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Abstract

Background: COVID-19isamajor public health concern. Given the extent of the pandemic, it is urgent to identify risk factors
associated with disease severity. More accurate prediction of those at risk of developing severe infections is of high clinical
importance.

Objective: Based on the UK Biobank (UKBB), we aimed to build machine learning models to predict the risk of developing
severe or fatal infections, and uncover major risk factors involved.

Methods: We first restricted the analysis to infected individuals (n=7846), then performed analysis at a population level,
considering those with no known infection as controls (ncontrols=465,728). Hospitalization was used as a proxy for severity. A
total of 97 clinical variables (collected prior to the COVID-19 outbreak) covering demographic variables, comorhidities, blood
measurements (eg, hematological/liver/renal function/metabolic parameters), anthropometric measures, and other risk factors
(eg, smoking/drinking) were included as predictors. We a so constructed a simplified (lite) prediction model using 27 covariates
that can be more easily obtained (demographic and comorbidity data). X Gboost (gradient-boosted trees) was used for prediction
and predictive performance was assessed by cross-validation. Variable importance was quantified by Shapley values (ShapVval),
permutation importance (Permimp), and accuracy gain. Shapley dependency and interaction plots were used to evaluate the
pattern of relationships between risk factors and outcomes.

Results: A total of 2386 severe and 477 fatal cases were identified. For analyses within infected individuals (n=7846), our
prediction model achieved area under the receiving-operating characteristic curve (AUC-ROC) of 0.723 (95% CI 0.711-0.736)
and 0.814 (95% CI 0.791-0.838) for severe and fatal infections, respectively. The top 5 contributing factors (sorted by ShapVal)
for severity were age, number of drugs taken (cnt_tx), cystatin C (reflecting renal function), waist-to-hip ratio (WHR), and
Townsend deprivation index (TDI). For mortality, the top features were age, testosterone, cnt_tx, waist circumference (WC), and
red cell distribution width. For analyses involving the whole UKBB population, AUCs for severity and fatality were 0.696 (95%
Cl 0.684-0.708) and 0.825 (95% CI 0.802-0.848), respectively. The same top 5 risk factors were identified for both outcomes,
namely, age, cnt_tx, WC, WHR, and TDI. Apart from the above, age, cystatin C, TDI, and cnt_tx were among the top 10 across
all 4 analyses. Other diseasestop ranked by ShapVal or Permimp were type 2 diabetes mellitus (T2DM), coronary artery disease,
atria fibrillation, and dementia, among others. For the“lite” models, predictive performances were broadly similar, with estimated
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AUCsof 0.716, 0.818, 0.696, and 0.830, respectively. The top ranked variables were similar to above, including age, cnt_tx, WC,
sex (male), and T2DM.

Conclusions: We identified numerous baseline clinical risk factors for severe/fatal infection by XGboost. For example, age,
central obesity, impaired renal function, multiple comorbidities, and cardiometabolic abnormalities may predispose to poorer
outcomes. The prediction models may be useful at a population level to identify those susceptible to developing severe/fatal
infections, facilitating targeted prevention strategies. A risk-prediction tool is aso available online. Further replications in

independent cohorts are required to verify our findings.

(JMIR Public Health Surveill 2021;7(9):€29544) doi: 10.2196/29544
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Introduction

COVID-19 has resulted in a pandemic affecting more than a
hundred countries worldwide [1-3]. More than 177 million
confirmed cases and 3.8 million fatalities have been reported
worldwide as of June 19, 2021 [4], while a large humber of
mild or asymptomatic cases may remain undetected. Given the
extent of the pandemic, it is urgent to identify risk factors that
may be associated with severe disease, and to gain deeper
understanding into its pathophysiology. Accurate prediction of
those at risk of developing severe diseases is aso clinicaly
important.

Machinelearning (ML) approaches are powerful toolsto predict
disease outcomes and have been increasingly applied in
biomedical research. In this study we employed boosted trees
(with XGboost) to predict disease outcomes and identify risk
factors. This ML approach can capture complex and nonlinear
interactions between variables, hence leading to better predictive
power in many circumstances. In view of the COVID-19
pandemic, many ML models have been devel oped for diagnostic
or prognostic purposes. For instance, Bayat et a [5] devel oped
a prediction model for COVID-19 infection based on 75,991
veteran patients who were tested for the virus. The prediction
was based on boosted trees and predictors included vital signs,
hematology measurements, and blood biochemistries. Knight
et a [6] built amodel to predict in-hospital mortality for patients
hospitalized with COVID-19, based on demographics,
comorbidities, vital signs, and blood test results. A variety of
methods including XGboost, generalized additive model, and
LASSO were employed. Chung et al [ 7] employed deep neural
networks to predict the severity of COVID-19 infection based
on basic patient information, comorbidities, vital signs, clinical
symptoms, and complete blood count. Wynants et a [8]
performed asystematic review of COVID-19-related prediction
modelsup to July 1, 2020, covering 169 studies describing 232
prediction models. Several recent reviews have a so summarized
the applications of ML methodsin the study of COVID-19 (eg,
[8-11)).

Here we made use of the UK Biobank (UKBB) data to build
ML models to predict severity and fatality from COVID-19,
and evaluated the contributing risk factors. We built prediction
models not only for patients infected but also at a general
population level. While predictive performance is the main
concernin most previous studies, we argue that ML models can
also provide important insights into individual contributing
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factors and the pattern of complex relationships between risk
factors and the outcome. While many have studied risk factors
of COVID-19 susceptibility or severity in the UKBB [12-14]
or other cohorts (eg, [8,15-18]), most relied on conventional
linear models. As such, nonlinear effects and interactions
between variables may be missed.

We note that in the UKBB clinical data were collected years
before the outbreak of infection in 2020, which may be a
limitation. Ideally, the predictors should be measured at the
timewhen themodel isintended to be applied (eg, at admission).
However, we believe that building ML models with previously
collected clinical dataisuseful for reasons detailed below. First,
using previoudly collected clinical features may facilitate the
identification of potential causal risk factors. Asthe predictors
are collected prior to the outbreak, there is no concern about
reverse causality. In practice, infection itself will lead to changes
inmany clinical parameters(eg, glucose, inflammatory markers,
liver/renal functions); hence, it is often difficult to tell the
direction of effect in cross-sectional studies. We hypothesize
that this study will identify general or “baseline” risk factors or
laboratory measurements that may be (causally) predictive of
outcome. Second, the UK BB isahuge popul ation-based sample
(N=~500,000), and the rich clinical data collected previously
enable ML models to be developed at the general population
level. Importantly, there is a reative lack of such
population-level ML prediction modelsto identify who may be
at risk of developing severe COVID-19 infections. We hope
this study will fill the gap, as this may have implications for
prioritizing individuals for specific prevention strategies (eg,
vaccination) and diagnostic testing under limited resources.

In this study we performed 4 sets of analysis. In thefirst 2 sets,
we built ML models to predict the severity and mortality of
COVID-19 among those who are tested positive for the virus.
In this setting, predictive performance is of secondary concern
(as predictors were not assessed at or during admission), but
the predictive performance can shed light on to what extent
baseline (prediagnostic) clinical characteristics contribute to
severe infections. In the other 2 sets of analysis, we predicted
severity and mortality of COVID-19 at the population level,
considering individuals not known to be infected as“ controls.”
Our objectives are twofold. The first is to build prediction
modelsfor severity and mortality from COVID-19. In addition,
wewill uncover how different risk factorsand their interactions
impact on disease severity.
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Methods

UK Biobank Data

The UKBB isalarge-scal e prospective cohort comprising nearly
500,000 individuals aged 40-69 when they were recruited in
2006-2010. Given that the first case of COVID-19 in the UK
was recorded on January 31, 2020, individuals with recorded
mortality before January 31, 2020 (28,931 out of 502,524
individual s) were excluded. We al so excluded from subsequent
analysesavery small number of individuals (n=19) whose cause
of mortality was COV1D-19 (ICD code U07.1) but with negative
test result(s) within 1 week. The current age of individuals
included in our analyses ranged from 50 to 87 years, with
50.77% (255,170/502,524) being older than 70. This analysis
was conducted under the project number 28732. For details of
the UKBB data, please also refer to Sudlow et al [19].

