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Abstract

Background: COVID-19 is a major public health concern. Given the extent of the pandemic, it is urgent to identify risk factors
associated with disease severity. More accurate prediction of those at risk of developing severe infections is of high clinical
importance.

Objective: Based on the UK Biobank (UKBB), we aimed to build machine learning models to predict the risk of developing
severe or fatal infections, and uncover major risk factors involved.

Methods: We first restricted the analysis to infected individuals (n=7846), then performed analysis at a population level,
considering those with no known infection as controls (ncontrols=465,728). Hospitalization was used as a proxy for severity. A
total of 97 clinical variables (collected prior to the COVID-19 outbreak) covering demographic variables, comorbidities, blood
measurements (eg, hematological/liver/renal function/metabolic parameters), anthropometric measures, and other risk factors
(eg, smoking/drinking) were included as predictors. We also constructed a simplified (lite) prediction model using 27 covariates
that can be more easily obtained (demographic and comorbidity data). XGboost (gradient-boosted trees) was used for prediction
and predictive performance was assessed by cross-validation. Variable importance was quantified by Shapley values (ShapVal),
permutation importance (PermImp), and accuracy gain. Shapley dependency and interaction plots were used to evaluate the
pattern of relationships between risk factors and outcomes.

Results: A total of 2386 severe and 477 fatal cases were identified. For analyses within infected individuals (n=7846), our
prediction model achieved area under the receiving-operating characteristic curve (AUC–ROC) of 0.723 (95% CI 0.711-0.736)
and 0.814 (95% CI 0.791-0.838) for severe and fatal infections, respectively. The top 5 contributing factors (sorted by ShapVal)
for severity were age, number of drugs taken (cnt_tx), cystatin C (reflecting renal function), waist-to-hip ratio (WHR), and
Townsend deprivation index (TDI). For mortality, the top features were age, testosterone, cnt_tx, waist circumference (WC), and
red cell distribution width. For analyses involving the whole UKBB population, AUCs for severity and fatality were 0.696 (95%
CI 0.684-0.708) and 0.825 (95% CI 0.802-0.848), respectively. The same top 5 risk factors were identified for both outcomes,
namely, age, cnt_tx, WC, WHR, and TDI. Apart from the above, age, cystatin C, TDI, and cnt_tx were among the top 10 across
all 4 analyses. Other diseases top ranked by ShapVal or PermImp were type 2 diabetes mellitus (T2DM), coronary artery disease,
atrial fibrillation, and dementia, among others. For the “lite” models, predictive performances were broadly similar, with estimated
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AUCs of 0.716, 0.818, 0.696, and 0.830, respectively. The top ranked variables were similar to above, including age, cnt_tx, WC,
sex (male), and T2DM.

Conclusions: We identified numerous baseline clinical risk factors for severe/fatal infection by XGboost. For example, age,
central obesity, impaired renal function, multiple comorbidities, and cardiometabolic abnormalities may predispose to poorer
outcomes. The prediction models may be useful at a population level to identify those susceptible to developing severe/fatal
infections, facilitating targeted prevention strategies. A risk-prediction tool is also available online. Further replications in
independent cohorts are required to verify our findings.

(JMIR Public Health Surveill 2021;7(9):e29544) doi: 10.2196/29544
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Introduction

COVID-19 has resulted in a pandemic affecting more than a
hundred countries worldwide [1-3]. More than 177 million
confirmed cases and 3.8 million fatalities have been reported
worldwide as of June 19, 2021 [4], while a large number of
mild or asymptomatic cases may remain undetected. Given the
extent of the pandemic, it is urgent to identify risk factors that
may be associated with severe disease, and to gain deeper
understanding into its pathophysiology. Accurate prediction of
those at risk of developing severe diseases is also clinically
important.

Machine learning (ML) approaches are powerful tools to predict
disease outcomes and have been increasingly applied in
biomedical research. In this study we employed boosted trees
(with XGboost) to predict disease outcomes and identify risk
factors. This ML approach can capture complex and nonlinear
interactions between variables, hence leading to better predictive
power in many circumstances. In view of the COVID-19
pandemic, many ML models have been developed for diagnostic
or prognostic purposes. For instance, Bayat et al [5] developed
a prediction model for COVID-19 infection based on 75,991
veteran patients who were tested for the virus. The prediction
was based on boosted trees and predictors included vital signs,
hematology measurements, and blood biochemistries. Knight
et al [6] built a model to predict in-hospital mortality for patients
hospitalized with COVID-19, based on demographics,
comorbidities, vital signs, and blood test results. A variety of
methods including XGboost, generalized additive model, and
LASSO were employed. Chung et al [7] employed deep neural
networks to predict the severity of COVID-19 infection based
on basic patient information, comorbidities, vital signs, clinical
symptoms, and complete blood count. Wynants et al [8]
performed a systematic review of COVID-19–related prediction
models up to July 1, 2020, covering 169 studies describing 232
prediction models. Several recent reviews have also summarized
the applications of ML methods in the study of COVID-19 (eg,
[8-11]).

Here we made use of the UK Biobank (UKBB) data to build
ML models to predict severity and fatality from COVID-19,
and evaluated the contributing risk factors. We built prediction
models not only for patients infected but also at a general
population level. While predictive performance is the main
concern in most previous studies, we argue that ML models can
also provide important insights into individual contributing

factors and the pattern of complex relationships between risk
factors and the outcome. While many have studied risk factors
of COVID-19 susceptibility or severity in the UKBB [12-14]
or other cohorts (eg, [8,15-18]), most relied on conventional
linear models. As such, nonlinear effects and interactions
between variables may be missed.

We note that in the UKBB clinical data were collected years
before the outbreak of infection in 2020, which may be a
limitation. Ideally, the predictors should be measured at the
time when the model is intended to be applied (eg, at admission).
However, we believe that building ML models with previously
collected clinical data is useful for reasons detailed below. First,
using previously collected clinical features may facilitate the
identification of potential causal risk factors. As the predictors
are collected prior to the outbreak, there is no concern about
reverse causality. In practice, infection itself will lead to changes
in many clinical parameters (eg, glucose, inflammatory markers,
liver/renal functions); hence, it is often difficult to tell the
direction of effect in cross-sectional studies. We hypothesize
that this study will identify general or “baseline” risk factors or
laboratory measurements that may be (causally) predictive of
outcome. Second, the UKBB is a huge population-based sample
(N=~500,000), and the rich clinical data collected previously
enable ML models to be developed at the general population
level. Importantly, there is a relative lack of such
population-level ML prediction models to identify who may be
at risk of developing severe COVID-19 infections. We hope
this study will fill the gap, as this may have implications for
prioritizing individuals for specific prevention strategies (eg,
vaccination) and diagnostic testing under limited resources.

In this study we performed 4 sets of analysis. In the first 2 sets,
we built ML models to predict the severity and mortality of
COVID-19 among those who are tested positive for the virus.
In this setting, predictive performance is of secondary concern
(as predictors were not assessed at or during admission), but
the predictive performance can shed light on to what extent
baseline (prediagnostic) clinical characteristics contribute to
severe infections. In the other 2 sets of analysis, we predicted
severity and mortality of COVID-19 at the population level,
considering individuals not known to be infected as “controls.”
Our objectives are twofold. The first is to build prediction
models for severity and mortality from COVID-19. In addition,
we will uncover how different risk factors and their interactions
impact on disease severity.
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Methods

UK Biobank Data
The UKBB is a large-scale prospective cohort comprising nearly
500,000 individuals aged 40-69 when they were recruited in
2006-2010. Given that the first case of COVID-19 in the UK
was recorded on January 31, 2020, individuals with recorded
mortality before January 31, 2020 (28,931 out of 502,524
individuals) were excluded. We also excluded from subsequent
analyses a very small number of individuals (n=19) whose cause
of mortality was COVID-19 (ICD code U07.1) but with negative
test result(s) within 1 week. The current age of individuals
included in our analyses ranged from 50 to 87 years, with
50.77% (255,170/502,524) being older than 70. This analysis
was conducted under the project number 28732. For details of
the UKBB data, please also refer to Sudlow et al [19].

