, we also
compared monthly RSV to monthly DENV RT-PCR positive
rates to assess whether our approach had a high impact on the
results.

Several Google keywords were significantly associated with
the DENV RT-PCR positive rate. Overall, this association was
stronger for the simplest combination of keywords, without

spelling variations, especially for the keywords “dengue
symptoms.” We could not assess some keyword combinations
because of the lack of data. Furthermore, when Google Trends
provided “Topics,” the results outperformed those obtained
using manual combinations of keywords that included spelling,
language, or accent variations. Keywords not restricted to the
geographic region of “Martinique” (by using the Geographical
region feature or by adding the keyword “Martinique” to the
query) were not significantly associated with the DENV
RT-PCR positive rate. We obtained the strongest significant
cross-correlation using the topic “dengue” in the Martinique
region (0.643 at the time lag of −3 weeks). This indicated that
an increase in queries for this term in the Martinique region
preceded the increase in the DENV RT-PCR positive rate by 3
weeks (Table 5). Conversely, we did not find any significant
cross-correlation within meaningful time lag values for the term
“mosquito” and its different spellings and language variations.

For monthly correlations, the results were similar to weekly
results (Table 6). All weekly correlations between Google
Trends keywords and DENV RT-PCR positive rates are listed
in Multimedia Appendix 6. All monthly correlations between
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Google Trends keywords and DENV RT-PCR positive rates
are listed in Multimedia Appendix 7. All weekly
cross-correlations between nonhospital data and DENV RT-PCR
positive rate are listed in Multimedia Appendix 8. All monthly

cross-correlations between Google Trends keywords and DENV
RT-PCR positive rate are listed in Multimedia Appendix 9.

The weekly estimates for nonhospital data during the study
period are displayed in Figure 2, with the DENV RT-PCR
positive rate as a reference.

Table 5. Strongest correlations between Google Trends keywords and DENVa RT-PCRb positive rate.

Time lagdMax cross-correlationcP valueCorrelation (95% CI)Keywords

Dengue

−1 week0.598 f<.001 e0.597 (0.548-0.641)Keywords “dengue” + “dingue” and region “Martinique”

−6 weeks0.611<.0010.534 (0.480-0.583)Keywords “dengue” + “Martinique”

−3 weeks0.643<.0010.637 (0.591-0.677)Topic “dengue” and region “Martinique”

Dengue symptoms

−3 weeks0.435<.0010.412 (0.351-0.47)Keyword “symptome dengue” and region “Martinique”

Mosquito

0 weeks0.200<.0010.200 (0.130-0.268)Keyword “mosquito” with various French spellings and
region “Martinique”

Aedes

−3 weeks0.369<.0010.339 (0.273-0.401)Keywords “aedes” and region “Martinique”

−7 weeks0.304<.0010.214 (0.591-0.677)Topic “aedes” and region “Martinique”

aDENV: dengue virus.
bRT-PCR: real-time reverse transcriptase polymerase chain reaction.
cMaximum cross-correlation.
dTime lag that results in the maximum cross-correlation.
eItalicized P values are significant.
fItalicized cross-correlations are statistically significant (details in Multimedia Appendices 2-5).
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Table 6. Strongest monthly correlations between Google Trends keywords and DENVa RT-PCRb positive rate.

Time lagdMax cross-correlationcP valueCorrelation (95% CI)Keywords

Dengue

0 months0.632<.001 e0.632 (0.531-0.714)Keywords “dengue” + “dingue” and region “Martinique”

−1 month0.643 f<.0010.592 (0.484-0.681)Keywords “dengue” + “Martinique”

0 months0.675<.0010.675 (0.583-0.749)Topic “dengue” and region “Martinique”

Dengue symptoms

−1 month0.453<.0010.436 (0.306-0.55)Keyword “symptome dengue” and region “Martinique”

Mosquito

0 weeks0.217<.0010.217 (0.004-0.068)Keyword “mosquito” with various French spellings and
region “Martinique”

Aedes

−1 month0.394<.0010.379 (0.243-0.501)Keywords “aedes” and region “Martinique”

−2 months0.313<.0010.242 (0.095-0.379)Topic “aedes” and region “Martinique”

aDENV: dengue virus.
bRT-PCR: real-time reverse transcriptase polymerase chain reaction.
cMaximum cross-correlation.
bTime lag that results in the maximum cross-correlation.
eItalicized P values are significant.
fItalicized cross-correlations are statistically significant (details in Multimedia Appendices 2-5).