COVID-19 Phenotypes

COVID-19 outcome data were downloaded from data portal
provided by the UKBB. Details of datarelease are provided in
[20]. Briefly, the latest COVID test results were extracted on
December 30, 2020 (last update on December 14, 2020). The
data set also included an indicator on whether the patient was
an inpatient when the specimen wastaken. We consider i npatient
(hospitalization) status as a proxy for severity, as more
sophisticated indicators of severity cannot be reliably derived
yet. We noted that only 10.22% (468,235/4,581,006 infected
cases, from [21] as of June 16, 2021) of patients were admitted
in the UK; as such, it is likely that only the more severe cases
were hospitalized. Hospitalization has also been considered as
an outcome measure in many studies, including those of
vaccination effectiveness [22-25], risk prediction [26,27], and
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genetic/clinical
COVID-19.

risk factors [28,29] underlying severe

In general, we required both test result and origin to be 1
(indicating positive test and inpatient origin, respectively) to
qualify asan“inpatient” case. For asmall number of individuals
with inpatient origin=0 and result=1, but changed to origin=1
with result=0 within 2 weeks time (based on the fact that
median duration of viral persistenceisnearly 2 weeks[30]), we
still considered those as inpatient cases (ie, assume the
hospitalization was related to the infection). All other patients
with at least one positive SARS-CoV-2 test result were
considered as “outpatient.”

Data on mortality and cause of mortality were also extracted
(with latest update on December 14, 2020). Individuals with
recorded cause of mortality as “U07.1" were considered as
having afatal infection with laboratory-confirmed COVID-19
(please aso refer to [31]). We defined a case as “severe
COVID-19” if the individual is an inpatient or if the cause of
mortality is U07.1.

Sets of Analysis

Four sets of analysis were performed. The first 2 sets were
restricted to test-positive cases (n=7846). “ Severe COVID-19”
(n=2386) and death (n=477) dueto COVID-19 were treated as
outcomes. Because only prediagnostic clinica data were
available, the main objective of this analysis was to identify
baselinerisk factorsfor severe/fatal illness among the infected.
We then performed another 2 sets of analysis with the same
outcomes, but the “unaffected” group was composed of the
general population (n=465,728) that did not have a diagnosis
of COVID-19 or were tested negative. The 4 sets of analysis
were aso referred to as cohorts A-D as shown in Table 1. We
also constructed gender-specific prediction models.

Table 1. Thefour sets of analysis performed and predictive performances (full model and lite model).

Cohort Group 1 Group 2 n(groupl) n(group2) Areaunderthe 95% CI (%)

curve? (%)

Full Lite Full Lite
A Hospitalized or fatal cases  Nonhospitalized cases 2386 5460 72.3 716  711-736 70.3-72.9
B Fatal cases All other COVID-19 cases 477 7369 814 81.8 79.1-83.8 79.4-84.2
C Hospitalized or fatal cases UK Biobank patientswithout aCOVID- 2386 465,728 69.6 69.6 68.4-70.8 68.4-70.7

19 diagnosis or tested negative

D Fatal cases UK Biobank patientswithout aCOVID- 477 465,728 825 830 80.2-84.8 80.8-85.3

19 diagnosis or tested negative

8AUC was taken from the average of 5 folds of cross-validation.

Variables Included in Analysis

We extracted a total of 97 clinica variables of potential
relevance based on the literature. For details, please refer to
Table S1din Multimedia Appendix 1 and the referencestherein.
The prediction model using all 97 variables will be referred to
as the “full” model, as opposed to a simplified model (“lite”
model; see below) based on mainly demographic data and
medical history that can be more readily obtained. Among the
97 variables, 21 were categorical and 76 were quantitativetraits.

https://publichealth.jmir.org/2021/9/e29544

The missing rates of variables were all below 20% (ranging
from 0.0% to 19.9% for the 97 variables). We included awide
range of clinical features here, with an objective to uncover
potential novel risk factors for the disease. The ML model we
employed (XGhoost) tendsto have alow biasand high variance;
however, with proper tuning of hyperparameters and
regularization, overfitting can be largely avoided even when a
large number of predictors are included [32].
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The full list of variables is shown in Table S1b in Multimedia
Appendix 1. Briefly, we included basic demographic variables
(eg, age, sex, ethnic group, socioeconomic status as indicated
by the Townsend deprivation index [TDI]), comorbidities (eg,
heart diseases, type 1 and 2 diabetes mellitus [TIDM/T2DM],
hypertension [HT], asthmal/chronic obstructive pulmonary
disease [COPD], cancer, dementia, and psychiatric disorders),
indicators of general health (number of medications taken
[ent_tx], number of illnesses, etc.), blood measurements
(hematology, liver and rena function measures, metabolic
parameters such as lipid levels, HbA1c), anthropometric
measures (eg, waist circumference [WC], waist-to-hip ratio
[WHR], body mass index), and lifestyle risk factors (eg,
smoking, drinking habits). Disease traits were defined based on
ICD-10 diagnoses (UKBB data-field 41270), self-reported
illnesses (UKBB data-field 20002), and data from follow-ups.
Individuals with no records of the relevant disease from either
self-reports or ICD-10 diagnoses were regarded as having no
history of the disease.

Imputation

Missing values of remaining features were imputed with the R
package missRanger (R Foundation). The program is based on
missForest [33], which isaniterative imputation approach based
on random forest. It has been widely used and has been shown
to produce low imputation errors and good performance in
predictive models [34]. The main difference between
missRanger and missForest isthat the former usesthe R package
“ranger” to build random forests, which can lead to a large
improvement in speed. Predictive mean matching (pmm) was
also employed to avoid imputation with values not present in
the origina data. We employed the default parameters
(pmm.k=3, num.trees=100) and default settings of ranger.
Out-of-bag errors (in termsof classification errors or normalized
root-mean-squared error) were computed which providesaguide
to imputation accuracy.

We have also attempted to use multiple imputation by chained
equation (MICE) for imputation. For our data set with nearly
500,000 individuals, MICE stopped after running for 6 hours
due to memory overflow error (>64 GB), whereas missRanger
finished the imputation within 3 hours successfully. We
considered the computational burden of MICE as too high and
therefore employed missRanger in our analyses.

Several studies have compared MissForest with MICE, and
there are several advantages of missForest. For categorical
variables, imputation accuracy of missForest is likely to be
higher than that of MICE [35]. MissForest aso runs
considerably faster than MICE and is especialy suitable for
imputation settings where complex interactions and nonlinear
relationships are likely [33]. Stekhoven et al [33] reported
superior performance of missForest compared with MICE, with
reduction in the proportion of falsely classified entries of up to
60%. In another comparison study, missForest and MICE
performed similarly but it was reported that highly correlated
variables may lead to significant problems with MICE [36].
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XGboost Prediction M odel

X Gboost with gradient-boosted trees was employed for building
prediction models. Analysis was performed by the R package
“xgboost.” We employed a fivefold nested cross-validation
strategy to devel op and test the model. To avoid overoptimistic
results due to choosing the best set of hyperparameters based
on test performance, the test sets were not involved in
hyperparameter tuning.

In each iteration, we divided the datainto 5 fol ds, anong which
one-fifth was reserved for testing only. For the remaining
four-fifth of the data, we further sasmpled four-fifth for training
and one-fifth for hyperparameter tuning. The best prediction
model was applied to the test set. The process was repeated 5
times. A grid-search procedure was used to search for the best
combination of hyperparameters (eg, tree depth, learning rate,
regularization parametersfor L1/L 2 penalty). The full range of
hyperparameters chosen for grid search isgiven in Table S6in
Multimedia Appendix 1.

Building a Simplified “Lite” Mode

The “full” model described above covers a wide range of
predictors but some features (such as blood biochemistries) may
not be readily accessible. For easier implementation in practice,
we aso built asimplified prediction model (also referred to as
the “lite” model) based on a reduced set of 27 predictors. The
reduced set of variableswere chosen based on the ease of being
assessed or measured, which included comorbidities (see above),
anthropometric measures (BMI, weight, WC), demographic
variables (eg, age, sex, ethnic group), and general indicators of
health (number of medications taken, number of illnesses).

Evaluating Predictive Performance and Calibration

To evaluate the predictive performance of the prediction models,
we computed the area under the receiving-operating
characteristic curve (AUC-ROC), which is very widely used
inclinical prediction studies. We also cal cul ated other measures
including the areaunder the precision—recall curve (AUC-PRC),
F1 score, accuracy, and Matthews correlation coefficient (MCC).
The cutoff of predicted probability for calculating the latter 3
measures was determined by optimizing the geometric mean
of sensitivity and specificity.

In addition to good ability to discriminate cases from noncases,
it is also important that the predicted event probabilities match
with the observed probabilities (also known as calibration of a
model). We assessed calibration by several measures, including
the Hosmer—L emeshow test, expected calibration error (ECE),
and maximum calibration error (M CE) [37-40] across 10 equally
sized bins by discretizing the predicted probabilities. We also
attempted 3 approachesto further improve cdibration, including
Platt scaling, isotonic regression, and beta calibration [41-44].
The objectiveisto rescale the predicted probabilities such that
they are closer to the actual probabilities of the outcome [45].