COVID-19 Phenotypes
COVID-19 outcome data were downloaded from data portal
provided by the UKBB. Details of data release are provided in
[20]. Briefly, the latest COVID test results were extracted on
December 30, 2020 (last update on December 14, 2020). The
data set also included an indicator on whether the patient was
an inpatient when the specimen was taken. We consider inpatient
(hospitalization) status as a proxy for severity, as more
sophisticated indicators of severity cannot be reliably derived
yet. We noted that only 10.22% (468,235/4,581,006 infected
cases, from [21] as of June 16, 2021) of patients were admitted
in the UK; as such, it is likely that only the more severe cases
were hospitalized. Hospitalization has also been considered as
an outcome measure in many studies, including those of
vaccination effectiveness [22-25], risk prediction [26,27], and

genetic/clinical risk factors [28,29] underlying severe
COVID-19.

In general, we required both test result and origin to be 1
(indicating positive test and inpatient origin, respectively) to
qualify as an “inpatient” case. For a small number of individuals
with inpatient origin=0 and result=1, but changed to origin=1
with result=0 within 2 weeks’ time (based on the fact that
median duration of viral persistence is nearly 2 weeks [30]), we
still considered those as inpatient cases (ie, assume the
hospitalization was related to the infection). All other patients
with at least one positive SARS-CoV-2 test result were
considered as “outpatient.”

Data on mortality and cause of mortality were also extracted
(with latest update on December 14, 2020). Individuals with
recorded cause of mortality as “U07.1” were considered as
having a fatal infection with laboratory-confirmed COVID-19
(please also refer to [31]). We defined a case as “severe
COVID-19” if the individual is an inpatient or if the cause of
mortality is U07.1.

Sets of Analysis
Four sets of analysis were performed. The first 2 sets were
restricted to test-positive cases (n=7846). “Severe COVID-19”
(n=2386) and death (n=477) due to COVID-19 were treated as
outcomes. Because only prediagnostic clinical data were
available, the main objective of this analysis was to identify
baseline risk factors for severe/fatal illness among the infected.
We then performed another 2 sets of analysis with the same
outcomes, but the “unaffected” group was composed of the
general population (n=465,728) that did not have a diagnosis
of COVID-19 or were tested negative. The 4 sets of analysis
were also referred to as cohorts A-D as shown in Table 1. We
also constructed gender-specific prediction models.

Table 1. The four sets of analysis performed and predictive performances (full model and lite model).

95% CI (%)Area under the

curvea (%)

n (group 2)n (group 1)Group 2Group 1Cohort

LiteFullLiteFull

70.3-72.971.1-73.671.672.354602386Nonhospitalized casesHospitalized or fatal casesA

79.4-84.279.1-83.881.881.47369477All other COVID-19 casesFatal casesB

68.4-70.768.4-70.869.669.6465,7282386UK Biobank patients without a COVID-
19 diagnosis or tested negative

Hospitalized or fatal casesC

80.8-85.380.2-84.883.082.5465,728477UK Biobank patients without a COVID-
19 diagnosis or tested negative

Fatal casesD

aAUC was taken from the average of 5 folds of cross-validation.

Variables Included in Analysis
We extracted a total of 97 clinical variables of potential
relevance based on the literature. For details, please refer to
Table S1d in Multimedia Appendix 1 and the references therein.
The prediction model using all 97 variables will be referred to
as the “full” model, as opposed to a simplified model (“lite”
model; see below) based on mainly demographic data and
medical history that can be more readily obtained. Among the
97 variables, 21 were categorical and 76 were quantitative traits.

The missing rates of variables were all below 20% (ranging
from 0.0% to 19.9% for the 97 variables). We included a wide
range of clinical features here, with an objective to uncover
potential novel risk factors for the disease. The ML model we
employed (XGboost) tends to have a low bias and high variance;
however, with proper tuning of hyperparameters and
regularization, overfitting can be largely avoided even when a
large number of predictors are included [32].
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The full list of variables is shown in Table S1b in Multimedia
Appendix 1. Briefly, we included basic demographic variables
(eg, age, sex, ethnic group, socioeconomic status as indicated
by the Townsend deprivation index [TDI]), comorbidities (eg,
heart diseases, type 1 and 2 diabetes mellitus [T1DM/T2DM],
hypertension [HT], asthma/chronic obstructive pulmonary
disease [COPD], cancer, dementia, and psychiatric disorders),
indicators of general health (number of medications taken
[cnt_tx], number of illnesses, etc.), blood measurements
(hematology, liver and renal function measures, metabolic
parameters such as lipid levels, HbA1c), anthropometric
measures (eg, waist circumference [WC], waist-to-hip ratio
[WHR], body mass index), and lifestyle risk factors (eg,
smoking, drinking habits). Disease traits were defined based on
ICD-10 diagnoses (UKBB data-field 41270), self-reported
illnesses (UKBB data-field 20002), and data from follow-ups.
Individuals with no records of the relevant disease from either
self-reports or ICD-10 diagnoses were regarded as having no
history of the disease.

Imputation
Missing values of remaining features were imputed with the R
package missRanger (R Foundation). The program is based on
missForest [33], which is an iterative imputation approach based
on random forest. It has been widely used and has been shown
to produce low imputation errors and good performance in
predictive models [34]. The main difference between
missRanger and missForest is that the former uses the R package
“ranger” to build random forests, which can lead to a large
improvement in speed. Predictive mean matching (pmm) was
also employed to avoid imputation with values not present in
the original data. We employed the default parameters
(pmm.k=3, num.trees=100) and default settings of ranger.
Out-of-bag errors (in terms of classification errors or normalized
root-mean-squared error) were computed which provides a guide
to imputation accuracy.

We have also attempted to use multiple imputation by chained
equation (MICE) for imputation. For our data set with nearly
500,000 individuals, MICE stopped after running for 6 hours
due to memory overflow error (>64 GB), whereas missRanger
finished the imputation within 3 hours successfully. We
considered the computational burden of MICE as too high and
therefore employed missRanger in our analyses.

Several studies have compared MissForest with MICE, and
there are several advantages of missForest. For categorical
variables, imputation accuracy of missForest is likely to be
higher than that of MICE [35]. MissForest also runs
considerably faster than MICE and is especially suitable for
imputation settings where complex interactions and nonlinear
relationships are likely [33]. Stekhoven et al [33] reported
superior performance of missForest compared with MICE, with
reduction in the proportion of falsely classified entries of up to
60%. In another comparison study, missForest and MICE
performed similarly but it was reported that highly correlated
variables may lead to significant problems with MICE [36].

XGboost Prediction Model
XGboost with gradient-boosted trees was employed for building
prediction models. Analysis was performed by the R package
“xgboost.” We employed a fivefold nested cross-validation
strategy to develop and test the model. To avoid overoptimistic
results due to choosing the best set of hyperparameters based
on test performance, the test sets were not involved in
hyperparameter tuning.

In each iteration, we divided the data into 5 folds, among which
one-fifth was reserved for testing only. For the remaining
four-fifth of the data, we further sampled four-fifth for training
and one-fifth for hyperparameter tuning. The best prediction
model was applied to the test set. The process was repeated 5
times. A grid-search procedure was used to search for the best
combination of hyperparameters (eg, tree depth, learning rate,
regularization parameters for L1/L2 penalty). The full range of
hyperparameters chosen for grid search is given in Table S6 in
Multimedia Appendix 1.

Building a Simplified “Lite” Model
The “full” model described above covers a wide range of
predictors but some features (such as blood biochemistries) may
not be readily accessible. For easier implementation in practice,
we also built a simplified prediction model (also referred to as
the “lite” model) based on a reduced set of 27 predictors. The
reduced set of variables were chosen based on the ease of being
assessed or measured, which included comorbidities (see above),
anthropometric measures (BMI, weight, WC), demographic
variables (eg, age, sex, ethnic group), and general indicators of
health (number of medications taken, number of illnesses).

