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Abstract

Background: The distribution of population-level real-time reverse transcription-polymerase chain reaction (RT-PCR) cycle
threshold (Ct) values as a proxy of viral load may be a useful indicator for predicting COVID-19 dynamics.

Objective: The aim of this study was to determine the relationship between the daily trend of average Ct values and COVID-19
dynamics, calculated as the daily number of hospitalized patients with COVID-19, daily number of new positive tests, daily
number of COVID-19 deaths, and number of hospitalized patients with COVID-19 by age. We further sought to determine the
lag between these data series.

Methods: The samples included in this study were collected from March 21, 2021, to December 1, 2021. Daily Ct values of all
patients who were referred to the Molecular Diagnostic Laboratory of Iran University of Medical Sciences in Tehran, Iran, for
RT-PCR tests were recorded. The daily number of positive tests and the number of hospitalized patients by age group were
extracted from the COVID-19 patient information registration system in Tehran province, Iran. An autoregressive integrated
moving average (ARIMA) model was constructed for the time series of variables. Cross-correlation analysis was then performed
to determine the best lag and correlations between the average daily Ct value and other COVID-19 dynamics–related variables.
Finally, the best-selected lag of Ct identified through cross-correlation was incorporated as a covariate into the autoregressive
integrated moving average with exogenous variables (ARIMAX) model to calculate the coefficients.

Results: Daily average Ct values showed a significant negative correlation (23-day time delay) with the daily number of newly
hospitalized patients (P=.02), 30-day time delay with the daily number of new positive tests (P=.02), and daily number of
COVID-19 deaths (P=.02). The daily average Ct value with a 30-day delay could impact the daily number of positive tests for
COVID-19 (β=–16.87, P<.001) and the daily number of deaths from COVID-19 (β=–1.52, P=.03). There was a significant
association between Ct lag (23 days) and the number of COVID-19 hospitalizations (β=–24.12, P=.005). Cross-correlation
analysis showed significant time delays in the average Ct values and daily hospitalized patients between 18-59 years (23-day
time delay, P=.02) and in patients over 60 years old (23-day time delay, P<.001). No statistically significant relation was detected
in the number of daily hospitalized patients under 5 years old (9-day time delay, P=.27) and aged 5-17 years (13-day time delay,
P=.39).
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Conclusions: It is important for surveillance of COVID-19 to find a good indicator that can predict epidemic surges in the
community. Our results suggest that the average daily Ct value with a 30-day delay can predict increases in the number of positive
confirmed COVID-19 cases, which may be a useful indicator for the health system.

(JMIR Public Health Surveill 2022;8(11):e36424) doi: 10.2196/36424
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Introduction

Coronaviruses are zoonotic pathogens that can be transmitted
to humans after acquiring particular mutations [1].
SARS-CoV-2, which causes COVID-19, is mainly transmitted
via airborne respiratory droplets. Although ocular secretions
and oral-fecal transmission have also been indicated, these
transmission methods remain uncertain [2,3].

A real-time reverse transcription-polymerase chain reaction
(RT-PCR) test is used for detecting SARS-CoV-2 in respiratory
samples as routine surveillance worldwide. The RT-PCR test
has high sensitivity and specificity for diagnosing COVID-19
and offers faster turnaround times than the viral culture method;
thus, this test has become the main method for diagnosing
COVID-19. RT-PCR presents both qualitative and quantitative
results with respect to the viral load [4]. The RT-PCR cycle
threshold (Ct) value is identified as the number of amplification
cycles needed to detect the target gene in samples [5]. The Ct
value is a semiquantitative result of RT-PCR that reflects the
amount of viral nucleic acids in a sample, and can thus be used
as a proxy for viral load and may help decision-making in
epidemic control. The Ct value has a reverse relationship with
viral load so that each 3.3 increase in Ct value causes a 10-fold
decrease in viral load [6]; the highest viral burden is on the first
day of disease symptoms onset [7]. The positive result of
COVID-19 RT-PCR tests has a lower Ct value than the
recommended cutoff. In the United States, the Food and Drug
Administration considers a Ct value <37 as the cutoff for a
positive result of COVID-19 [8]. In more than 70% of samples
with a Ct value <25, SARS-CoV-2 may be cultured, whereas
only 3% of samples with a Ct value >35 can be cultured [9].
Several studies have reported that the Ct value also has an
association with disease severity and mortality, and that the Ct
values in patients who have more severe symptoms are low
[5,10-12]. In addition, hospitalized patients who died from
COVID-19 had lower Ct values [13]. A systematic review
showed a significant correlation between Ct value and disease
severity in hospitalized patients but not in nonhospitalized
COVID-19 patients [5]. There is controversy among studies on
the use of Ct values at an individual level for the prognosis of
the disease or treatment planning. The Ct value may vary due
to the collection method among laboratories [14] or the target
gene selected for RT-PCR [15]. Moreover, the RT-PCR test
can detect any viral material and does not distinguish between
live viruses and viral debris, which may persist for a long time
beyond the point of infectiousness [12].