Identifying and Quantifying the Effects of | mportant
Predictors

In this work we primarily employed Shapley value (ShapVal)
[46,47] to assess variableimportance, which isameasure based
on game theory to assess the contribution of each feature.
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ShapVal has been shown to represent a consistent and locally
accurate contribution of each feature [48]. ShapVal enables
local explanation of the model asit could be computed for each
observation, but can also provide global importance measures.
By contrast, gain and split count may produce inconsistent
estimates of global importance as shown by Lundberg et al [48].

Intuitively, the ShapVal of the ith feature (for individua K) is
the contribution of this feature to the prediction of outcome for
the individual, averaging over all possible orderings of the
features (as the contribution may differ when variables enter
the prediction algorithm in different orders). We ranked the
global importance of features based on mean absol ute ShapVal
as described in previous studies [46,47]. We a so attempted an
aternative approach similar to “permutation importance’
proposed in [49]. This method involves permuting the outcome
vector to model the distribution of ShapVal under the null, and
comparing the null ShapVals with the observed ShapVal. We
derived a P value from permutation as an alternative indicator
of feature importance. A total of 500 permutations were
performed for each model. To verify the validity of the
permutation procedure especially under imbal anced case—control
data, we also carried out a small-scale simulation study. A data
set with 50,000 individuals and 10 covariates (X, X, ..., X10)
were generated, where the first covariate x; was linearly
correlated with the outcome. The control-to-case ratio was set
at 976:1, sameasthat for cohort D. Typel error and power were
assessed by repeating the entire permutation procedure for 100
randomly generated data sets (pl ease see M ultimedia A ppendix
2 for details).

A related index is the Shapley interaction value [47], which
computes the difference in Shapley value of featurei with and
without another featurej. ShapVal were averaged across5folds.
Besides, we included the “gain” measure for reference, which
is the reduction of loss or impurity contributed by all splits by
a specific variable.

An advantage of Shapley valueisthat it is calculated for each
individual, so how each risk factor affects a specific person’s
risk of infection/severity can be estimated aswell. Toillustrate
this concept, we also produced decision plotsfor individuals at
the highest, median, and lowest risk of each cohort.

Cluster Analysis Based on Shapley Value

We also performed cluster analysis based on ShapVal to identify
subgroup of patientswho sharesimilar clinical risk factorswith
respect to severity of infection. As introduced in [48], this
approach may be considered aform of “supervised” clustering,
as the outcome (severe/fatal disease) is also taken into account
inthe clustering process. Unlike atraditional clustering approach
based on risk factors, this approach has important advantages.
First, the clusters derived may be more clinically relevant as
the outcome is also considered, reducing the chance that
irrelevant features contribute to the subgrouping (an irrelevant
feature will haverelatively small variationsin ShapVal and will
not contribute substantially to clustering). Second, this approach
essentially considersall featureson the same*“ scale,” as ShapVal
is computed with respect to the outcome. Input features are
often of different unitsand scales, but ShapVal considersfeature
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contributions to the outcome as the unit of measure. Because
of computational cost concerns, here we only performed
clustering on cohorts A (nonsevere vs severe infection) and B
(fatal vs nonfatal infection).

K-Means Spar se Clustering

Here we performed k-means sparse clustering to uncover
underlying patient subgroups based on ShapVal of risk factors.
As the number of features included is large but not all may
contribute to the underlying subgroups, we employed sparse
clustering which incorporates feature selectionin the clustering
process. The R package “sparcl” was employed. To perform
sparse k-means clustering, we need to predetermine the number
of clusters and tuning parameter (L1 penalty) for feature
selection [50]. The optimal number of clusters was assumed to
bethe same asthat in k-means clustering, which was determined
by the silhouette index. The tuning parameter (L1 bound) was
set to range between 2 and 6 with an interval of 0.4. Then the
gap statistic [51] was used to determine the optimal tuning
parameter.

Results

An overview of the sample sizes in each set of analysis is
presented in Table 1. Please also refer to Table Slaand Slbin
Multimedia Appendix 1 for a detailed summary of case counts
and covariates.

Simulation Resultsfor the Permutation Testing
Approach

Simulation results for the validity of permutation P values are
presented in Table S8 in Multimedia Appendix 1. We observed
no inflation of type | error (false-positive rate) despite the
imbalanced case-to-control ratio. At aP valuethreshold of 0.05,
the proportion of resultswith P<.05 for X, to X, (variableswith
null effect) remained less than 0.05 for different effect sizes of
the predictor (please also refer to Multimedia Appendix 2).

Prediction Performance of the XGboost M odel for
Risk and Severity of Infection

AUC-ROC and Other Results

We performed 5-fold cross-validation and the average AUC
under the ROC curve is given in Table 1 and Table S2a in
Multimedia Appendix 1. Here we describe the results for the
full models first. We observed better predictive performances
in cohorts B (fatal cases vs outpatient cases) and D (fatal cases
vs population with no known infection), where fatalities from
COVID-19 were model ed. The corresponding mean AUC-ROC
values were 0.814 (95% CI 0.791-0.838) and 0.825 (95% ClI
0.802-0.848), respectively. The mean AUC-ROC for cohort A
(hospitalized/fatal cases vs other cases) was 0.723 (95% Cl
0.711-0.736) and that for cohort C (hospitalized/fatal cases vs
population with no known infection) was 0.696 (95% ClI
0.684-0.708).

As for the “lite” models which included a reduced set of
predictors, the predictive performances in terms of AUC are
broadly similar, with estimated AUC—ROC for cohorts A-D of
0.716, 0.818, 0.696, and 0.830, respectively.
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The results of other predictive indices are listed in Table S2b
in Multimedia Appendix 1. Estimates of AUC—PRC were the
highest for cohorts A and B (0.535 and 0.171, respectively) and
much lower for cohorts C and D (0.007 and 0.006, respectively).
Thisis expected due to the much higher prevalence of outcome
in the first 2 cohorts. AUC—PRC may be approximated by the
average precision (please refer to [52] for further details).

We aso conducted sex-stratified analysis (Table S2a in
Multimedia Appendix 1). Theresulting AUC-ROC wassimilar
to the overall analysis in males (except for cohort D), but
generaly lower in females. This may be partially explained by
lower number of severe and fatal casesin females, which leads
to greater difficulty in model training.

Proportion of Cases Explained by Individualsat the Top
k% of Predicted Risk

We aso computed the proportion of cases explained by
individuals at the highest k% of predicted risks (Table 2). For
exampl e, considering thefull model, for prediction of mortality
among infected individuals (cohort B), individual s at the highest
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5%, 10%, and 20% of predicted risks explain 17.4% (83/477),
32.7% (156/477), and 52.0% (248/477) of total fatdlities,
respectively. As for prediction in the population (cohort D),
individuals at the highest 5%, 10%, and 20% of predicted risks
explain 32.5% (155/477), 45.7% (218/477), and 63.5%
(303/477) of total fatalities, respectively. For prediction of
severe disease among the infected (cohort A), individuals at the
highest 5%, 10%, and 20% of predicted risks explain 11.2%
(267/2386), 21.6% (515/2386), and 38.2% (911/2386) of total
cases, respectively, while more than half (1272/2386, 53.3%)
of cases are explained by people at the top 30% of predicted
risks. For prediction of severe cases in the population (cohort
C), the corresponding figures were 19.7% (470/2386), 29.3%
(700/2386), and 42.7% (1019/2386), respectively, and more
than half (1260/2386, 52.8%) of cases are explained by people
at thetop 30% of predicted risks. Similar figureswere observed
for full and lite modelsin general.

These results showed in general a strong enrichment of cases
among those predicted to have high risks, indicating good model
discriminatory ability.