Evaluating Predictive Performance and Calibration
To evaluate the predictive performance of the prediction models,
we computed the area under the receiving-operating
characteristic curve (AUC–ROC), which is very widely used
in clinical prediction studies. We also calculated other measures
including the area under the precision–recall curve (AUC–PRC),
F1 score, accuracy, and Matthews correlation coefficient (MCC).
The cutoff of predicted probability for calculating the latter 3
measures was determined by optimizing the geometric mean
of sensitivity and specificity.

In addition to good ability to discriminate cases from noncases,
it is also important that the predicted event probabilities match
with the observed probabilities (also known as calibration of a
model). We assessed calibration by several measures, including
the Hosmer–Lemeshow test, expected calibration error (ECE),
and maximum calibration error (MCE) [37-40] across 10 equally
sized bins by discretizing the predicted probabilities. We also
attempted 3 approaches to further improve calibration, including
Platt scaling, isotonic regression, and beta calibration [41-44].
The objective is to rescale the predicted probabilities such that
they are closer to the actual probabilities of the outcome [45].

Identifying and Quantifying the Effects of Important
Predictors
In this work we primarily employed Shapley value (ShapVal)
[46,47] to assess variable importance, which is a measure based
on game theory to assess the contribution of each feature.
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ShapVal has been shown to represent a consistent and locally
accurate contribution of each feature [48]. ShapVal enables
local explanation of the model as it could be computed for each
observation, but can also provide global importance measures.
By contrast, gain and split count may produce inconsistent
estimates of global importance as shown by Lundberg et al [48].

Intuitively, the ShapVal of the ith feature (for individual k) is
the contribution of this feature to the prediction of outcome for
the individual, averaging over all possible orderings of the
features (as the contribution may differ when variables enter
the prediction algorithm in different orders). We ranked the
global importance of features based on mean absolute ShapVal
as described in previous studies [46,47]. We also attempted an
alternative approach similar to “permutation importance”
proposed in [49]. This method involves permuting the outcome
vector to model the distribution of ShapVal under the null, and
comparing the null ShapVals with the observed ShapVal. We
derived a P value from permutation as an alternative indicator
of feature importance. A total of 500 permutations were
performed for each model. To verify the validity of the
permutation procedure especially under imbalanced case–control
data, we also carried out a small-scale simulation study. A data
set with 50,000 individuals and 10 covariates (x1, x2, ..., x10)
were generated, where the first covariate x1 was linearly
correlated with the outcome. The control-to-case ratio was set
at 976:1, same as that for cohort D. Type I error and power were
assessed by repeating the entire permutation procedure for 100
randomly generated data sets (please see Multimedia Appendix
2 for details).

A related index is the Shapley interaction value [47], which
computes the difference in Shapley value of feature i with and
without another feature j. ShapVal were averaged across 5 folds.
Besides, we included the “gain” measure for reference, which
is the reduction of loss or impurity contributed by all splits by
a specific variable.

An advantage of Shapley value is that it is calculated for each
individual, so how each risk factor affects a specific person’s
risk of infection/severity can be estimated as well. To illustrate
this concept, we also produced decision plots for individuals at
the highest, median, and lowest risk of each cohort.

Cluster Analysis Based on Shapley Value
We also performed cluster analysis based on ShapVal to identify
subgroup of patients who share similar clinical risk factors with
respect to severity of infection. As introduced in [48], this
approach may be considered a form of “supervised” clustering,
as the outcome (severe/fatal disease) is also taken into account
in the clustering process. Unlike a traditional clustering approach
based on risk factors, this approach has important advantages.
First, the clusters derived may be more clinically relevant as
the outcome is also considered, reducing the chance that
irrelevant features contribute to the subgrouping (an irrelevant
feature will have relatively small variations in ShapVal and will
not contribute substantially to clustering). Second, this approach
essentially considers all features on the same “scale,” as ShapVal
is computed with respect to the outcome. Input features are
often of different units and scales, but ShapVal considers feature

contributions to the outcome as the unit of measure. Because
of computational cost concerns, here we only performed
clustering on cohorts A (nonsevere vs severe infection) and B
(fatal vs nonfatal infection).

K-Means Sparse Clustering
Here we performed k-means sparse clustering to uncover
underlying patient subgroups based on ShapVal of risk factors.
As the number of features included is large but not all may
contribute to the underlying subgroups, we employed sparse
clustering which incorporates feature selection in the clustering
process. The R package “sparcl” was employed. To perform
sparse k-means clustering, we need to predetermine the number
of clusters and tuning parameter (L1 penalty) for feature
selection [50]. The optimal number of clusters was assumed to
be the same as that in k-means clustering, which was determined
by the silhouette index. The tuning parameter (L1 bound) was
set to range between 2 and 6 with an interval of 0.4. Then the
gap statistic [51] was used to determine the optimal tuning
parameter.

Results

An overview of the sample sizes in each set of analysis is
presented in Table 1. Please also refer to Table S1a and S1b in
Multimedia Appendix 1 for a detailed summary of case counts
and covariates.

Simulation Results for the Permutation Testing
Approach
Simulation results for the validity of permutation P values are
presented in Table S8 in Multimedia Appendix 1. We observed
no inflation of type I error (false-positive rate) despite the
imbalanced case-to-control ratio. At a P value threshold of 0.05,
the proportion of results with P<.05 for x2 to x10 (variables with
null effect) remained less than 0.05 for different effect sizes of
the predictor (please also refer to Multimedia Appendix 2).

Prediction Performance of the XGboost Model for
Risk and Severity of Infection

AUC–ROC and Other Results
We performed 5-fold cross-validation and the average AUC
under the ROC curve is given in Table 1 and Table S2a in
Multimedia Appendix 1. Here we describe the results for the
full models first. We observed better predictive performances
in cohorts B (fatal cases vs outpatient cases) and D (fatal cases
vs population with no known infection), where fatalities from
COVID-19 were modeled. The corresponding mean AUC–ROC
values were 0.814 (95% CI 0.791-0.838) and 0.825 (95% CI
0.802-0.848), respectively. The mean AUC–ROC for cohort A
(hospitalized/fatal cases vs other cases) was 0.723 (95% CI
0.711-0.736) and that for cohort C (hospitalized/fatal cases vs
population with no known infection) was 0.696 (95% CI
0.684-0.708).

As for the “lite” models which included a reduced set of
predictors, the predictive performances in terms of AUC are
broadly similar, with estimated AUC–ROC for cohorts A-D of
0.716, 0.818, 0.696, and 0.830, respectively.
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The results of other predictive indices are listed in Table S2b
in Multimedia Appendix 1. Estimates of AUC–PRC were the
highest for cohorts A and B (0.535 and 0.171, respectively) and
much lower for cohorts C and D (0.007 and 0.006, respectively).
This is expected due to the much higher prevalence of outcome
in the first 2 cohorts. AUC–PRC may be approximated by the
average precision (please refer to [52] for further details).

We also conducted sex-stratified analysis (Table S2a in
Multimedia Appendix 1). The resulting AUC–ROC was similar
to the overall analysis in males (except for cohort D), but
generally lower in females. This may be partially explained by
lower number of severe and fatal cases in females, which leads
to greater difficulty in model training.

Proportion of Cases Explained by Individuals at the Top
k% of Predicted Risk
We also computed the proportion of cases explained by
individuals at the highest k% of predicted risks (Table 2). For
example, considering the full model, for prediction of mortality
among infected individuals (cohort B), individuals at the highest

5%, 10%, and 20% of predicted risks explain 17.4% (83/477),
32.7% (156/477), and 52.0% (248/477) of total fatalities,
respectively. As for prediction in the population (cohort D),
individuals at the highest 5%, 10%, and 20% of predicted risks
explain 32.5% (155/477), 45.7% (218/477), and 63.5%
(303/477) of total fatalities, respectively. For prediction of
severe disease among the infected (cohort A), individuals at the
highest 5%, 10%, and 20% of predicted risks explain 11.2%
(267/2386), 21.6% (515/2386), and 38.2% (911/2386) of total
cases, respectively, while more than half (1272/2386, 53.3%)
of cases are explained by people at the top 30% of predicted
risks. For prediction of severe cases in the population (cohort
C), the corresponding figures were 19.7% (470/2386), 29.3%
(700/2386), and 42.7% (1019/2386), respectively, and more
than half (1260/2386, 52.8%) of cases are explained by people
at the top 30% of predicted risks. Similar figures were observed
for full and lite models in general.