To the best of our knowledge, few studies have examined the
use of population-level Ct values as a measure of COVID-19

dynamics in communities. As Ct values have a significant
relationship with disease severity and infectivity, a higher
average Ct value in daily testing samples from a population
may predict epidemic growth in a community. Hay et al [16]
analyzed simulation and surveillance data and found that
decreases in the proportion of Ct values in a population may
cause a local increase in transmission or a new number of
patients [16]. In addition, the median Ct value may be an
effective measure for forecasting a pandemic surge.

To resolve these issues, the aims of this study were to determine
the relationships between the daily trend of average Ct value
and COVID-19 dynamics, including the daily number of
hospitalized patients with COVID-19, daily number of new
positive tests, daily number of COVID-19 deaths, and number
of hospitalized patients with COVID-19 by age. We further
aimed to determine the lag between these series.

Methods

Samples and RT-PCR
The samples included in this study were collected from March
21, 2021, to December 1, 2021. Inclusion criteria were samples
obtained from individuals suspected of having COVID-19 and
were referred to a laboratory in Tehran, Iran, to confirm the
diagnosis. Daily results of Ct values of all patients referred to
the laboratory for RT-PCR tests were recorded. The daily
number of positive cases and the number of hospitalized people
by age group for 9 months were extracted from the COVID-19
patient information registration system in Tehran province, Iran.

This study included samples of the upper respiratory tract (both
nasopharyngeal and anterior nares swab samples) taken using
a sterile Dacron thin swab with a plastic or aluminum handle
as the main test specimen. The samples were collected by a
physician, nurse, laboratory expert, and other staff with
sufficient training and experience. All biological samples were
sent to the Molecular Diagnostic Laboratory of Iran University
of Medical Sciences in Tehran, Iran. All samples were analyzed
using the Pishtazteb One-step RT-PCR COVID-19 Kit
(dual-target gene diagnosis), and RNA extraction was performed
using a Zybio nucleic acid extraction kit (magnetic bead
method). To confirm the diagnosis, the target genes were the
SARS-CoV-2 nucleocapsid gene and RdRp gene [17]. For each
sample, the Ct value was recorded. The samples that produced
a positive result in the RT-PCR test and had a Ct value ≤37
were recorded to determine the daily average Ct values.
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Statistical Analysis

Overview
The daily median Ct value among all patients referred to the
laboratory and the daily number of hospitalized patients with
COVID-19 by age group were plotted over time. The
autoregressive integrated moving average (ARIMA) and
autoregressive integrated moving average with exogenous
variables (ARIMAX) models were used to determine significant
associations between the daily average Ct value and the daily
number of COVID-19 hospitalizations by age, daily number of
COVID-19 deaths, and daily number of positive tests in Tehran
province, Iran.

ARIMA Model
Time-series analyses are appropriate when dealing with a set
of data that has a time trend [18]. The Box-Jenkins time-series
approach, especially the ARIMA model, is one of the best
methods in time-series analysis of autocorrelated data [19], such
as the daily average Ct value. In autoregressive models, the
outcome (Yt) is a linear function of the previous values and a
random component. Nonseasonal ARIMA model parameters
are (p, d, q) overall, where p is the order of autoregression (AR),
d is the degree of trend difference, and q is the order of moving
average (MA). To perform time-series analysis, it is first
necessary to check the stability of the mean and variance. For
this purpose, the augmented Dickey-Fuller (ADF) test is used
[20] for checking the stability of the mean and the Box-Cox test
is used to check the stability of the variance. Logarithm
transformation and differentiation were used to establish stability
in the variance and mean, respectively. The first-time differences
can be expressed as:

Y′t=Yt–Yt–1 (1)

Where Yt represents nonstationary time-series data and Y′t is
the time series after the first-time differences. If the time series
has a seasonal trend, seasonal differences are used to stabilize
the series. The AR parameter p represents the linear correlation
of the current value of the time series Yt with the previous values
Yt–1, Yt–2,... and current residuals εt [21]. The MA parameter q
shows the linear correlation of the current value of the time
series Yt with the current and previous residuals of the time
series εt, εt–1,… [22]. The general formula of AR (p) and MA
(q) models are represented in equations (2) and (3), respectively:

Yt=C+β1Yt–1+β2Yt-2+…+βpYt–n+εt  (2)

Yt=C+εt–ϕ1εt–1–ϕ2εt–2…–ϕqεt–q   (3)

where C is a constant; β1, β2,…, βp are AR model terms; and
ϕ1, ϕ2,…, ϕq are MA model terms. The number of AR and MA
parameters was determined by the autocorrelation function and
partial autocorrelation function.