JMIR Public Health Surveill 2021 | vol. 7 | iss. 9| €29544 | p. 6
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR PUBLIC HEALTH AND SURVEILLANCE

Wong et a

Table 2. Relative risk (RR) comparing subjects in the top and bottom k% of predicted risks and proportion of cases explained by those at top k% of

predicted risk.
Full model Lite model
k Riskintop  Riskinbottom RR Proportion of cases  Risk in top kop®P  Riskinbottomk% RR Proportion of
Ko, k% explained by top k% cases explained
by top k%
Cohort A
5 0.676 0.148 4.56 0.112 0.691 0.158 4.37 0.113
10 0.654 0.138 4.74 0.216 0.644 0.157 4.10 0.211
20 0.579 0.145 4.00 0.382 0.581 0.153 3.79 0.381
30 0.540 0.148 3.65 0.533 0.533 0.152 3.50 0.526
40 0.489 0.152 3.20 0.644 0.479 0.158 3.03 0.630
50 0.443 0.166 2.67 0.730 0.439 0.170 2.59 0.720
CohortB
5 0.214 0.000 Infinity 0.174 0.212 0.003 8427 0.174
10 0.200 0.001 158.20 0.327 0.216 0.008 2838 0.352
20 0.171 0.008 2242 0.562 0.188 0.008 2459 0.618
30 0.148 0.009 16.57 0.727 0.155 0.008 1921 0.763
40 0.127 0.009 14.21 0.830 0.131 0.009 1423 0.866
50 0.111 0.010 10.94 0.916 0.111 0.011 10.37 0.912
CohortC
5 0.0201 0.0017 11.76 0.197 0.0210 0.0013 1588 0.207
10 0.0149 0.0021 6.98 0.293 0.0158 0.0012 1295 0.310
20 0.0109 0.0023 4.67 0.427 0.0118 0.0021 571 0.462
30 0.0090 0.0030 2.99 0.528 0.0097 0.0027 357 0.573
40 0.0075 0.0033 2.27 0.590 0.0084 0.0026 3.20 0.656
50 0.0069 0.0033 2.09 0.678 0.0074 0.0028 2.63 0.725
CohortD
5 0.0067 0.00000 Infinity 0.325 0.0068 0.00000 Infini-  0.333
ty
10 0.0047 0.00002 218.02 0.457 0.0047 0.00006 73.67 0.463
20 0.0033 0.00011 30.30 0.635 0.0032 0.00009 36.75 0.616
30 0.0026 0.00014 18.74 0.746 0.0027 0.00011 2338 0.784
40 0.0021 0.00016 13.17 0.828 0.0022 0.00013 16.68 0.874
50 0.0018 0.00022 8.35 0.893 0.0019 0.00015 13.03 0.929

% Top k%' refersto top k% of predicted probability of outcome by X Gboost.

b Risk in top k%' refersto the actual probability of the outcome (severe disease or fatality) within the patients belonging to the highest k% of predicted

risks.

Relative Risk of Actual Outcome Probabilities,
Comparing Those at the Highest and Lowest k% of
Predicted Risks

We also computed the relative risk (RR) of infection or severe
disease by comparing individuals at the highest and lowest k%
of predicted risks (Table 2). For example, considering the full
model, if we compare the actual probability of outcome at the
top decile (top 10%) against those at the bottom decile of
predicted risks, the RR was 4.74, 158.2, 6.98, and 218.02,

https://publichealth.jmir.org/2021/9/e29544

respectively, for cohorts A to D. If we compare the top 20%
against the lowest 20% of predicted risks, the corresponding
RRs were 4.00, 22.42, 4.67, and 30.30. The RRs for the lite
model were similar for cohorts A and C, but were smaller for
cohorts B and D when the comparison was made at the more
extreme ends of predicted risks.

We observed large RRs for cohorts B and D, suggesting that
the prediction models were able to discriminate individuals at
the highest and lowest risks of fatality very well. RRsfor cohorts
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B and D were much larger than those for cohorts A and C,
indicating that the model predicted fatality better than severe
disease.

Calibration

As for cdlibration, please refer to Figures S6 and S7 in
Multimedia Appendix 3. For full models, cohort A was
well-calibrated (without using other methods for recalibration)
with ECE of 0.022 and MCE of 0.044 only. For other models,
the ECE and MCE were generally larger, probably dueto large
difficulty in calibration with a much lower probability of the
outcome. The best ECEs (after recalibration by 1 of the 3
methods) were 0.11, 0.14, and 0.02, respectively, for cohorts
B-D. The Hosmer—Lemeshow test was nonsignificant in cohorts
C and D (P=.99 and .98, respectively). For the “lite” models,
the best ECEswere0.017, 0.043, 0.024, and 0.089, respectively,
for cohorts A-D, with nonsignificant Hosmer—L emeshow test
results except for cohort B (Hosmer—Lemeshow P=.49, .003,
.97, and .41 for cohorts A-D, respectively).

Results From Cluster Analysis Based on ShapVal

Figures 1 and S11 in Multimedia Appendix 3 show the results
based on sparse k-means clustering. We performed clustering
separately in cases and controls to uncover patient subgroups
with different clinical background. Herewe focus on clustering
results within cases. As the number of variables is large, we
only showed the variables that were statistically significant
(P<.05fromt test or ANOVA) acrossthe clustersin thefigures.

https://publichealth.jmir.org/2021/9/e29544
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For cohort A, we found 2 clusters as the optimal solution. The
first cluster has higher ShapVal for most risk factors, especially
age, but also cnt_tx, HbA1c, cystatin C, high-density lipoprotein
(HDL)-cholesterol, and HT. ShapVal for WHR was positive
for the first group but negative for the second group. The first
cluster may represent a subgroup of severe cases with a larger
number of clinical risk factors/comorbidities and advanced age,
while the second cluster may be a distinct group with less
conventional risk factors (especially obesity), yet is susceptible
to severe infections perhaps due to other (unmeasured) factors,
such as genetics.

Considering cohort B cases (fatal infections), the optimal
solution comprised 3 clusters. Interestingly, the first and third
clusters seemed to be markedly different with respect to their
risk factor profiles. Mean ShapVal for age was largely negative
for the first cluster but highly positive for the other 2 clusters.
By contrast, mean ShapVal for WC was markedly higher and
positivefor thefirst cluster. Thethird cluster was characterized
by the highest mean ShapVal for age, and higher (positive)
ShapVal for mainly cnt_tx, HbA1c, and T2DM. The results
suggest that there may exist pathophysiologically distinct
subgroups of patients with fatal infection. The first cluster
represents a subgroup with younger age but with higher
proportion of obesity. The third cluster represents another
subgroup with advanced age, more comorbidities, and higher
proportion of glucose abnormalities or T2DM. The second
cluster isin between.
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Figure 1. Results of sparse k-means clustering based on Shapley values (ShapVal) in cohorts A (hospitalized cases) and B (fatal cases). The y-axis
indicates the ShapVal and only those risk Factors with significant differences (P<.05 in t-test or ANOVA) across clusters were shown on the x-axis.
AF: atria fibrillation; CAD: coronary artery disease; Hb: hemoglobin; HbA1c: hemoglobin Alc; HDL: high-density lipoprotein; LDL: low-density
lipoprotein; RBC: red blood cell; RF: risk factor; SHBG: sex hormone binding globulin; TIDM: type 1 diabetes; T2DM: type 2 diabetes.
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S . . for the lite model are presented in Figure 3. For more complete
Important Contributing Variables | dentified b g P
Overview
Herewe primarily report the results of the full model asamore

or permutation P values, please refer to Figures S1-$4 in
Multimedia Appendix 3.
complete set of predictorsisincluded. The Shapley dependence  Full ShapVal analysisresultson all variablesare givenin Tables
plots (ranked by mean absol ute ShapVal) of thetop 15 features  S3a-c in Multimedia Appendix 1. Thetop 10 variables (ranked
https://publichealth.jmir.org/2021/9/e29544

plots (up to 30 variables) with ranking by mean abs(ShapVal)

(full mode!) are shown in Figure 2 and those of thetop 6 features by either ShapVal or permutation P vaue) from the full model
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are presented in Tables 3 and 4 while the top 5 from the lite

Wong et al

importance by gain, and plots are presented in Figure S5a and
model are presented in Tables5 and 6. We alsoincluded variable  S5b in Multimedia Appendix 3.

Figure 2. Shapley value dependence plots of the top 15 risk factors ranked by mean abs(shapley value) (full model) for cohorts A, B, C, and D,
respectively. Shapley value (y-axis) is computed on alog-odds scale. Every unit increase of ShapVal corresponds to an odds ratio (OR) of exp(1)=2.72
compared with the baseline. Positive ShapVal indicates increase in the odds of the outcome and vice versa. CAD: coronary artery disease; COPD:
chronic obstructive pulmonary disease; HDL: high-density lipoprotein; RBC: red blood cell; T2DM: type 2 diabetes mellitus.
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Figure 3. ShapVa dependence plots of the top 6 risk factors ranked by mean abs(shapley value) (lite model) for cohorts A, B, C, and D, respectively.

T2DM: type 2 diabetes mellitus.
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Table 3. Top 10 risk factors ranked by mean absolute Shapley value for cohorts A, B, C, and D (full model).