These results showed in general a strong enrichment of cases
among those predicted to have high risks, indicating good model
discriminatory ability.
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Table 2. Relative risk (RR) comparing subjects in the top and bottom k% of predicted risks and proportion of cases explained by those at top k% of
predicted risk.

Lite modelFull model

Proportion of
cases explained
by top k%

RRRisk in bottom k%Risk in top k%a,bProportion of cases
explained by top k%

RRRisk in bottom
k%

Risk in top

k%a,b
k

Cohort A

0.1134.370.1580.6910.1124.560.1480.6765

0.2114.100.1570.6440.2164.740.1380.65410

0.3813.790.1530.5810.3824.000.1450.57920

0.5263.500.1520.5330.5333.650.1480.54030

0.6303.030.1580.4790.6443.200.1520.48940

0.7202.590.1700.4390.7302.670.1660.44350

Cohort B

0.17484.270.0030.2120.174Infinity0.0000.2145

0.35228.380.0080.2160.327158.200.0010.20010

0.61824.590.0080.1880.56222.420.0080.17120

0.76319.210.0080.1550.72716.570.0090.14830

0.86614.230.0090.1310.83014.210.0090.12740

0.91210.370.0110.1110.91610.940.0100.11150

Cohort C

0.20715.880.00130.02100.19711.760.00170.02015

0.31012.950.00120.01580.2936.980.00210.014910

0.4625.710.00210.01180.4274.670.00230.010920

0.5733.570.00270.00970.5282.990.00300.009030

0.6563.200.00260.00840.5902.270.00330.007540

0.7252.630.00280.00740.6782.090.00330.006950

Cohort D

0.333Infini-
ty

0.000000.00680.325Infinity0.000000.00675

0.46373.670.000060.00470.457218.020.000020.004710

0.61636.750.000090.00320.63530.300.000110.003320

0.78423.380.000110.00270.74618.740.000140.002630

0.87416.680.000130.00220.82813.170.000160.002140

0.92913.030.000150.00190.8938.350.000220.001850

a‘Top k%’ refers to top k% of predicted probability of outcome by XGboost.
b‘Risk in top k%’ refers to the actual probability of the outcome (severe disease or fatality) within the patients belonging to the highest k% of predicted
risks.

Relative Risk of Actual Outcome Probabilities,
Comparing Those at the Highest and Lowest k% of
Predicted Risks
We also computed the relative risk (RR) of infection or severe
disease by comparing individuals at the highest and lowest k%
of predicted risks (Table 2). For example, considering the full
model, if we compare the actual probability of outcome at the
top decile (top 10%) against those at the bottom decile of
predicted risks, the RR was 4.74, 158.2, 6.98, and 218.02,

respectively, for cohorts A to D. If we compare the top 20%
against the lowest 20% of predicted risks, the corresponding
RRs were 4.00, 22.42, 4.67, and 30.30. The RRs for the lite
model were similar for cohorts A and C, but were smaller for
cohorts B and D when the comparison was made at the more
extreme ends of predicted risks.

We observed large RRs for cohorts B and D, suggesting that
the prediction models were able to discriminate individuals at
the highest and lowest risks of fatality very well. RRs for cohorts
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B and D were much larger than those for cohorts A and C,
indicating that the model predicted fatality better than severe
disease.

Calibration
As for calibration, please refer to Figures S6 and S7 in
Multimedia Appendix 3. For full models, cohort A was
well-calibrated (without using other methods for recalibration)
with ECE of 0.022 and MCE of 0.044 only. For other models,
the ECE and MCE were generally larger, probably due to large
difficulty in calibration with a much lower probability of the
outcome. The best ECEs (after recalibration by 1 of the 3
methods) were 0.11, 0.14, and 0.02, respectively, for cohorts
B-D. The Hosmer–Lemeshow test was nonsignificant in cohorts
C and D (P=.99 and .98, respectively). For the “lite” models,
the best ECEs were 0.017, 0.043, 0.024, and 0.089, respectively,
for cohorts A-D, with nonsignificant Hosmer–Lemeshow test
results except for cohort B (Hosmer–Lemeshow P=.49, .003,
.97, and .41 for cohorts A-D, respectively).

Results From Cluster Analysis Based on ShapVal
Figures 1 and S11 in Multimedia Appendix 3 show the results
based on sparse k-means clustering. We performed clustering
separately in cases and controls to uncover patient subgroups
with different clinical background. Here we focus on clustering
results within cases. As the number of variables is large, we
only showed the variables that were statistically significant
(P<.05 from t test or ANOVA) across the clusters in the figures.

For cohort A, we found 2 clusters as the optimal solution. The
first cluster has higher ShapVal for most risk factors, especially
age, but also cnt_tx, HbA1c, cystatin C, high-density lipoprotein
(HDL)-cholesterol, and HT. ShapVal for WHR was positive
for the first group but negative for the second group. The first
cluster may represent a subgroup of severe cases with a larger
number of clinical risk factors/comorbidities and advanced age,
while the second cluster may be a distinct group with less
conventional risk factors (especially obesity), yet is susceptible
to severe infections perhaps due to other (unmeasured) factors,
such as genetics.

Considering cohort B cases (fatal infections), the optimal
solution comprised 3 clusters. Interestingly, the first and third
clusters seemed to be markedly different with respect to their
risk factor profiles. Mean ShapVal for age was largely negative
for the first cluster but highly positive for the other 2 clusters.
By contrast, mean ShapVal for WC was markedly higher and
positive for the first cluster. The third cluster was characterized
by the highest mean ShapVal for age, and higher (positive)
ShapVal for mainly cnt_tx, HbA1c, and T2DM. The results
suggest that there may exist pathophysiologically distinct
subgroups of patients with fatal infection. The first cluster
represents a subgroup with younger age but with higher
proportion of obesity. The third cluster represents another
subgroup with advanced age, more comorbidities, and higher
proportion of glucose abnormalities or T2DM. The second
cluster is in between.
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Figure 1. Results of sparse k-means clustering based on Shapley values (ShapVal) in cohorts A (hospitalized cases) and B (fatal cases). The y-axis
indicates the ShapVal and only those risk Factors with significant differences (P<.05 in t-test or ANOVA) across clusters were shown on the x-axis.
AF: atrial fibrillation; CAD: coronary artery disease; Hb: hemoglobin; HbA1c: hemoglobin A1c; HDL: high-density lipoprotein; LDL: low-density
lipoprotein; RBC: red blood cell; RF: risk factor; SHBG: sex hormone binding globulin; T1DM: type 1 diabetes; T2DM: type 2 diabetes.

Important Contributing Variables Identified

Overview
Here we primarily report the results of the full model as a more
complete set of predictors is included. The Shapley dependence
plots (ranked by mean absolute ShapVal) of the top 15 features
(full model) are shown in Figure 2 and those of the top 6 features

for the lite model are presented in Figure 3. For more complete
plots (up to 30 variables) with ranking by mean abs(ShapVal)
or permutation P values, please refer to Figures S1-S4 in
Multimedia Appendix 3.

Full ShapVal analysis results on all variables are given in Tables
S3a-c in Multimedia Appendix 1. The top 10 variables (ranked
by either ShapVal or permutation P value) from the full model
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are presented in Tables 3 and 4 while the top 5 from the lite
model are presented in Tables 5 and 6. We also included variable

importance by gain, and plots are presented in Figure S5a and
S5b in Multimedia Appendix 3.