The general form of the ARIMA model can be written as:

Y′t=C+β1Yt–1+β2Yt–2+…+βpYt–p+ϕ1εt–1+ϕ2εt–2+…+ϕqεt–q+εt…
(4)

Four main steps for the development of the ARIMA model
include checking mean and variance stability (see Table S1 in

Multimedia Appendix 1), and identifying p and q terms (see
Figure S1 in Multimedia Appendix 1).

Model Parameter Estimation
The maximum-likelihood approach was used for the model
parameters. To determine the best ARIMA model, among the
models that passed the residual test (normality and stability in
the variance), the model with the lowest Bayesian information
criterion (BIC) and Akaike information criterion (AIC) was
selected as the final model. The BIC and AIC formulae are
represented as follows:

BIC=–2.ln(L)+k.ln(m)   (5)

AIC=2k–2ln(L)   (6)

Where m is the number of observations, k is the total number
of parameters in the model, and ln(L) is the likelihood function.

The ARIMA model was developed to the time series of the
daily average Ct value, daily number of hospitalized patients
with COVID-19, new number of daily positive tests, daily
number of COVID-19 deaths, and number of hospitalized
patients with COVID-19. The detailed method for derivation
of the ARIMA model is described in Multimedia Appendix 1.

Cross-correlation Function
To evaluate the time delay between the daily average Ct value
and the daily number of hospitalized patients with COVID-19,
daily number of new positive tests, daily number of COVID-19
deaths, and number of hospitalized patients with COVID-19 by
age, the cross-correlation function was used. The independent
(daily average Ct value) and dependent variables (daily number
of hospitalized patients with COVID-19, new number of daily
positive tests, daily number of COVID-19 deaths, and number
of hospitalized patients with COVID-19 by age) were
preprocessed by the previously fit ARIMA models. The
cross-correlation coefficient is mathematically represented as
follows:

rαβ(k)=Cαβ(k)/SαSβ   (7)

where Cαβ(k) is the value of covariance between the
preprocessed input time series and preprocessed output time
series at the lag k,      is the value of the standard deviation of
the preprocessing input time series, and      is the value of the
standard deviation of the preprocessing output time series [23].
Three indicators, Schwarz Bayesian information criterion
(SBIC), Hannan-Quinn information criterion (HQIC), and AIC,
were used to select the best lag.

SBIC=log(n)k–2 log(L(θ̂))   (8)

HQIC=–2ln(L(θ̂)) +2klog(logn)   (9)

In equations (8) and (9), n is the sample size, k is the number
of estimated parameters, θ is the set of all parameter values,
and L(θ̂) is the likelihood of the model.

ARIMAX Model
The ARIMAX model is an expansion of the ARIMA model by
adding an explanatory independent variable. The ARIMAX
model is the combination of multiple regression analysis and
time-series analysis; therefore, it can determine the impact factor
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of the relationship between different lags of Ct values and other
study variables. The ARIMAX model formula is as follows:

Yt=βx(t)+α1Yt–1+α2Yt–2+…+αpYt–p+εt–ϕ1εt–1+ϕ2εt–2+…+ϕqεt–q+εt…
  (10)

where x(t) is an independent variable at time t and β is its
associated coefficient. Yt–1)…Yt−p is the previous value of a
dependent variable, and εt…εt–q is the residual of the time series.
To determine the association and coefficient of the association
between the lags of the xt+m time series and series Yt, the
ARIMAX model was used. The cross-correlation function was
used to find the linear correlation between xt+m and Yt for

different lags, which can help to find the best lags of the
independent variable that might be used to predict the dependent
variable [24]. The lags of Ct values that were selected through
the correlation function were incorporated as covariates into
the ARIMAX model with other dependent variables such as the
daily number of hospitalized patients with COVID-19, number
of new daily positive cases, daily number of COVID-19 deaths,
and number of hospitalized patients with COVID-19 by age.
The maximum-likelihood method was used for estimation of
the parameters. The Ljung-Box Q test was applied to evaluate
white noise for the residual series. Data were analyzed by Stata
software version 14. Figure 1 shows the steps of building the
best ARIMAX model.