Risk factor Shapval P value
Cohort A
Age 0.442 .002
Treatments taken count 0.093 .002
Cystatin C 0.088 .002
Waist-to-hip ratio 0.085 .002
Townsend deprivation index 0.059 .004
HbA1c® 0.056 .002
Pulse rate 0.048 .002
Hypertension 0.048 .002
Apolipoprotein A 0.027 .016
HDLP cholesterol 0.026 016
Cohort B
Age 0.708 .002
Testosterone 0.069 .002
Treatments taken count 0.048 .002
Waist circumference 0.035 .002
RBC® distribution widith 0.027 002
Cystatin C 0.024 .002
Townsend deprivation index 0.023 .002
Pulse rate 0.019 .004
Systolic blood pressure 0.016 .002
Lymphocyte percentage 0.015 .004
Cohort C
Waist-to-hip ratio 0.113 .002
Townsend deprivation index 0.096 .002
Age 0.088 .002
Treatments taken count 0.063 .002
Waist circumference 0.044 .002
Self-report: noncancer count 0.043 .002
Hypertension 0.036 .002
Cystatin C 0.030 .024
T2DM 0.030 .002
Apolipoprotein A 0.024 .052
Cohort D
Age 0.519 .002
Townsend deprivation index 0.136 .002
Waist-to-hip ratio 0.131 .002
Treatments taken count 0.115 .002
Waist circumference 0.110 .002
Cystatin C 0.096 .002
Testosterone 0.086 .002
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Wong et a
Risk factor Shapval P value
Hypertension 0.061 .002
RBC distribution width 0.046 .002
Pulserate 0.036 .006

3HbA1c: hemoglobin Alc.
PHDL: high-density lipoprotein.
°RBC: red blood cell.

4T2DM: type 2 diabetes mellitus.
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Table 4. Top 10 risk factors ranked by P-value, listing only factors which are not yet included in for cohorts A, B, C, and D (full model).

Risk factor P vaue ShapVval
Cohort A
ToDM3 004 0.010
Self-report: noncancer .008 0.018
Depression .008 0.004
CADP .016 0.002
Cancer diagnosed by doctor .026 0.000
Alcohol intake (occasions) .028 0.002
AFC .028 0.000
Smoking (current) .036 0.000
y-glutamyltransferase .046 0.021
wBcd count 046 0.014
Cohort B
BMI .002 0.015
Glucose .002 0.015
HbA 1cE .002 0.014
Weight .002 0.010
Mean platelet volume .002 0.009
T2DM .002 0.007
Sleep duration .002 0.006
T1iDMf 002 0.003
Cognitive impairment .002 0.003
CAD .002 0.003
Cohort C
coPpY 002 0.015
Depression .002 0.009
Cognitive impairment .002 0.007
CAD .004 0.017
Ethnic (Asian/Asian British) .004 0.007
Heart failure .004 0.007
AF .004 0.006
Smoking (previous) .006 0.015
Stroke 012 0.001
Ethnic (Black/Black British) .020 0.001
Cohort D
T2DM .002 0.026
Cognitive impairment .002 0.024
COPD .002 0.021
AF .002 0.016
Heart failure .002 0.007
CAD .002 0.008
Ethnic (Black/Black British) .004 0.004
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Risk factor P vaue ShapVval
Stroke .004 0.002
Alcohol drinker (current) .004 0.001
Smoking (previous) .006 0.003

8T2DM: type 2 diabetes mellitus.
bCAD: coronary artery disease.
CAF: atrial fibrillation.

dWBC: white blood cell.
®HbA1c: hemoglobin Alc.
T1DM: type 1 diabetes mellitus.

9COPD: chronic obstructive pulmonary disease.

Table5. Top 5 risk factors ranked by mean absolute Shapley value for cohorts A, B, C, and D (lite model).

Risk factor ShapVal P value
Cohort A
Age 0.496 .002
Treatments taken count 0.121 .002
Waist circumference 0.085 .002
Male 0.058 .002
Self-report: noncancer count 0.054 .004
Cohort B
Age 0.721 .002
Treatments taken count 0.079 .014
Waist circumference 0.071 .040
Male 0.048 .010
BMI 0.034 242
Cohort C
Waist circumference 0.153 .002
Age 0.120 .002
Treatments taken count 0.102 .002
Self-report: noncancer count 0.064 .002
T2DMA 0.050 .002
Cohort D
Age 0.056 .002
Waist circumference 0.248 .002
Treatments taken count 0.154 .002
Mae 0.098 .002
BMI 0.043 .036

&T2DM: type 2 diabetes mellitus.

https://publichealth.jmir.org/2021/9/e29544

RenderX

JMIR Public Health Surveill 2021 | vol. 7 | iss. 9 | €29544 | p. 14
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR PUBLIC HEALTH AND SURVEILLANCE Wong et a

Table 6. Top 5 risk factors ranked by P value, listing only factors which are not yet included in for cohorts A, B, C, and D (lite model).

Risk factor P vaue ShapVval
Cohort A
T2DM? .002 0.047
Smoking (current) .004 0.026
Depression .016 0.015
Alcohol drinker (current) .020 0.013
CADP .022 0.010
Cohort B
T2DM .006 0.027
Cognitive impairment .006 0.015
T1DMC .020 0.009
Bipolar .024 0.006
AFY .036 0.011
Cohort C
CoPD® .002 0.024
Ethnic (Asian/British Asian) .002 0.016
Cognitive impairment .002 0.008
Male .004 0.049
CAD .004 0.023
Cohort D
T2DM .002 0.043
COPD .002 0.039
Cognitive impairment .002 0.029
AF .002 0.024
Ethnic (Black/Black British) .002 0.016

3T2DM: type 2 diabetes mellitus.

bcAD: coronary artery disease.

°T1DM: type 1 diabetes mellitus.

9AF: atrial fibrillation.

€COPD: chronic obstructive pulmonary disease.

As for interaction analyses, top results are presented in Table Note that ShapVal is measured on the log-odds scale. Every
7 and full resultsin Tables S4 and S5 in Multimedia Appendix  unit increase of ShapVal corresponds to an odds ratio of
1. Plots are presented in Figure 4 (top 2 interacting pairs from  exp(1)=2.72. Positive ShapVal indicates increase in the odds
each model) and Figures S8 and S9 in Multimedia Appendix 3  of outcome and vice versa.

(top 6 interacting pairs).
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Table 7. Top interacting pairs of variables ranked by ShapVal (full model).
Risk factor 1 Risk factor 2 Value
Cohort A
Waist-to-hip ratio Age 150
Treatments taken count Age 149
HDL? cholesterol Age 86
Age Hypertension 85
Cystatin C Age 84
Cohort B
Testosterone Age 195
Waist circumference Age 95
BMI Age 82
Treatments taken count Age 63
Pulse rate Age 57
Cohort C
Waist-to-hip ratio Age 709
Waist-to-hip ratio Treatments taken count 494
Townsend deprivation index Treatments taken count 481
Townsend deprivation index Waist-to-hip ratio 450
Albumin Waist-to-hip ratio 407
Cohort D
Waist circumference Age 859
Testosterone Age 780
Townsend deprivation index Age 725
Waist-to-hip ratio Age 603
Age Hypertension 585

8HDL: high-density lipoprotein.
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Figure 4. ShapVal interaction plots of the full model for the top 4 interacting pairs of cohorts A, B, C, and D, respectively.
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Cohort A (Hospitalized/Fatal Casesvs Outpatient Cases)

The top 5 contributing features by ShapVal included age,
number of medications received (cnt_tx), cystatin C, TDI, and
WHR, followed by HbA1c. Higher levels of these risk factors
generaly lead to higher disease severity among the infected.
Interestingly, Shapley dependence plots revealed potential
nonlinear and “threshold” effects of risk factors on the outcome.
For example, age of 65 or above was associated with amarkedly
increased risk of severe/fatal infection. Markedly elevated risks
were also observed for HbA1c levels over 40 mmol/mol and 5
or more drugs received. Impaired rena function (IRF; raised
cystatin C >1 mg/L) was aso linked to worse outcomes. For
WHR, levels of 0.9 or higher appeared to be associated with a
marked increase in risks. For other features, please refer to
Figure 2. We note that at the extreme ends of variables, the
observations are often sparse, so the trend shown by the Loess
curve may not be reliable (this also applies to other cohorts).
Variable importance based on gain revealed similar patterns of
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important features (Figures Sba and Sbb in Multimedia
Appendix 3).

If we consider the “P value’” or permutation importance
(Permimp) measure, variables with top 10 (absolute) ShapVal
also showed significant P values (P<.05 for all cases). T2DM
was among the top 10 by Permimp but not by ShapVal.
Depression and coronary artery disease (CAD) a so showed low
P values (P<.02), but were not listed among the top 30 by
ShapVval.

Regarding interactions between variables, most of the top
interacting pairs involved age (Figure 4 and Tables 4 and S5
in Multimedia Appendix 1). For example, younger individuas
were observed to have more extreme ShapVal at similar ranges
of cnt_tx. The effect of WHR on severity was more marked
among the elderly, and the same was true for HDL -cholesterol
(low HDL isarisk factor).
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Model B (Fatal Cases vs Outpatient Cases)

The top 5 contributing variables by ShapVa included age,
testosterone (which may reflect the effect of gender), cnt_tx,
WC, and red blood cell distribution width (RDW), which were
followed by cystatin C, TDI, pulserate, systolic blood pressure
(SBP), and percentage of lymphocytes. Again, certain nonlinear
and “threshold” effects appeared to be present for many
top-ranked features. For age, the risk for mortality was more
marked beyond 65 years. Higher levels of al the above risk
factors (RFs) (except percentage of lymphocytes, which showed
aU-shaped rel ationship) were associated with higher mortality,
but the effects were nonlinear. Regarding the top results based
on Permimp, 8 out of 10 predictors ranked high by ShapVal
also had the lowest P values (lowest P value of .002 since we
performed 500 permutations). Other top-ranked features
(P=.002) included HbA1c, type 1 and T2DM, weight, mean
platelet volume, etc.