Figure 2. Shapley value dependence plots of the top 15 risk factors ranked by mean abs(shapley value) (full model) for cohorts A, B, C, and D,
respectively. Shapley value (y-axis) is computed on a log-odds scale. Every unit increase of ShapVal corresponds to an odds ratio (OR) of exp(1)=2.72
compared with the baseline. Positive ShapVal indicates increase in the odds of the outcome and vice versa. CAD: coronary artery disease; COPD:
chronic obstructive pulmonary disease; HDL: high-density lipoprotein; RBC: red blood cell; T2DM: type 2 diabetes mellitus.

Figure 3. ShapVal dependence plots of the top 6 risk factors ranked by mean abs(shapley value) (lite model) for cohorts A, B, C, and D, respectively.
T2DM: type 2 diabetes mellitus.
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Table 3. Top 10 risk factors ranked by mean absolute Shapley value for cohorts A, B, C, and D (full model).

P valueShapValRisk factor

Cohort A

.0020.442Age

.0020.093Treatments taken count

.0020.088Cystatin C

.0020.085Waist-to-hip ratio

.0040.059Townsend deprivation index

.0020.056HbA1ca

.0020.048Pulse rate

.0020.048Hypertension

.0160.027Apolipoprotein A

.0160.026HDLb cholesterol

Cohort B

.0020.708Age

.0020.069Testosterone

.0020.048Treatments taken count

.0020.035Waist circumference

.0020.027RBCc distribution width

.0020.024Cystatin C

.0020.023Townsend deprivation index

.0040.019Pulse rate

.0020.016Systolic blood pressure

.0040.015Lymphocyte percentage

Cohort C

.0020.113Waist-to-hip ratio

.0020.096Townsend deprivation index

.0020.088Age

.0020.063Treatments taken count

.0020.044Waist circumference

.0020.043Self-report: noncancer count

.0020.036Hypertension

.0240.030Cystatin C

.0020.030T2DM

.0520.024Apolipoprotein A

Cohort D

.0020.519Age

.0020.136Townsend deprivation index

.0020.131Waist-to-hip ratio

.0020.115Treatments taken count

.0020.110Waist circumference

.0020.096Cystatin C

.0020.086Testosterone
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P valueShapValRisk factor

.0020.061Hypertension

.0020.046RBC distribution width

.0060.036Pulse rate

aHbA1c: hemoglobin A1c.
bHDL: high-density lipoprotein.
cRBC: red blood cell.
dT2DM: type 2 diabetes mellitus.
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Table 4. Top 10 risk factors ranked by P-value, listing only factors which are not yet included in for cohorts A, B, C, and D (full model).

ShapValP valueRisk factor

Cohort A

0.010.004T2DMa

0.018.008Self-report: noncancer

0.004.008Depression

0.002.016CADb

0.000.026Cancer diagnosed by doctor

0.002.028Alcohol intake (occasions)

0.000.028AFc

0.000.036Smoking (current)

0.021.046γ-glutamyltransferase

0.014.046WBCd count

Cohort B

0.015.002BMI

0.015.002Glucose

0.014.002HbA1ce

0.010.002Weight

0.009.002Mean platelet volume

0.007.002T2DM

0.006.002Sleep duration

0.003.002T1DMf

0.003.002Cognitive impairment

0.003.002CAD

Cohort C

0.015.002COPDg

0.009.002Depression

0.007.002Cognitive impairment

0.017.004CAD

0.007.004Ethnic (Asian/Asian British)

0.007.004Heart failure

0.006.004AF

0.015.006Smoking (previous)

0.001.012Stroke

0.001.020Ethnic (Black/Black British)

Cohort D

0.026.002T2DM

0.024.002Cognitive impairment

0.021.002COPD

0.016.002AF

0.007.002Heart failure

0.008.002CAD

0.004.004Ethnic (Black/Black British)
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ShapValP valueRisk factor

0.002.004Stroke

0.001.004Alcohol drinker (current)

0.003.006Smoking (previous)

aT2DM: type 2 diabetes mellitus.
bCAD: coronary artery disease.
cAF: atrial fibrillation.
dWBC: white blood cell.
eHbA1c: hemoglobin A1c.
fT1DM: type 1 diabetes mellitus.
gCOPD: chronic obstructive pulmonary disease.

Table 5. Top 5 risk factors ranked by mean absolute Shapley value for cohorts A, B, C, and D (lite model).

P valueShapValRisk factor

Cohort A

.0020.496Age

.0020.121Treatments taken count

.0020.085Waist circumference

.0020.058Male

.0040.054Self-report: noncancer count

Cohort B

.0020.721Age

.0140.079Treatments taken count

.0400.071Waist circumference

.0100.048Male

.2420.034BMI

Cohort C

.0020.153Waist circumference

.0020.120Age

.0020.102Treatments taken count

.0020.064Self-report: noncancer count

.0020.050T2DMa

Cohort D

.0020.056Age

.0020.248Waist circumference

.0020.154Treatments taken count

.0020.098Male

.0360.043BMI

aT2DM: type 2 diabetes mellitus.
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Table 6. Top 5 risk factors ranked by P value, listing only factors which are not yet included in for cohorts A, B, C, and D (lite model).

ShapValP valueRisk factor

Cohort A

0.047.002T2DMa

0.026.004Smoking (current)

0.015.016Depression

0.013.020Alcohol drinker (current)

0.010.022CADb

Cohort B

0.027.006T2DM

0.015.006Cognitive impairment

0.009.020T1DMc

0.006.024Bipolar

0.011.036AFd

Cohort C

0.024.002COPDe

0.016.002Ethnic (Asian/British Asian)

0.008.002Cognitive impairment

0.049.004Male

0.023.004CAD

Cohort D

0.043.002T2DM

0.039.002COPD

0.029.002Cognitive impairment

0.024.002AF

0.016.002Ethnic (Black/Black British)

aT2DM: type 2 diabetes mellitus.
bCAD: coronary artery disease.
cT1DM: type 1 diabetes mellitus.
dAF: atrial fibrillation.
eCOPD: chronic obstructive pulmonary disease.

As for interaction analyses, top results are presented in Table
7 and full results in Tables S4 and S5 in Multimedia Appendix
1. Plots are presented in Figure 4 (top 2 interacting pairs from
each model) and Figures S8 and S9 in Multimedia Appendix 3
(top 6 interacting pairs).

Note that ShapVal is measured on the log-odds scale. Every
unit increase of ShapVal corresponds to an odds ratio of
exp(1)=2.72. Positive ShapVal indicates increase in the odds
of outcome and vice versa.
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Table 7. Top interacting pairs of variables ranked by ShapVal (full model).

ValueRisk factor 2Risk factor 1

Cohort A

150AgeWaist-to-hip ratio

149AgeTreatments taken count

86AgeHDLa cholesterol

85HypertensionAge

84AgeCystatin C

Cohort B

195AgeTestosterone

95AgeWaist circumference

82AgeBMI

63AgeTreatments taken count

57AgePulse rate

Cohort C

709AgeWaist-to-hip ratio

494Treatments taken countWaist-to-hip ratio

481Treatments taken countTownsend deprivation index

450Waist-to-hip ratioTownsend deprivation index

407Waist-to-hip ratioAlbumin

Cohort D

859AgeWaist circumference

780AgeTestosterone

725AgeTownsend deprivation index

603AgeWaist-to-hip ratio

585HypertensionAge

aHDL: high-density lipoprotein.
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Figure 4. ShapVal interaction plots of the full model for the top 4 interacting pairs of cohorts A, B, C, and D, respectively.

Cohort A (Hospitalized/Fatal Cases vs Outpatient Cases)
The top 5 contributing features by ShapVal included age,
number of medications received (cnt_tx), cystatin C, TDI, and
WHR, followed by HbA1c. Higher levels of these risk factors
generally lead to higher disease severity among the infected.
Interestingly, Shapley dependence plots revealed potential
nonlinear and “threshold” effects of risk factors on the outcome.
For example, age of 65 or above was associated with a markedly
increased risk of severe/fatal infection. Markedly elevated risks
were also observed for HbA1c levels over 40 mmol/mol and 5
or more drugs received. Impaired renal function (IRF; raised
cystatin C >1 mg/L) was also linked to worse outcomes. For
WHR, levels of 0.9 or higher appeared to be associated with a
marked increase in risks. For other features, please refer to
Figure 2. We note that at the extreme ends of variables, the
observations are often sparse, so the trend shown by the Loess
curve may not be reliable (this also applies to other cohorts).
Variable importance based on gain revealed similar patterns of

important features (Figures S5a and S5b in Multimedia
Appendix 3).