Figure 1. Steps of building the best ARIMAX model. ACF: autocorrelation function; AIC: Akaike information criterion; ARIMA: autoregressive
integrated moving average; ARIMAX: autoregressive integrated moving average with exogenous variables; BIC: Bayesian information criterion; PACF:
partial autocorrelation function.

Ethics Considerations
Since individual data were not used in this study, no formal
ethical assessment or informed consent was required. This study
was approved by the Ethics Committee of Iran University of
Medical Sciences (ethical code: IR.IUMS.REC.1400.799).

Results

Evaluation Outcomes
Table 1 shows descriptive statistics of the study variables that
were included in the analysis. The minimum value of Ct was
related to April 11, 2021, and the maximum frequency of
hospitalized patients was related to August 23, 2021. Over 9
months, 80,882 positive COVID-19 tests were referred to the
Molecular Diagnostic Laboratory of Iran University of Medical
Sciences in Tehran, Iran.

Figure 2 shows the time trend of Ct values, along with the trends
of the number of hospitalized patients, number of positive tests,
number of COVID-19 deaths, number of hospitalized patients
under 5 years old, number of hospitalized patients aged 5-17
years old, number of hospitalized patients aged 18-59 years old,
and number of hospitalized patients over 60 years old over the
9 months. Similar to the a priori hypothesis, the daily average
Ct value was negatively correlated with the daily number of
hospitalized patients, daily count of positive COVID-19 tests
(with a time delay), daily number of COVID-19 deaths, and
daily number of hospitalized patients by age group. As shown
in Figure 2, there was a time delay of approximately 28-32 days
between the average daily Ct value and the daily number of
hospitalized patients with COVID-19, daily count of positive
COVID-19 tests, and daily number of COVID-19 deaths.
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Table 1. Descriptive statistics of the study variables.

Mean (SD)MinimumMaximumVariables

19.89 (1.33)15.8324.87Dependent variable: cycle threshold value

Independent variables

310.65 (260.259)47763Number of hospitalized patients

396.48 (211.05)42925Number of positive tests

15.98 (24.57)072Number of COVID-19 deaths

16.514 (10.23)058Number of hospitalized patients under 5 years old

12.35 (6.78)141Number of hospitalized patients aged 5-17 years

155.94 (91.61)12444Number of hospitalized patients aged 18-59 years

123.58 (63.37)3330Number of hospitalized patients over 60 years old
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Figure 2. Trends of cycle threshold (Ct) values and other study variables over 9 months.

ARIMA Model for Study Variables
Table 2 shows the best ARIMA models for the study variables.
The ARIMA (1,0,1) model was the best model for the daily
average Ct value in comparison with other models, having the
lowest BIC value, daily number of the hospitalized patients,
and daily count of positive COVID-19 tests. The ARIMA (1,0,2)
model was the best model for the daily number of COVID-19
deaths. All models had the lowest number of significant

estimated parameters, and the residual analysis showed a good
fit (normality and stability in the variance) for the selected
ARIMA models using the AIC. There was no seasonal pattern
in the study variables. The ADF test was used for evaluating
stability in the mean and the Box-Cox test was used to test the
time-series stability in the variance. The time series of the daily
number of hospitalized patients by age did not show stability
for the variance, and therefore log transformation was applied
to this variable.
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Table 2. The best selected autoregressive integrated moving average (ARIMA) models using the Bayesian information criterion (BIC) and Akaike
information criterion (AIC).

BICAICLog likelihoodARIMAVariable

716.42702.38–355.99(1,0,1)aCycle threshold value

–1220.61–1231.24–1553.31(1,0,1)Number of hospitalized patients

2827.072494.99–1198.16(1,0,1)Number of positive COVID-19 tests

1893.881876.33–933.16(1,0,2)Number of COVID-19 deaths

494.797481.26–905.64(1,0,1)Number of hospitalized patients under 5 years old

407.322393.80–819.80(1,0,1)Number of hospitalized patients aged 5-17 years

384.72374.58–1401.00(1,0,1)Number of hospitalized patients aged 18-59 years

407.55397.41–919.60(1,0,1)Number of hospitalized patients over 60 years old

aThe numbers in parentheses represent the parameters (p, d, q) of the model, where p is the order of autoregression, d is the degree of trend difference,
and q is the order of moving average.

