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Abstract

Background: Metabolic syndrome (MetS), a major contributor to cardiovascular disease and diabetes, is considered to be among
the most common public health problems worldwide.

Objective: We aimed to identify and rank the most important nutritional and nonnutritional factors contributing to the development
of MetS using a data-mining method.

Methods: This prospective study was performed on 3048 adults (aged ≥20 years) who participated in the fifth follow-up
examination of the Tehran Lipid and Glucose Study, who were followed for 3 years. MetS was defined according to the modified
definition of the National Cholesterol Education Program/Adult Treatment Panel III. The importance of variables was obtained
by the training set using the random forest model for determining factors with the greatest contribution to developing MetS.

Results: Among the 3048 participants, 701 (22.9%) developed MetS during the study period. The mean age of the participants
was 44.3 years (SD 11.8). The total incidence rate of MetS was 229.9 (95% CI 278.6-322.9) per 1000 person-years and the mean
follow-up time was 40.5 months (SD 7.3). The incidence of MetS was significantly (P<.001) higher in men than in women (27%
vs 20%). Those affected by MetS were older, married, had diabetes, with lower levels of education, and had a higher BMI (P<.001).
The percentage of hospitalized patients was higher among those with MetS than among healthy people, although this difference
was only statistically significant in women (P=.02). Based on the variable importance and multiple logistic regression analyses,
the most important determinants of MetS were identified as history of diabetes (odds ratio [OR] 6.3, 95% CI 3.9-10.2, P<.001),
BMI (OR 1.2, 95% CI 1.0-1.2, P<.001), age (OR 1.0, 95% CI 1.0-1.03, P<.001), female gender (OR 0.5, 95% CI 0.38-0.63,
P<.001), and dietary monounsaturated fatty acid (OR 0.97, 95% CI 0.94-0.99, P=.04).
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Conclusions: Based on our findings, the incidence rate of MetS was significantly higher in men than in women in Tehran. The
most important determinants of MetS were history of diabetes, high BMI, older age, male gender, and low dietary monounsaturated
fatty acid intake.

(JMIR Public Health Surveill 2021;7(9):e27304) doi: 10.2196/27304

KEYWORDS

metabolic syndrome; Tehran Lipid and Glucose Study; data mining

Introduction

Metabolic syndrome (MetS), a major contributor to
cardiovascular disease and diabetes, is considered to be among
the most common public health problems worldwide [1].
According to the World Health Organization and the
International Diabetes Federation, MetS is defined as the
simultaneous occurrence of three of the following five medical
conditions: abdominal obesity, high blood pressure,
hyperglycemia, high triglyceride levels, and low high-density
lipoprotein cholesterol (HDL-C) levels [2].

The incidence of MetS is estimated to be 34% in the United
States [3], 12%-37% in Asian countries [4], and 12%–26% in
European populations [5]. In Iran, the overall pooled prevalence
and incidence rate of MetS among the general population was
reported to be 0.26 (95% CI 0.25-0.29) and 97.96 per 1000
person-years (95% CI 75.98-131.48), respectively, and was
higher in women living in urban areas and in men living in rural
areas.

The overall pooled prevalence of MetS was higher in urban
areas compared to rural areas (0.39 vs 0.26) and the pooled
prevalence of MetS was higher in women than in men (0.34 vs
0.22) [6].

According to previous studies, the etiology of MetS is controlled
by several risk factors, including abdominal obesity, insulin
resistance, glucose tolerance disorder, hypertension, genetic
factors, psychosocial stressors, and nutritional and diet factors
[7-11]. Previous studies have often investigated the predictive
factors using classical approaches and neglected the
interpretability of the results. For example, among the
explanatory variables, the risk/protective factors have a more
important role in the outcomes. One of the simplest and very
common ranking techniques is random forest (RF), which is a
data-mining approach. The most important features of this model
are simplicity and interpretation of the model, flexibility in
applying a large number of predictor variables, working with
an infinite sample size, and determination of important variables
in predicting the outcome. The RF model is also useful when
predictor variables are nonlinear concerning disease, because
there is no assumption or any constraint on the form of the

relationships [12-14]. Considering the high prevalence of MetS
and its importance in cardiovascular disease, identifying and
ranking the most important nutritional and nonnutritional factors
in the occurrence of MetS is an essential analysis with respect
to public health. Data-mining methods are strong tools in
predicting different outcomes and emphasizing interpretability
with benefits for precision prediction. Hence, we aimed to
identify and rank the most important nutritional and
nonnutritional factors in the occurrence of MetS among the
general population of Tehran, Iran, using the RF data-mining
method.

Methods

Design and Participants
This prospective study (Code: IR.UMSHA.REC.1398.864) was
performed under the framework of the Tehran Lipid and Glucose
Study, a population-based study to determine risk factors for
noncommunicable diseases in a sample of residents of District
13 of the Tehran metropolis [15,16]. The first examination
survey was performed from 1999 to 2001 on 15,005 individuals
aged ≥3 years. Subsequently, follow-up examinations were
performed every 3 years (2002-2005, 2005-2008, 2008-2011,
2011-2014, and 2015-2018) to identify recently developed
diseases (see Multimedia Appendix 1 for more details on the
survey).