Figure 2. Weekly estimates for the indicated nonhospital data during the different Programme de surveillance, d’alerte et de gestion des épidémies de
dengue (PSAGE) stages from January 2007 to February 2021. The DENV RT-PCR positive rate was used as a reference. Blue curves: weekly estimates
for the strongest correlated Google keywords and entomological interventions. Green areas: PSAGE stage 2 (dengue clusters). Yellow areas: PSAGE
stage 3 (epidemic risk). Red areas: PSAGE stage 4 (dengue outbreak). Red dashed lines: official dates of the outbreaks decided retrospectively by the
French Public Health Agency at the end of each outbreak. DENV: dengue virus; RT-PCR: real-time reverse transcription polymerase chain reaction.
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Discussion

Principal Findings
This study demonstrates the potential of real-world data for
dengue outbreak monitoring. It indicates that multiple
heterogeneous data sources, such as clinical data, vector data,
and novel Big Data streams, should be leveraged simultaneously
because they can all play a role in improving traditional dengue
surveillance systems. Moreover, some data, such as the weekly
hospitalization rates for thrombocytopenia, the weekly number
of entomological interventions, and Google keywords, were not
only significantly correlated with the weekly DENV RT-PCR
positive rates, but their increase preceded the increase in
RT-PCR positive results by 2 to 4 weeks.

An early response is crucial in dengue management because it
can reduce mortality [18] and help stakeholders better anticipate
needs and resources. In Martinique, the early signs identified
in this study could be used to set up more hospital beds
(including in the intensive care unit), increase staffing,
particularly in emergency services and infectious diseases
department, and increase the blood bank stock levels for patients
with severe dengue who may need blood transfusions. Moreover,
stakeholders could use them to justify requests for
reinforcements from other territories (for Martinique, mostly
from mainland France), medical equipment, and hospital staff.
In addition, they could be used to notify earlier the
Pan-American Health Organization, which is the Regional
Office for the Americas of the World Health Organization [33],
and help other islands to better prepare for an incoming
outbreak.

Previous studies have already investigated the role of
entomological data [34], inpatient data [35], and internet data
streams [36] in dengue management, but few have assessed all
these data sources simultaneously. In this study, we found that
they should all be considered together rather than individually.
Vector-based data tend to be underused [37], despite their central
place in dengue surveillance, although we observed a rather
strong correlation between the number of weekly entomological
interventions and the increase in DENV RT-PCR positive rates.
Therefore, they should be better integrated into the dengue
surveillance system to improve its efficiency because both
clinical surveillance and vector-based surveillance are essential
for optimal dengue management [38]. The role of internet search
engines in dengue surveillance has been frequently addressed
in recent years [23,39]. Most studies were carried out in Asia
and in larger American countries, such as Mexico and Brazil
[24,25], and used a different approach based on weekly extracted
data, which was not possible in our case. However, we found
that even in Martinique, a smaller territory with a smaller
population and, thus, with a lower data volume from internet
data streams, Google queries were still correlated with an
increase in the DENV RT-PCR positive rate. This means that
they can also be used as part of surveillance systems across the
islands of the Lesser Antilles. However, the methodological
framework [29] still needs to be adapted to the size of these
territories, and the simplest keywords and Google topics, when
available, should be preferred over multiple spelling variations.

With these small adaptations, we propose a way to offset the
limitations related to smaller territories to use internet data
streams in this context because their interest in emerging disease
surveillance has been demonstrated in previous studies [40,41].
Overall, for smaller territories, the challenge lies in the small
population size that leads to a lower weekly signal variability,
thus complicating covariance estimation (and consequently the
use of correlation methods). As most studies evaluating real
data sources for dengue surveillance were based on correlation
methods [22,37,42], we needed to confirm that these approaches
were still applicable using a smaller sample. Despite these
limitations, we managed to identify relevant indicators from all
data sources to improve monitoring.