If we consider the “P value” or permutation importance
(PermImp) measure, variables with top 10 (absolute) ShapVal
also showed significant P values (P<.05 for all cases). T2DM
was among the top 10 by PermImp but not by ShapVal.
Depression and coronary artery disease (CAD) also showed low
P values (P<.02), but were not listed among the top 30 by
ShapVal.

Regarding interactions between variables, most of the top
interacting pairs involved age (Figure 4 and Tables S4 and S5
in Multimedia Appendix 1). For example, younger individuals
were observed to have more extreme ShapVal at similar ranges
of cnt_tx. The effect of WHR on severity was more marked
among the elderly, and the same was true for HDL-cholesterol
(low HDL is a risk factor).
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Model B (Fatal Cases vs Outpatient Cases)
The top 5 contributing variables by ShapVal included age,
testosterone (which may reflect the effect of gender), cnt_tx,
WC, and red blood cell distribution width (RDW), which were
followed by cystatin C, TDI, pulse rate, systolic blood pressure
(SBP), and percentage of lymphocytes. Again, certain nonlinear
and “threshold” effects appeared to be present for many
top-ranked features. For age, the risk for mortality was more
marked beyond 65 years. Higher levels of all the above risk
factors (RFs) (except percentage of lymphocytes, which showed
a U-shaped relationship) were associated with higher mortality,
but the effects were nonlinear. Regarding the top results based
on PermImp, 8 out of 10 predictors ranked high by ShapVal
also had the lowest P values (lowest P value of .002 since we
performed 500 permutations). Other top-ranked features
(P=.002) included HbA1c, type 1 and T2DM, weight, mean
platelet volume, etc.

Variable importance based on gain yielded similar results
(Figures S5a and S5b in Multimedia Appendix 3). As for
interactions between the variables, again interactions were most
prominent with age (Figure 4). For example, the effects of WC
and BMI (when exceeding a threshold of around 110 cm and

35 kg/m2, respectively) on mortality were more prominent
among younger individuals. The effects of testosterone and
HbA1c, however, were more marked in older individuals.

Model C (Hospitalized/Fatal Cases vs Population With
No Known Infection)
Based on ShapVal, WHR was the top contributing variable and
WC was ranked fifth, suggesting that central obesity may be a
stronger predictor for severe disease than BMI alone (BMI was
ranked 13th by ShapVal). As before, TDI and age were ranked
among the top. For age, slightly unexpectedly, a U-shaped curve
was observed, which suggests lowest risk at the age group of
65-70. Note that model C may also capture RFs related to
susceptibility to infection. It is possible, for instance, that
younger individuals had higher risks of exposure due to work
or social interactions. Among the top 10, two are related to
general multiple comorbidities (cnt_tx and cnt_noncancer).
Increased cystatin C and lower apolipoprotein A were also
associated with higher susceptibility to severe infections, and
HT and T2DM were also among the top 10. Considering
PermImp as the ranking criteria, COPD, depression, and
dementia were observed to have the lowest permutation P values
(P=.002) though not top listed by ShapVal.

The interaction plot (Figure 4) shows WHR may interact with
age, with elderly individuals showing more prominent effects
from changes in WHR.

Model D (Fatal Cases vs Population With No Known
Infection)
Based on ShapVal, age was the top feature, followed by TDI,
WHR, number of drugs taken, and WC. Other top features
included cystatin C, testosterone, HT, RDW, and pulse rate.
Higher levels of these features (or presence of comorbidity)
generally lead to higher mortality risks. Based on PermImp,
T2DM, dementia, and COPD were the most highly ranked

(ignoring features that are already listed in the top 10 by
ShapVal).

Shapley interaction analysis suggested that the top interacting
pairs involved age and some of the top contributing features
(Figure 4 and Figure S8 in Multimedia Appendix 3). The effects
of testosterone (likely also reflects gender effects) and TDI were
more prominent among the elderly, while the effect of BMI was
larger in the younger age groups.

As for important variables from the sex-stratified analysis, the
top variables were similar which included age, WC/WHR,
cystatin C, number of medications received, socioeconomic
status (as reflected by TDI), among others (Table S3c in
Multimedia Appendix 1).

PermImp Compared With ShapVal
Overall speaking, the PermImp measure tends to rank binary
traits higher than ShapVal. Of note, several diseases were
consistently top listed by PermImp across the 4 cohorts (though
some were not highlighted by ShapVal), including CAD, atrial
fibrillation (AF), T2DM, and dementia, which were among the
top 10 in at least three cohorts in Table 4. Other diseases that
were listed at least twice included depression, COPD, stroke,
and heart failure.

Results From the “Lite” Model
Here we highlight top contributing features for the “lite” models
consisting of 27 predictors (Table S3b in Multimedia Appendix
1). Remarkably, the top 3 features (ranked by ShapVal) were
consistent across all 4 cohorts. These features included age,
cnt_tx, and WC (WHR was not included in the lite model as
WC is easier to measure). Of note, sex and T2DM were ranked
among the top 6 across all cohorts.

If we consider PermImp as the ranking criteria (further ranked
by ShapVal if PermImp is equal), age, cnt_tx, and WC were
still highly ranked and listed among the top 5 in at least three
cohorts (Table S3b in Multimedia Appendix 1). T2DM was
ranked among the top 5 in all cohorts. Other potential risk
factors included dementia (top 10 across 3 cohorts) as well as
AF, COPD, and CAD (top 10 across 2 cohorts).

Results From the Logistic Model
As discussed above, we primarily focused on the XGboost ML
model as it can capture nonlinear relationships and interactions
between predictors. Here we also performed our analyses with
logistic regression (LR) for comparison. For prediction
performance (Table S7a in Multimedia Appendix 1), the
AUC–ROC of the full LR model was 0.728 (95% CI
0.715-0.741), 0.810 (95% CI 0.786-0.834), 0.712 (95% CI
0.701-0.724), and 0.833 (95% CI 0.810-0.856), respectively,
for cohorts A-D. For the “lite” model (using 27 predictors only),
the AUC–ROC of the LR approach was 0.722 (95% CI
0.709-0.735), 0.824 (95% CI 0.801-0.848), 0.697 (95% CI
0.685-0.709), and 0.834 (95% CI 0.812-0.857), respectively,
for cohorts A-D (Table S7a in Multimedia Appendix 1). These
figures were very close to those obtained by XGboost, although
AUC–ROC using LR was slightly higher in general (median
difference=0.005). If we compute the RR of individuals at the
highest and lowest k% of predicted risks, the results were
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generally similar (Table S7b in Multimedia Appendix 1). For
cohort D and the full model of cohort B, XGboost performed
better than LR at the extreme ends of predicted risks, with
observed risk=0 (ie, no cases were observed) for those predicted
at the lowest 5% of risk (Table 2).

While prediction is one of our goals, uncovering important
contributing factors and their relationship to COVID-19 severity
is a major objective of this study. In fact, the latter is considered
our primary objective when considering the analyses within
patients infected (cohorts A and B). As LR assumes linearity
on a log-odds scale, it could not capture nonlinear relationships
or “threshold effects” of variables on disease severity.

Individual Shapley Decision Plots and Online
Calculator
We also showed individual Shapley decision plot for 3
individuals with the highest, median, and lowest predicted risks
in each cohort (Figure S10 in Multimedia Appendix 3). The
y-axis is based on a log-odds scale.

To facilitate further research and studies on risk-prediction
models, we also constructed an online risk calculation tool (for
“lite” model) [53]. The online tool can also construct a Shapley
decision plot based on individual risk factors.