Cross-correlation Analysis
Figure 3 shows the cross-correlations between the study
variables and Ct value. In this figure, negative lags would not
be considered because the negative lag indicates that the study
variables could affect the average Ct value in a certain period
at a later point in time; therefore, the positive lag was used to
show the effect of the Ct value on the study variables in the
future. A cross-correlation function was performed between the
preprocessed input and output series. Table 3 shows the best

lag difference between the Ct value and the study variables.
Indicators such as AIC, SBIC, and HQIC were used to examine
the selected lag. There was no statistically significant (all P>.05)
lag (time delays) between the average Ct value and the daily
number of hospitalized patients under 5 years old and the
number of hospitalized patients aged 5-17 years. However, a
significant 23-day lag was found between the average Ct value
and number of hospitalized patients. The daily count of positive
COVID-19 tests as well as the daily number of COVID-19
deaths had a significant 30-day lag with the average Ct value.

Figure 3. Cross-correlations (y-axes) between cycle threshold (Ct) values and other study variables.
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Table 3. High-correlation lags between the cycle threshold value and other study variables.

SBICcHQICbAICaP valuerLagVariable

16.8515.9515.34.02–0.2523Number of hospitalized patients

8.2416.8315.83.02–0.3430Number of positive tests

12.8611.6910.90.02–0.2630Number of COVID-19 deaths

11.2510.7310.38.76–0.229Number of hospitalized patients under 5 years old

10.419.899.54.29–0.2313Number of hospitalized patients aged 5-17 years

15.7514.8514.24.04–0.2723Number of hospitalized patients aged 18-59 years

15.0514.1513.54.07–0.3023Number of hospitalized patients over 60 years old

aAIC: Akaike information criterion.
bHQIC: Hannan-Quinn information criterion.
cSBIC: Schwarz Bayesian criterion.

Impact of the Ct Value on Study Variables (ARIMAX
Model)
After obtaining the best lag between the daily Ct value and other
variables using cross-correlation analysis (Table 3), ARIMAX
was used to calculate the impact coefficients of the selected
lags. Table 4 shows that a Ct value with a 30-day delay could
affect the daily number of positive COVID-19 tests and the
daily number of deaths from COVID-19. Specifically, a decrease
in Ct value may cause an increase of approximately 16.87 times

in the average number of new positive tests for COVID-19 after
30 days. In addition, the daily number of deaths from COVID-19
will increase by approximately 1.52 times after 30 days with a
decrease in the Ct value. There was a significant coefficient
between Ct lag (23 days) and the number of COVID-19
hospitalizations. There was also a significant association of the
Ct value with a 23-day delay and the number of COVID-19
hospitalizations for patients aged 18-59 years and patients aged
more than 60 years.
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Table 4. Estimated coefficients obtained using autoregressive integrated moving average with exogenous variables models.

P value95% CICoefficient (β)Variables and parameters

Number of hospitalized patients; best model: (1,0,1)

.005–41.08 to –7.16–24.12Cta (23)b

<.001.95 to 1.02.99ARc (1)

<.001–.96 to –.78–.87MAd (1)

Number of COVID-19 deaths; best model: (1,0,2)

.03–2.86 to –.18–1.52Ct (30)

<.001.89 to 1.03.96AR (1)

<.001–1.22 to –.92–1.07MA (1)

.001.09 to .34.21MA (2)

Number of positive tests; best model: (1,0,1)

<.001–28.93 to –4.82–16.87Ct (30)

<.001.84 to 1.07.96AR (1)

<.001–1.06 to –.71–.89MA (1)

Number of hospitalized patients under 5 years old; best model: (1,0,1)

.27–1.68 to .47–.60Ct (9)

<.001.84 to 1.07.96AR (1)

<.001–1.06 to –.71–.89MA (1)

Number of hospitalized patients aged 5-17 years (1,0,1)

.39–1.30 to .50–.40Ct (13)

<.001.92 to 1.03.97AR (1)

<.001–.99 to –.79–.89MA (1)

Number of hospitalized patients aged 18-59 years; best model: (1,0,1)

.02–21.81 to –1.94–11.87Ct (23)

<.001.95 to 1.02.99AR (1)

<.001–.94 to –.76–.85MA (1)

Number of hospitalized patients over 60 years old; best model: (1,0,1)

<.001–17.82 to –5.07–11.44Ct (23)

<.001.96 to 1.02.99AR (1)

<.001–.98 to –.81–.90MA (1)

aCt: cycle threshold.
bThe numbers in parentheses indicate the lag in days.
cAR: autoregressive.
dMA: moving average.