Variable importance based on gain yielded similar results
(Figures Sba and S5b in Multimedia Appendix 3). As for
interacti ons between the variabl es, again interactions were most
prominent with age (Figure 4). For example, the effects of WC
and BMI (when exceeding a threshold of around 110 cm and

35 kg/m?, respectively) on mortality were more prominent
among younger individuals. The effects of testosterone and
HbA 1c, however, were more marked in older individuals.

Model C (Hospitalized/Fatal Cases vs Population With
No Known I nfection)

Based on ShapVal, WHR was the top contributing variable and
WC was ranked fifth, suggesting that central obesity may be a
stronger predictor for severe disease than BMI alone (BMI was
ranked 13th by ShapVal). As before, TDI and age were ranked
among thetop. For age, dightly unexpectedly, aU-shaped curve
was observed, which suggests lowest risk at the age group of
65-70. Note that model C may also capture RFs related to
susceptibility to infection. It is possible, for instance, that
younger individuals had higher risks of exposure due to work
or socia interactions. Among the top 10, two are related to
general multiple comorbidities (cnt_tx and cnt_noncancer).
Increased cystatin C and lower apolipoprotein A were also
associated with higher susceptibility to severe infections, and
HT and T2DM were also among the top 10. Considering
Permimp as the ranking criteria, COPD, depression, and
dementiawere observed to have the lowest permutation P values
(P=.002) though not top listed by ShapVal.

The interaction plot (Figure 4) shows WHR may interact with
age, with elderly individuals showing more prominent effects
from changesin WHR.

Model D (Fatal Cases vs Population With No Known
I nfection)

Based on ShapVal, age was the top feature, followed by TDI,
WHR, number of drugs taken, and WC. Other top features
included cystatin C, testosterone, HT, RDW, and pulse rate.
Higher levels of these features (or presence of comorbidity)
generaly lead to higher mortality risks. Based on Permimp,
T2DM, dementia, and COPD were the most highly ranked
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(ignoring features that are already listed in the top 10 by
Shapval).

Shapley interaction analysis suggested that the top interacting
pairs involved age and some of the top contributing features
(Figure4 and Figure S8 in Multimedia A ppendix 3). The effects
of testosterone (likely al so reflects gender effects) and TDI were
more prominent among the elderly, whilethe effect of BMI was
larger in the younger age groups.

As for important variables from the sex-stratified analysis, the
top variables were similar which included age, WC/WHR,
cystatin C, number of medications received, socioeconomic
status (as reflected by TDI), among others (Table S3c in
Multimedia Appendix 1).

Perml mp Compared With ShapVal

Overall speaking, the Permimp measure tends to rank binary
traits higher than ShapVal. Of note, severa diseases were
consistently top listed by Permlmp acrossthe 4 cohorts (though
some were not highlighted by ShapVal), including CAD, atrial
fibrillation (AF), T2DM, and dementia, which were among the
top 10 in at least three cohorts in Table 4. Other diseases that
were listed at least twice included depression, COPD, stroke,
and heart failure.

Results From the“Lite’ Modé€

Herewe highlight top contributing featuresfor the“lite” models
consisting of 27 predictors (Table S3b in Multimedia Appendix
1). Remarkably, the top 3 features (ranked by ShapVal) were
consistent across all 4 cohorts. These features included age,
cnt_tx, and WC (WHR was not included in the lite model as
WC iseasier to measure). Of note, sex and T2DM were ranked
among the top 6 across all cohorts.

If we consider PermIimp as the ranking criteria (further ranked
by ShapVval if Permimp is equal), age, cnt_tx, and WC were
till highly ranked and listed among the top 5 in at least three
cohorts (Table S3b in Multimedia Appendix 1). T2DM was
ranked among the top 5 in al cohorts. Other potential risk
factors included dementia (top 10 across 3 cohorts) as well as
AF, COPD, and CAD (top 10 across 2 cohorts).

Results From the L ogistic M odel

Asdiscussed above, we primarily focused on the X Gboost ML
model asit can capture nonlinear relationships and interactions
between predictors. Here we also performed our analyses with
logistic regression (LR) for comparison. For prediction
performance (Table S7a in Multimedia Appendix 1), the
AUC-ROC of the full LR model was 0.728 (95% CI
0.715-0.741), 0.810 (95% CI 0.786-0.834), 0.712 (95% CI
0.701-0.724), and 0.833 (95% CI 0.810-0.856), respectively,
for cohorts A-D. For the“lite” model (using 27 predictorsonly),
the AUC-ROC of the LR approach was 0.722 (95% CI
0.709-0.735), 0.824 (95% CI 0.801-0.848), 0.697 (95% ClI
0.685-0.709), and 0.834 (95% CI 0.812-0.857), respectively,
for cohorts A-D (Table S7ain Multimedia Appendix 1). These
figureswere very closeto those obtained by X Gboost, although
AUC-ROC using LR was dlightly higher in general (median
difference=0.005). If we compute the RR of individuals at the
highest and lowest k% of predicted risks, the results were
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generaly similar (Table S7b in Multimedia Appendix 1). For
cohort D and the full model of cohort B, XGboost performed
better than LR at the extreme ends of predicted risks, with
observed risk=0 (ie, no caseswere observed) for those predicted
at the lowest 5% of risk (Table 2).

While prediction is one of our goals, uncovering important
contributing factors and their relationship to COVID-19 severity
isamajor objective of thisstudy. Infact, the latter isconsidered
our primary objective when considering the analyses within
patients infected (cohorts A and B). As LR assumes linearity
on alog-odds scale, it could not capture nonlinear rel ationships
or “threshold effects’ of variables on disease severity.

Individual Shapley Decision Plotsand Online
Calculator

We aso showed individual Shapley decision plot for 3
individualswith the highest, median, and lowest predicted risks
in each cohort (Figure S10 in Multimedia Appendix 3). The
y-axisis based on alog-odds scale.

To facilitate further research and studies on risk-prediction
models, we also constructed an online risk calculation tool (for
“lite” model) [53]. The onlinetool can also construct a Shapley
decision plot based onindividual risk factors.

Discussion

Principal Findings

In this study we have performed 4 sets of analysis, predicting
severe or fatal COVID-19 infection among affected individuals
or in the population. We observed good predictive power from
the XGboost ML models, especially for the prediction of
mortality. We also identified risk factors for increased severity
or mortality, and uncovered possible nonlinear effects of some
features, which may be clinically relevant and shed light on
disease mechanisms.

Prediction of Severity/Mortality

In general, our prediction models achieved reasonably good
predictive power. The models predicted mortality (AUC
81%-83%) better than severity of disease. Asdiscussed earlier,
in the absence of better aternatives, hospitalization (test
performed as inpatient) was used as a proxy for severity.
However, reasonsor criteriafor hospitalization may vary across
individuals or hospitals, and some tests may be performed in
inpatients for surveillance or due to other confirmed/suspected
cases in the ward. As aresult, hospitalized patients could also
include some with mild or moderate illnesses, which may also
impair the prediction performance. By contrast, mortality from
infection is a more objective outcome. Other studies (eg,
[54-56]) have also defined “severe” or “critical” disease based
on intensive care unit admission or need for ventilatory support.
However, we could not find sufficiently detailed clinical data
to support such a classification at the time of this analysis.

Discriminatory Power of the Models and Clinical
Implications

By assessing the proportion of cases explained by those at the
top k% of predicted risks, we observed in general a strong
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enrichment of cases among those with high predicted risks,
indicating good discriminative ability of the models and
suggesting the possibility to focus on the highest-risk group for
targeted preventions or treatment. A similar strong enrichment
was also observed for the lite model with fewer predictors. We
also observed large RRs of the actual outcomeswhen comparing
individuals at high and low percentiles of predicted risks. For
example, for the prediction of mortality among theinfected, the
RR was up to 158 times (~20% vs 0.1%) when comparing and
top and bottom deciles using the full model, and 28.38 times
when considering the simplified model (~21% vs 0.8%). These
results suggest that the prediction models may be used for risk
stratification and prioritizing those at higher risks of
deterioration, for early medical attention or admission. As the
“lite” model only relies on demographic data and information
on comorbidities, risk stratification may be conducted even at
the start of the illness without other blood or imaging results.