Discussion

Principal Findings
In this study we have performed 4 sets of analysis, predicting
severe or fatal COVID-19 infection among affected individuals
or in the population. We observed good predictive power from
the XGboost ML models, especially for the prediction of
mortality. We also identified risk factors for increased severity
or mortality, and uncovered possible nonlinear effects of some
features, which may be clinically relevant and shed light on
disease mechanisms.

Prediction of Severity/Mortality
In general, our prediction models achieved reasonably good
predictive power. The models predicted mortality (AUC
81%-83%) better than severity of disease. As discussed earlier,
in the absence of better alternatives, hospitalization (test
performed as inpatient) was used as a proxy for severity.
However, reasons or criteria for hospitalization may vary across
individuals or hospitals, and some tests may be performed in
inpatients for surveillance or due to other confirmed/suspected
cases in the ward. As a result, hospitalized patients could also
include some with mild or moderate illnesses, which may also
impair the prediction performance. By contrast, mortality from
infection is a more objective outcome. Other studies (eg,
[54-56]) have also defined “severe” or “critical” disease based
on intensive care unit admission or need for ventilatory support.
However, we could not find sufficiently detailed clinical data
to support such a classification at the time of this analysis.

Discriminatory Power of the Models and Clinical
Implications
By assessing the proportion of cases explained by those at the
top k% of predicted risks, we observed in general a strong

enrichment of cases among those with high predicted risks,
indicating good discriminative ability of the models and
suggesting the possibility to focus on the highest-risk group for
targeted preventions or treatment. A similar strong enrichment
was also observed for the lite model with fewer predictors. We
also observed large RRs of the actual outcomes when comparing
individuals at high and low percentiles of predicted risks. For
example, for the prediction of mortality among the infected, the
RR was up to 158 times (~20% vs 0.1%) when comparing and
top and bottom deciles using the full model, and 28.38 times
when considering the simplified model (~21% vs 0.8%). These
results suggest that the prediction models may be used for risk
stratification and prioritizing those at higher risks of
deterioration, for early medical attention or admission. As the
“lite” model only relies on demographic data and information
on comorbidities, risk stratification may be conducted even at
the start of the illness without other blood or imaging results.

Previous Relevant Works
A number of studies have focused on prediction of
severity/mortality of COVID-19 (corresponding to our
prediction in cohorts A and B) and were reviewed in [8]. For
cohort A (prediction of severity among infected), the AUC is
72.3%, which is moderate but not as good as many previous
ML models for severity prediction [8]. The AUC for prediction
of mortality is much higher (AUC=81.4%), although we noted
that some studies have reported higher predictive power from
clinical symptoms, blood biochemistry on admission, and
imaging features [8]. We understand that without access to the
above features, predictive performance may be inferior. By
contrast, due to heterogeneity of clinical samples, treatment
approaches, model evaluation methods, and other features across
studies, direct comparisons of predictive performance across
studies may be difficult. Here we are not aiming at deriving a
highly accurate prediction model; the main purpose is to identify
general or “baseline” risk factors for severe disease, thereby
gaining insight into disease pathophysiology. However, we also
showed that such clinical features or blood measurements, even
when collected much earlier in time, may still be highly
predictive of outcomes and hence may be incorporated into
existing prediction algorithms. The models here may also be
useful when blood results or imaging are not available (eg,
before admission) and the goal is to quickly classify a patient’s
risk.

For cohorts C and D, the general population (with no known
infection) was treated as “controls.” Compared with cohorts A
and B, the identified risk factors may also increase the overall
susceptibility to infection. The AUC for cohort C (severe/fatal
disease) is about 70% but is much higher when mortality is
considered as the outcome (AUC=~83%). To our knowledge,
there are still very few predictive models built at a
generalpopulationlevel to identify susceptible individuals; this
work is among the first to employ an ML approach to predict
the risk of COVID-19/severe infection at a population level.
DeCaprio et al [57] proposed an ML model to assess the
vulnerability to COVID-19 in the population. However, due to
limited data, no actual COVID-19 patients were included and
“proxy” outcomes were used instead. Models were built from
mainly demographic and comorbidity data to predict
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hospitalization due to acute respiratory distress syndrome,
pneumonia, influenza, acute bronchitis, and other respiratory
tract infections.

Another very recent study (“QCOVID” study) from the UK
[58] utilized general practice records from 6.08 million adults
(age 19 to 100) as the derivation cohort and 2.17 million adults
as the validation set. Mortality from COVID-19 was the primary
outcome and a survival model (subdistribution hazard model)
[58] was used to predict mortalities. The predictors included
demographic (eg, age, TDI, ethnicity), lifestyle (eg, BMI,
smoking), and a large range of comorbid conditions. The
resulting Harrell’s C (comparable to AUC) was 0.928. However,
we note that the QCOVID study included individuals of a much
younger age range (19 or older), which will improve predictive
performance, as age is by far the most important predictor of
mortality, with markedly reduced risks in younger individuals.
For example, if we refer to age-specific predictive performance
(see Supplementary Table C in the study [58]), Harrell’s C for
mortality was 0.678, 0.831, 0.812, and 0.814 in 50-59, 60-69,
70-79, and 80+ year olds, respectively, for males in the first
follow-up period (January 24 to April 30, 2020). For females,
the corresponding numbers were 0.618, 0.77, 0.866, and 0.821.
These numbers reflect lower predictive power when restricted
to a narrower age range. One main difference between this work
and the above study is that we employed an XGboost ML
approach which is able to also capture nonlinear and more
complex interaction effects. As shown in our Shapley
dependence plots, the models were able to reveal nonlinear
effects in a data-driven manner. We also included a number of
blood measurements to shed light on potential new risk factors
and mechanisms underlying the disease. The QCOVID study
employed a survival model (subdistribution hazard) that
accounts for time-to-event and competing risks; however, the
proportional hazards assumption is required which may not hold
due to restrictions/interventions introduced during the period
(ie, time-dependent associations may be present).

A few other studies have investigated risk factors (especially
comorbidities) for COVID-19 infection in the UKBB. For
example, Atkins et al [12] studied elderly individuals (age >65)
in UKBB, and found that HT, history of falls, CAD, T2DM,
and asthma were the top comorbidities among hospitalized
cases. The analysis was restricted to the elderly population,
however. In a more recent work, McQueenie et al [13] studied
the impact of multiple comorbidities and polypharmacy on
infection risks. Having 2 or more long-term conditions,
cardiometabolic disorders, and polypharmacy were associated
with heightened risks of infection. Among individuals with
multiple comorbidities, severe obesity and IRF may lead to
increased risks. Another study of primary care patients in the
UK revealed that deprivation, male sex, older age, ethnicity
(being Black), and chronic renal disease were associated with
higher risks of being tested positive [59]. Another large-scale
British primary care study of more than 17 million individuals
revealed similar risk factors as above [60]. There is also a
relatively large literature on the study of risk factors associated
with severe or fatal disease [15-18,61-64]. Some commonly
reported risk factors included age, sex, obesity, T2DM, HT,
renal, cardiometabolic, and respiratory disorders. As discussed

above, an important difference between the above
epidemiological studies and this work is that we employed
XGboost, an ML approach that can uncover nonlinear and
interaction effects, while other studies mostly employed
regression models that assume linear and additive effects of
covariates. We also performed a comprehensive analysis
including 4 models covering different outcomes and both
infected and population cohorts.

Comparison With Logistic Model
We have performed LR to compare with XGboost on cohorts
A and B. The differences in predictive performance appeared
to be small. The number of cases (especially fatalities) is
relatively small in this data set, and this may limit the predictive
performance of more complex models such as XGboost, which
may be expected to improve with larger case numbers. An
important advantage of XGboost is that it can detect nonlinear
relationships when compared with LR. In addition, XGboost
may handle multiple collinearity better than LR. Assuming 2
highly correlated features A and B, for each specific tree usually
only 1 variable will be used and as the trees are sequential, the
focus of the model will be usually on one but not on both
features [65]. Hence, XGboost also handles multicollinearity
well, which is important here as many clinical variables are
correlated. XGboost also directly models interaction between
variables. It is much more difficult for LR to model interactions
due to the rapid increase in feature space when interaction terms
are included.