Moreover, most studies on real-world data sources used
symptomatic cases as gold standard [37]. However, in practice,
public health authorities do not rely solely on symptomatic cases
for decision-making during an outbreak. Here, we compared
our data sources to the actual gold standard used by stakeholders
for decision-making, which is based on objective and subjective
parameters and found a reliable objective proxy (ie, the weekly
DENV RT-PCR positive rates) to assess our variables. Finally,
dengue hospitalizations and the symptoms associated with severe
dengue cases (thrombocytopenia and liver dysfunction
symptoms) should be closely monitored in inpatients, especially
in children, because they tend to precede the DENV RT-PCR
positive rate increase by several weeks.

Our study also highlighted homogenous time lags across
different data sources, despite their heterogeneity. This further
demonstrates the importance of considering them globally rather
than individually, although some of these correlations were low
or moderate. For instance, an increase in hospitalized patients
with liver dysfunction symptoms could prompt physicians to
pay closer attention to the dengue hospitalization rate because
both precede the increase in DENV RT-PCR by 5 weeks and 3
weeks, respectively. The capacity to identify variables that
precede the DENV RT-PCR positive rate increase is very
relevant for dengue management because a rapid and early
response can influence outbreak severity [18].

Limitations
Our method is promising but has some limitations. First, some
correlations were very low, although they were statistically
significant. Second, we did not include climate data because
insufficient data were available for our time frame. Several
studies have demonstrated the role of climate data (especially
temperature, humidity, and rainfall) in dengue surveillance, but
they were mostly carried out in Asian countries [43,44] and
South America [45,46]. Few studies in the Caribbean region
showed the role of rainfall and temperature in increasing the
risk of dengue outbreaks. However, their time lags (between 7
weeks and 5 months) [47,48] were longer than the time lags we
found for the other data sources. Nevertheless, this data source
could have been relevant.

Third, our laboratory data did not include private sector biology
laboratories, because they did not use RT-PCR techniques before
the COVID-19 pandemic in 2020. Before this date, dengue
diagnosis in private sector laboratories was based on NS1
antigen detection and needed sometimes to be confirmed by the
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more sensitive RT-PCR test at the hospital laboratory. It should
be noted that the weekly number of DENV RT-PCR tests
increased over time. Therefore, we used the weekly positive
rate and not the weekly number of RT-PCR tests. Similarly, the
World Health Organization dengue case classification and
guidelines for hospitalization changed during the study period
[49], and this may have influenced the results. Nevertheless,
the rate of hospitalized patients with a dengue diagnosis was
more strongly correlated with the DENV RT-PCR positive rate
in our study.

Finally, concerning the entomological data, we only studied the
correlation between the weekly number of interventions and
the increase in the DENV RT-PCR positive rate, but we did not
consider the number of mosquito clusters (ie, several clusters
can be detected during 1 intervention). We focused on the
simplest variable because vector control programs vary among
the countries in this region [4,6], and we wanted to develop a
common approach for all Caribbean territories. Furthermore,
because entomological interventions tend to increase during
outbreaks, we cannot rule out the influence of these practices
on our results. Nevertheless, we could show that entomological

interventions precede the increase in the DENV RT-PCR
positive rate by 2 weeks.

Our approach does not intend to replace traditional monitoring
systems based on syndromic surveillance, but to reduce the
delays in these systems by leveraging data that are already
routinely collected. These new data sources are readily available
and can be easily implemented in the existing surveillance
systems with minimal cost and training. However, their ability
to predict future dengue outbreaks need to be thoroughly
assessed, especially in smaller territories in the Lesser Antilles.

Conclusions
Our study shows that real-world data are valuable data sources
for dengue surveillance in Martinique. Several heterogeneous
data sources are relevant, from clinical data to vector control
data and Google Trends data. Their increase precedes the
increase in dengue cases by several weeks, and therefore, they
can help to improve traditional surveillance systems to provide
an early response to dengue outbreaks. By improving the
integration of many different sources, we might better respond
to dengue outbreaks in endemic regions, as well as to other
types of vector-borne diseases such as Zika and chikungunya.
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