Previous Relevant Works

A number of studies have focused on prediction of
severity/mortality of COVID-19 (corresponding to our
prediction in cohorts A and B) and were reviewed in [8]. For
cohort A (prediction of severity among infected), the AUC is
72.3%, which is moderate but not as good as many previous
ML modelsfor severity prediction [8]. The AUC for prediction
of mortality is much higher (AUC=81.4%), although we noted
that some studies have reported higher predictive power from
clinica symptoms, blood biochemistry on admission, and
imaging features [8]. We understand that without access to the
above features, predictive performance may be inferior. By
contrast, due to heterogeneity of clinical samples, treatment
approaches, model eval uation methods, and other features across
studies, direct comparisons of predictive performance across
studies may be difficult. Here we are not aiming at deriving a
highly accurate prediction model; the main purposeistoidentify
general or “baseling” risk factors for severe disease, thereby
gaining insight into disease pathophysiology. However, weal so
showed that such clinical featuresor blood measurements, even
when collected much earlier in time, may still be highly
predictive of outcomes and hence may be incorporated into
existing prediction algorithms. The models here may aso be
useful when blood results or imaging are not available (eg,
before admission) and the goal isto quickly classify apatient’s
risk.

For cohorts C and D, the genera population (with no known
infection) was treated as “ controls.” Compared with cohorts A
and B, the identified risk factors may a so increase the overall
susceptibility to infection. The AUC for cohort C (severe/fatal
disease) is about 70% but is much higher when mortality is
considered as the outcome (AUC=~83%). To our knowledge,
there are dill very few predictive models built at a
general populationlevel to identify susceptible individuals; this
work is among the first to employ an ML approach to predict
the risk of COVID-19/severe infection at a population level.
DeCaprio et al [57] proposed an ML model to assess the
vulnerability to COVID-19 in the population. However, due to
limited data, no actual COVID-19 patients were included and
“proxy” outcomes were used instead. Models were built from
mainly demographic and comorbidity data to predict
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hospitalization due to acute respiratory distress syndrome,
pneumonia, influenza, acute bronchitis, and other respiratory
tract infections.

Another very recent study (“QCOVID” study) from the UK
[58] utilized general practice records from 6.08 million adults
(age 19 to 100) asthe derivation cohort and 2.17 million adults
asthevalidation set. Mortality from COVID-19 wasthe primary
outcome and a survival model (subdistribution hazard model)
[58] was used to predict mortalities. The predictors included
demographic (eg, age, TDI, ethnicity), lifestyle (eg, BMI,
smoking), and a large range of comorbid conditions. The
resulting Harrell’s C (comparableto AUC) was 0.928. However,
we notethat the QCOV D study included individuals of amuch
younger age range (19 or older), which will improve predictive
performance, as age is by far the most important predictor of
mortality, with markedly reduced risks in younger individuals.
For example, if werefer to age-specific predictive performance
(see Supplementary Table C in the study [58]), Harrell's C for
mortality was 0.678, 0.831, 0.812, and 0.814 in 50-59, 60-69,
70-79, and 80+ year olds, respectively, for males in the first
follow-up period (January 24 to April 30, 2020). For females,
the corresponding numberswere 0.618, 0.77, 0.866, and 0.821.
These numbers reflect lower predictive power when restricted
to anarrower age range. One main difference between thiswork
and the above study is that we employed an XGboost ML
approach which is able to also capture nonlinear and more
complex interaction effects. As shown in our Shapley
dependence plots, the models were able to reveal nonlinear
effects in a data-driven manner. We also included a number of
blood measurements to shed light on potential new risk factors
and mechanisms underlying the disease. The QCOVID study
employed a survival model (subdistribution hazard) that
accounts for time-to-event and competing risks; however, the
proportional hazards assumption isrequired which may not hold
due to restrictionsg/interventions introduced during the period
(ie, time-dependent associations may be present).

A few other studies have investigated risk factors (especialy
comorbidities) for COVID-19 infection in the UKBB. For
example, Atkinset al [12] studied elderly individuals (age >65)
in UKBB, and found that HT, history of falls, CAD, T2DM,
and asthma were the top comorbidities among hospitalized
cases. The analysis was restricted to the elderly population,
however. In a more recent work, McQueenie et al [13] studied
the impact of multiple comorbidities and polypharmacy on
infection risks. Having 2 or more long-term conditions,
cardiometabolic disorders, and polypharmacy were associated
with heightened risks of infection. Among individuals with
multiple comorbidities, severe obesity and IRF may lead to
increased risks. Another study of primary care patients in the
UK revealed that deprivation, male sex, older age, ethnicity
(being Black), and chronic renal disease were associated with
higher risks of being tested positive [59]. Another large-scale
British primary care study of more than 17 million individuals
revealed similar risk factors as above [60]. There is also a
relatively large literature on the study of risk factors associated
with severe or fatal disease [15-18,61-64]. Some commonly
reported risk factors included age, sex, obesity, T2DM, HT,
renal, cardiometabolic, and respiratory disorders. As discussed
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above, an important difference between the above
epidemiological studies and this work is that we employed
XGboost, an ML approach that can uncover nonlinear and
interaction effects, while other studies mostly employed
regression models that assume linear and additive effects of
covariates. We also performed a comprehensive analysis
including 4 models covering different outcomes and both
infected and population cohorts.

Comparison With Logistic Model

We have performed LR to compare with X Ghoost on cohorts
A and B. The differences in predictive performance appeared
to be small. The number of cases (especiadly fatalities) is
relatively small in this data set, and thismay limit the predictive
performance of more complex models such as X Gboost, which
may be expected to improve with larger case numbers. An
important advantage of XGboost is that it can detect nonlinear
relationships when compared with LR. In addition, X Gboost
may handle multiple collinearity better than LR. Assuming 2
highly correlated features A and B, for each specific tree usually
only 1 variable will be used and as the trees are sequential, the
focus of the model will be usually on one but not on both
features [65]. Hence, XGboost also handles multicollinearity
well, which is important here as many clinical variables are
correlated. XGhoost also directly models interaction between
variables. It ismuch more difficult for LR to model interactions
duetotherapid increase in feature space when interaction terms
areincluded.

Highlights of Potential Risk Factors

For the limit of space, we shall only highlight the top 5-10 risk
factors ranked by ShapVal here. Across the 4 cohorts, age and
cardiometabolic risk factors predominate the top risk factors.
Age and WHR/WC were ranked among the top 5 across all 4
cohorts. The number of medications taken was among the top
5 across al cohorts, and cystatin C (reflecting renal function)
was among the top 10 across all cohorts. HbA1c was atop 10
risk factor for cohort A, and T2DM was aso highly ranked
across multiple cohorts especially when Permimp was
considered. TDI (reflecting socioeconomic status) was among
the top 10 in most cohorts. As described above, results from
the“lite” modelswere generally in line with those from the full
models, with age, WC, and cnt_tx consistently ranked as the
top 3.

Obesity has been observed to be a major risk factor for
susceptibility or severity of infection in the UKBB [14,66] and
in many other studies [67,68]. The observation that WC/WHR
were highly ranked suggeststhat central obesity isamajor risk
factor and may be abetter predictor of severity than BMI aone.

Another major risk factor we identified is IRF, as reflected by
elevated risks with raised urea and cystatin C. Several studies
also suggested that IRF increases risk of mortality [64,69,70],
although it is probably not as widely recognized as
cardiometabolic disorders as a major risk factor. Because
COVID-19 itself may lead to renal failure, our findings
specifically suggest that underlying or baseline IRF is an
important risk factor. The high ranking of cystatin C also
indicatesthat this measure may better reflect renal function than
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urea or creatinine (which were also included in our analysis)
[71,72], and may serve as a superior predictor for COVID-19
severity.

Other potential risk factors briefly highlighted below were less
reported. As some were listed only once or twice among the
top 10, and for some their ShapVal was close to other risk
factors, further replications are required. For example,
testosterone was top ranked by XGboost (for mortality), with
higher levels associated with increased risk. This may partially
reflect that males are at a higher risk of fatal infections, but it
remains to be studied whether testosterone itself isinvolved in
the pathophysiology of severe COVID-19, as the ML model
chose this variable instead of sex. Studies have suggested that
elevated or reduced testosterone levels may be associated with
a more severe clinical course [73]. Besides, interestingly,
5-alpha-reductase inhibitors or androgen-deprivation therapy
has been shown to be associated with a lower risk or severity
of disease [74,75]. We also found a few hematological indices
that may be potential risk factors. High RDW was associated
with mortality in our study and was also identified in a recent
meta-analysisof 3 studiesasarisk factor [76]. Low lymphocyte
percentage was a top 10 risk factor in cohort B, which may be
related to immune functioning and response to infections.
Lymphopenia was reported as a main hematological finding in
those with severe illnesses [40,77]. Most previous studies
considered hematological indices at admission or during
hospitalization. Slightly surprisingly, this study suggested that
high RDW or reduced lymphocyte percentage prior to the
diagnosis may also be predictive of worse outcomes.