Discussion

Principal Findings
The Ct value is a good proxy for viral load, which can offer the
possibility of isolating people who have a higher viral load
(lower Ct value) and those who have been in contact with these
people for the past 5 days to reduce the transmission rate [11].
Therefore, the Ct value can be a good indicator for predicting
the state of the disease process in the future. This study
investigated the relationship between the population distribution
of Ct values obtained from SARS-CoV-2–positive RT-PCR

tests and COVID-19 dynamics. The results showed that the
daily average Ct value has a significant negative relationship
with three study variables of COVID-19 dynamics: daily number
of hospitalized patients, daily count of positive COVID-19 tests,
and daily COVID-19 deaths. The Ct value can predict the peak
of the epidemic curve of the number of new positive COVID-19
patients with an interval of 30 days earlier.

Comparison With Prior Work
This result is consistent with the results of a study by Walker
et al [21] showing that a declining population-level Ct value
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preceded increases in SARS-CoV-2 positivity tests. Another
study showed a negative association between individual Ct
values and severity of symptoms of COVID-19 [25]. A few
studies have focused on the effect of the population-level Ct
value as an indicator for predicting pandemic surges. Consistent
with this study, Tso et al [26] showed that daily median Ct
values have a negative correlation with the daily count of
positive tests, daily transmission rates, and daily number of
COVID-19 hospitalizations in the greater El Paso area; they
also showed a significant 33-day time delay between daily
median Ct values and the daily number of COVID-19
hospitalizations. In this study, we found a significant 23-day
time delay between the daily average Ct value and the number
of hospitalized COVID-19 patients aged 18-59 years and aged
more than 60 years. The former age group represents the major
workforce, and are thus more likely to be exposed and become
infected with the SARS-CoV-2 virus. Buchan et al [27] showed
that the average Ct values were statistically similar among age
groups, but patients in the age group of 80-89 years had slightly
lower Ct values. According to an epidemiology study in Iran,
the majority of hospitalized COVID-19 patients were in the age
group of 50-60 years [28]. The relationship between the daily
average Ct value and the number of COVID-19 patients aged
under 5 years was not significant in this study.

Hay et al [16] estimated the epidemic trajectory in
Massachusetts, United States, using a mathematical model for
population-level Ct values, and also found that an increasing
epidemic wave will be accompanied by a high frequency of
recently infected patients with high viral loads (lower Ct values),
whereas a declining epidemic wave occurs when the number
of patients with older infections is high. Therefore, Ct values
obtained from the disease care system during the epidemic of
SARS-CoV-2 can determine the course of the epidemic process
at short intervals [16]. In this study, the ARIMAX model was

used to find the effect of Ct value delay time on the number of
positive COVID-19 tests, and a 30-day delay was found between
the average population-level Ct value and the number of positive
COVID-19 cases.

Limitations
Differences in how measurements of Ct value or assurance about
the quality of the data sets that are used to measure
population-level Ct values in different geographical areas may
affect the power of the Ct value for predicting local COVID-19
epidemic waves. Previous studies have indicated that changes
in the population-level Ct values of surveillance samples may
lead to a disease outbreak [16,29]. There is a hypothesis that if
only patients with clinical symptoms who had positive tests
were used to calculate the daily average Ct value, the association
between the daily Ct value and COVID-19 cases would be more
readily detected; thus, a decrease in Ct values may be more
closely associated with the increasing number of COVID-19
patients. To investigate this hypothesis, only the Ct value of
patients with symptoms was used to calculate the daily average
Ct value in this study.

Conclusions
The daily average population-level Ct value has a relationship
with the number of positive SARS-CoV-2 tests and time delay.
Thirty days after reducing the daily average Ct value, the number
of new COVID-19 cases is expected to increase. It is important
to find a good indicator that can predict epidemic surges in the
community for improved COVID-19 surveillance. Faster
prediction of a new wave of disease will help health
policymakers to initiate appropriate public health policies such
as lockdowns for decreasing an anticipated pandemic surge,
and will provide health systems an opportunity to meet the needs
of medicine and facilities to support additional patients.
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AIC: Akaike information criterion
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BIC: Bayesian information criterion
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HQIC: Hannan-Quinn information criterion
MA: moving average
RT-PCR: reverse transcription-polymerase chain reaction
SBIC: Schwarz Bayesian information criterion
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