Highlights of Potential Risk Factors
For the limit of space, we shall only highlight the top 5-10 risk
factors ranked by ShapVal here. Across the 4 cohorts, age and
cardiometabolic risk factors predominate the top risk factors.
Age and WHR/WC were ranked among the top 5 across all 4
cohorts. The number of medications taken was among the top
5 across all cohorts, and cystatin C (reflecting renal function)
was among the top 10 across all cohorts. HbA1c was a top 10
risk factor for cohort A, and T2DM was also highly ranked
across multiple cohorts especially when PermImp was
considered. TDI (reflecting socioeconomic status) was among
the top 10 in most cohorts. As described above, results from
the “lite” models were generally in line with those from the full
models, with age, WC, and cnt_tx consistently ranked as the
top 3.

Obesity has been observed to be a major risk factor for
susceptibility or severity of infection in the UKBB [14,66] and
in many other studies [67,68]. The observation that WC/WHR
were highly ranked suggests that central obesity is a major risk
factor and may be a better predictor of severity than BMI alone.

Another major risk factor we identified is IRF, as reflected by
elevated risks with raised urea and cystatin C. Several studies
also suggested that IRF increases risk of mortality [64,69,70],
although it is probably not as widely recognized as
cardiometabolic disorders as a major risk factor. Because
COVID-19 itself may lead to renal failure, our findings
specifically suggest that underlying or baseline IRF is an
important risk factor. The high ranking of cystatin C also
indicates that this measure may better reflect renal function than
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urea or creatinine (which were also included in our analysis)
[71,72], and may serve as a superior predictor for COVID-19
severity.

Other potential risk factors briefly highlighted below were less
reported. As some were listed only once or twice among the
top 10, and for some their ShapVal was close to other risk
factors, further replications are required. For example,
testosterone was top ranked by XGboost (for mortality), with
higher levels associated with increased risk. This may partially
reflect that males are at a higher risk of fatal infections, but it
remains to be studied whether testosterone itself is involved in
the pathophysiology of severe COVID-19, as the ML model
chose this variable instead of sex. Studies have suggested that
elevated or reduced testosterone levels may be associated with
a more severe clinical course [73]. Besides, interestingly,
5-alpha-reductase inhibitors or androgen-deprivation therapy
has been shown to be associated with a lower risk or severity
of disease [74,75]. We also found a few hematological indices
that may be potential risk factors. High RDW was associated
with mortality in our study and was also identified in a recent
meta-analysis of 3 studies as a risk factor [76]. Low lymphocyte
percentage was a top 10 risk factor in cohort B, which may be
related to immune functioning and response to infections.
Lymphopenia was reported as a main hematological finding in
those with severe illnesses [40,77]. Most previous studies
considered hematological indices at admission or during
hospitalization. Slightly surprisingly, this study suggested that
high RDW or reduced lymphocyte percentage prior to the
diagnosis may also be predictive of worse outcomes.

Comorbid Diseases Associated With Severity as
Highlighted by PermImp
Among the diseases being included as covariates, T2DM is
most consistently ranked among the top, no matter whether full
or lite models are used, and regardless of ranking by ShapVal
or PermImp (P value). T2DM has been shown in numerous
studies to be associated with higher risk and severity of infection
[78,79]. We noted some discrepancy between the ranked results
based on ShapVal and those based on PermImp. In general, the
latter measure favors binary variable, while ShapVal alone tends
to rank continuous variables higher. We are unsure about the
exact reason, but it may be an interesting topic for further
methodology studies. If we employed a composite ranking
criteria based on PermImp followed by ShapVal, then a few
more diseases were ranked among the top 10, such as
hypertension and COPD. For cohort D, T2DM, dementia,
COPD, AF, heart failure, and CAD were also top ranked,
suggesting that a range of chronic cardiovascular, respiratory,
and neuropsychiatric conditions may be associated with
increased mortality.

Full and Lite Prediction Models
We note that the simplified (lite) prediction model has very
similar predictive performance (as assessed by AUC) to the
“full” model with a larger panel of predictors. However, it is
important to note that features associated with the outcome may
not always improve predictive power. AUC is relatively
insensitive to detecting changes in predictive performance when
additional risk factors are added [80-82].

For example, Pencina et al [80] showed that in the prediction
of cardiovascular disease risk in a study on women’s health,
adding extra established risk factors often result in minimal
improvements in AUC. For instance, in a model with age, SBP,
and smoking, adding any lipid measures result in only an
increase of 0.01 in AUC from the baseline of 0.76. In the same
vein, starting from a full prediction model [containing Ln(age),
Ln(SBP), smoking, Ln(Total cholesterol), Ln(HDL)], deleting
any one of these established risk factors (except age) resulted
in a very small reduction in AUC of <0.02. In general, for a
model with high baseline AUC from existing predictors (eg,
age, sex, and obesity in the case of COVID-19), including
additional predictors may not result in much improvement in
discriminative power or AUC [83].

Nevertheless, it is still valuable to study variable importance
(eg, ShapVal) from the ML model as it may shed light on the
pathophysiology of the disease. For example, many factors such
as age and T2DM may lead to poorer renal function (and higher
cystatin C), which in turn may increase the severity of infection.
Given that age, T2DM, and other main comorbidities are already
modeled, adding cystatin C may not improve discriminative
power of the model. However, its inclusion may still change
the predicted probability of outcome, which will be reflected
in ShapVal. The high ranking of cystatin C (based on ShapVal)
may shed light on renal impairment as a potential mechanism
associated with clinical deterioration.

Some limitations have been discussed above; for example, the
use of hospitalization as a proxy for severity, and that the
predictors were recorded prior to the pandemic. We briefly
discuss other limitations here. The UKBB is a very large-scale
study with detailed phenotypic data, but still the number of fatal
cases is relatively small. In addition, the UKBB is not entirely
representative of the UK population, as participants tend to be
healthier and wealthier overall [84]. Further, it remains to be
studied whether the findings are generalizable to other
populations. Symptom measures and lung imaging features
were not available at the time of analysis. Despite adjusting for
a rich set of predictors and that all predictors were recorded
prior to the outbreak, causality cannot be confirmed from this
study, due to risk of residual confounding by unknown factors.
This study was performed on a cohort with age over 50, and
generalizability to younger individuals remains to be studied.
In cohorts C and D, the population with no known infection
was regarded as controls. It is expected that some may become
infected in the future, and some may have been infected but not
tested; however, the chance of missing cases of severe infection
is probably not high. Since the UKBB represents a relatively
healthy population with a low rate of severe COVID-19 cases
so far (236/468,114, 0.50%), we expect the use of “unscreened”
controls is unlikely to result in substantial bias.

Regarding the ML model, XGboost is a state-of-the-art method
that has been consistently shown to be the best or one of the
best ML methods in supervised learning tasks/competitions [85]
(especially for tasks not involving computer vision or natural
language processing). Nevertheless, other ML methods may
still be useful or may uncover novel risk factors. Assessing
variable importance is a long-standing problem in ML; here we
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mainly employed ShapVal, which is both computationally fast
and was shown to have good theoretical properties [46,47].

Conclusions
In conclusion, we identified a number of baseline risk factors
for severe/fatal infection by an ML approach. Shapley
dependence plots revealed possible nonlinear and “threshold”
effects of risk factors on the risks of infection or severity. To
summarize, age, central obesity, IRF, multiple comorbidities,

cardiometabolic abnormalities or disorders (especially T2DM),
and low socioeconomic status may predispose to poorer
outcomes, among other risk factors. The prediction models (of
cohorts C/D) may be useful at a population level to identify
those susceptible to developing severe/fatal infections, thereby
facilitating targeted prevention strategies. Further replication
and validation in independent cohorts are required to confirm
our findings.
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