Comorbid Diseases Associated With Severity as
Highlighted by PermImp

Among the diseases being included as covariates, T2DM is
most consistently ranked among the top, no matter whether full
or lite models are used, and regardless of ranking by ShapVal
or Permimp (P value). T2DM has been shown in numerous
studiesto be associated with higher risk and severity of infection
[78,79]. We noted some discrepancy between the ranked results
based on ShapVal and those based on Permimp. In general, the
latter measure favors binary variable, while ShapVal alonetends
to rank continuous variables higher. We are unsure about the
exact reason, but it may be an interesting topic for further
methodology studies. If we employed a composite ranking
criteria based on Permimp followed by ShapVal, then a few
more diseases were ranked among the top 10, such as
hypertension and COPD. For cohort D, T2DM, dementia,
COPD, AF, heart falure, and CAD were aso top ranked,
suggesting that a range of chronic cardiovascular, respiratory,
and neuropsychiatric conditions may be associated with
increased mortality.

Full and Lite Prediction M odels

We note that the simplified (lite) prediction model has very
similar predictive performance (as assessed by AUC) to the
“full” model with a larger panel of predictors. However, it is
important to note that features associated with the outcome may
not always improve predictive power. AUC is relatively
insensitive to detecting changesin predictive performance when
additional risk factors are added [80-82].
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For example, Pencina et al [80] showed that in the prediction
of cardiovascular disease risk in a study on women’s health,
adding extra established risk factors often result in minimal
improvementsin AUC. For instance, in amodel with age, SBR,
and smoking, adding any lipid measures result in only an
increase of 0.01 in AUC from the baseline of 0.76. In the same
vein, starting from afull prediction model [containing Ln(age),
Ln(SBP), smoking, Ln(Total cholesterol), Ln(HDL)], deleting
any one of these established risk factors (except age) resulted
in a very small reduction in AUC of <0.02. In general, for a
model with high baseline AUC from existing predictors (eg,
age, sex, and obesity in the case of COVID-19), including
additional predictors may not result in much improvement in
discriminative power or AUC [83].

Nevertheless, it is still valuable to study variable importance
(eg, ShapVal) from the ML model as it may shed light on the
pathophysiology of the disease. For example, many factorssuch
asageand T2DM may lead to poorer renal function (and higher
cystatin C), which in turn may increase the severity of infection.
Giventhat age, T2DM, and other main comorbiditiesare already
modeled, adding cystatin C may not improve discriminative
power of the model. However, its inclusion may still change
the predicted probability of outcome, which will be reflected
in ShapVal. The high ranking of cystatin C (based on ShapVal)
may shed light on renal impairment as a potential mechanism
associated with clinical deterioration.

Some limitations have been discussed above; for example, the
use of hospitalization as a proxy for severity, and that the
predictors were recorded prior to the pandemic. We briefly
discuss other limitations here. The UKBB isavery large-scale
study with detailed phenotypic data, but till the number of fatal
casesisrelatively small. In addition, the UKBB is not entirely
representative of the UK population, as participants tend to be
healthier and wealthier overall [84]. Further, it remains to be
studied whether the findings are generalizable to other
populations. Symptom measures and lung imaging features
were not available at the time of analysis. Despite adjusting for
arich set of predictors and that al predictors were recorded
prior to the outbreak, causality cannot be confirmed from this
study, dueto risk of residual confounding by unknown factors.
This study was performed on a cohort with age over 50, and
generalizability to younger individuals remains to be studied.
In cohorts C and D, the population with no known infection
was regarded as controls. It is expected that some may become
infected in the future, and some may have been infected but not
tested; however, the chance of missing cases of severeinfection
is probably not high. Since the UKBB represents a relatively
healthy population with alow rate of severe COVID-19 cases
sofar (236/468,114, 0.50%), we expect the use of “unscreened”
controlsis unlikely to result in substantial bias.

Regarding the ML model, X Gboost is a state-of -the-art method
that has been consistently shown to be the best or one of the
best ML methodsin supervised learning tasks/competitions[85]
(especially for tasks not involving computer vision or natural
language processing). Nevertheless, other ML methods may
still be useful or may uncover novel risk factors. Assessing
variableimportanceisalong-standing problemin ML; herewe
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mainly employed ShapVal, which is both computationally fast
and was shown to have good theoretical properties [46,47].

Conclusions

In conclusion, we identified a number of baseline risk factors
for severeffatal infection by an ML approach. Shapley
dependence plots revealed possible nonlinear and “threshold”
effects of risk factors on the risks of infection or severity. To

Wong et a

cardiometabolic abnormalities or disorders (especially T2DM),
and low socioeconomic status may predispose to poorer
outcomes, among other risk factors. The prediction models (of
cohorts C/D) may be useful at a population level to identify
those susceptible to devel oping severe/fatal infections, thereby
facilitating targeted prevention strategies. Further replication
and validation in independent cohorts are required to confirm
our findings.

summarize, age, central obesity, IRF, multiple comorbidities,
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Abbreviations

AF: atrial fibrillation

AUC—PRC: areaunder the precision—recall curve
AUC-ROC: areaunder the receiving-operating characteristic curve
CAD: coronary artery disease

COPD: chronic obstructive pulmonary disease
ECE: expected calibration error

HDL: high-density lipoprotein

HT: hypertension

IRF: impaired renal function

LR: logistic regression

MCC: Matthews correlation coefficient

MCE: maximum calibration error

MICE: multipleimputation by chained equation
ML: machinelearning

RDW: red blood cell distribution width

RF: risk factor

RR: relativerisk

SBP: systolic blood pressure

T1DM: type 1 diabetes mellitus

T2DM: type 2 diabetes mellitus

TDI: Townsend deprivation index

UKBB: UK Biobank

WC: waist circumference

WHR: waist-to-hip ratio

https://publichealth.jmir.org/2021/9/e29544 JMIR Public Health Surveill 2021 | vol. 7 |iss. 9| 29544 | p. 26
(page number not for citation purposes)


http://dx.doi.org/10.1101/2020.11.16.20232512
https://linkinghub.elsevier.com/retrieve/pii/S0923-7534(20)39797-0
http://dx.doi.org/10.1016/j.annonc.2020.04.479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32387456&dopt=Abstract
http://europepmc.org/abstract/MED/32841949
http://dx.doi.org/10.1159/000510914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32841949&dopt=Abstract
https://doi.org/10.1002/ajh.25829
http://dx.doi.org/10.1002/ajh.25829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32282949&dopt=Abstract
http://europepmc.org/abstract/MED/32404898
http://dx.doi.org/10.1038/s41430-020-0652-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32404898&dopt=Abstract
http://dx.doi.org/10.1016/s2213-8587(20)30238-2
https://doi.org/10.1002/sim.2929
http://dx.doi.org/10.1002/sim.2929
http://dx.doi.org/10.1161/circulationaha.106.672402
http://dx.doi.org/10.1056/NEJMp068249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17182986&dopt=Abstract
http://dx.doi.org/10.1093/ije/dyz274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31967640&dopt=Abstract
http://europepmc.org/abstract/MED/28641372
http://dx.doi.org/10.1093/aje/kwx246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28641372&dopt=Abstract
http://pzs.dstu.dp.ua/DataMining/boosting/bibl/Didrik.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR PUBLIC HEALTH AND SURVEILLANCE Wong et a

Edited by Y Khader; submitted 12.04.21; peer-reviewed by D DeCapprio, T Lee, H Oyama; comments to author 12.05.21; revised
version received 24.06.21; accepted 31.07.21; published 30.09.21

Please cite as:

Wong KCY, Xiang Y, Yin L, SoHC

Uncovering Clinical Risk Factors and Predicting Severe COVID-19 Cases Using UK Biobank Data: Machine Learning Approach
JMIR Public Health Surveill 2021;7(9):e29544

URL: https://publichealth.jmir.org/2021/9/e29544

doi: 10.2196/29544

PMID:

©Kenneth Chi-Yin Wong, Yong Xiang, Liangying Yin, Hon-Cheong So. Originaly published in IMIR Public Health and
Surveillance (https://publicheal th.jmir.org), 30.09.2021. Thisis an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in IMIR Public Health and Surveillance, is properly
cited. The complete bibliographic information, alink to the original publication on https://publichealth.jmir.org, as well as this
copyright and license information must be included.

https://publichealth.jmir.org/2021/9/e29544 JMIR Public Health Surveill 2021 | vol. 7 | iss. 9| 29544 | p. 27
(page number not for citation purposes)

RenderX


https://publichealth.jmir.org/2021/9/e29544
http://dx.doi.org/10.2196/29544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