In the fifth follow-up examination (2011-2014), 4204 adults
(aged ≥20 years) participated. These participants completed the
Food Frequency Questionnaire (FFQ), and their dietary data
were available. The exclusion criteria in this study were as
follows: individuals diagnosed with MetS (n=635); people with
missing data regarding MetS status (n=61); no follow-up
(n=434); stroke, thyroid, or cancer complications (n=18); and
following a specific dietary regimen (n=8). Finally, 3048 adults
without MetS at baseline were included in the study (Figure 1).
All invited participants signed the informed written consent
form. The study was performed in adherence with the
Declaration of Helsinki. The ethics committee of the Research
Institute for Endocrine Sciences, Shahid Beheshti University
of Medical Sciences approved the study protocol.
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Figure 1. Flowchart of the study participants (MetS: metabolic syndrome; TLGS: Tehran Lipid and Glucose Study).

Outcomes
MetS was defined according to the modified definition of the
National Cholesterol Education Program/Adult Treatment Panel
III [17,18] as having at least three of the following symptoms
simultaneously: (1) abdominal obesity (waist circumference
>90 cm in both genders); (2) serum HDL-C level <40 mg/dl in
men and <50 mg/dl in women or taking HDL-C–elevating drugs;
(3) hypertension (systolic blood pressure ≥130 mmHg, diastolic
blood pressure ≥85 mmHg, or taking antihypertensive drugs);
(4) hyperglycemia (fasting blood glucose ≥100 mg/dl or taking
hypoglycemic drugs); and (5) hypertriglyceridemia (serum
triglyceride level ≥150 mg/dl or taking triglyceride-lowering
drugs).

Risk Factor Assessment
In this study, the FFQ was used to measure the exact amount
of food intake. The FFQ is a valid and reliable tool for
measuring 147 food items (Multimedia Appendix 2) [18].
Trained nutritionists helped the participants to complete the
questionnaires through face-to-face interviews. The usual
average size of each food item was explained to each participant,
considering the frequency of consumption on a daily, weekly,
or monthly basis [18,19]. Portion sizes were converted to grams
using household measures. Due to the incompleteness of the
Iranian food composition table, the United States Department

of Agriculture food consumption table was used to analyze
foods in terms of their macro- and micronutrients [20,21]. A
literature review was performed to select effective nutrients for
MetS [22-24].

Weight was measured to the nearest 100 g using digital scales
(Seca, Hamburg, Germany) while subjects were minimally
clothed and not wearing shoes. Height was measured to the
nearest 0.5 centimeter using a stadiometer while the subjects
were in a standing position, with their shoulders in normal
alignment and without shoes. Information on age, gender,
marital status (single, divorced, widowed), history of
hospitalization in the previous 3 months, history of cancer,
education (primary, intermediate, high school, and academic
education), and smoking (never smoked, past smoker, current
smoker) was collected using a general information questionnaire.

Statistical Analysis

The χ2 test and t test were applied to explore the differences in
qualitative and quantitative variables between groups. Since the
data-mining approach cannot reveal the direction of the
association of variables on the outcome, multiple logistic
regression was used to estimate the adjusted effect of variables.
The backward-selection method was applied to choose the
variables in this model. To remove variables from the model,
the P value threshold was set to .20. R software (version 3.6.1)
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with the randomForest and caret packages was used for data
analysis.

RF Analysis
RF, proposed by Leo Breiman [25], is an ensemble learning
method that grows many classification trees. A random sample
with replacement of the original training dataset was used to
construct the trees in RF. The algorithm only searches across a
random subset of the input variables at each node to determine
the best split. Finally, RF chooses the class with the most votes
over all the trees in the forest [25]. RF has exhibited superior
performance over other machine-learning methods such as
support vector machine, artificial neural network, and k-nearest
neighbor [26-28].

Moreover, although most machine-learning classifiers are useful
for classifying, they do not provide any insight into the most
important variables based on the derived classifier. However,
RF provides variable importance measurements that can be used
in model interpretation [26]. The most common method to find
the most important variable is to use the mean decrease in
accuracy and the mean decrease in the Gini index [26,29].

Evaluation Criteria
Our dataset consisted of 2259 adults (after removing variables
with missing data) divided into training and testing sets. We
randomly chose 70% of the data as the training set and the
remaining 30% as the test set. The RF classifier was trained

using the training dataset. The test dataset was used to evaluate
the performance of the method. To evaluate the performance
of the RF classifier, we used several evaluation criteria of
sensitivity, specificity, negative predictive value (NPV), positive
predictive value (PPV), negative likelihood ratio (LR–), and
positive likelihood ratio (LR+) (see Multimedia Appendix 3).

Results

Baseline Characteristics
The dataset included 3048 adults, 701 (22.9%) of whom
developed MetS and 2347 (77.1%) of whom did not develop
MetS. The mean age of the participants at baseline was 44.3
years (SD 11.8). The total MetS incidence rate was 229.98 (95%
CI 278.6-322.9) per 1000 person-years. The incidence of MetS
was significantly higher in men than in women (27% vs 20%).
In both genders, those affected by MetS were older, married,
had diabetes, and a lower level of education (P<.001) than their
counterparts. In men, a greater frequency of smokers were
affected by MetS (P=.05), and the percentage of hospitalized
subjects in patients with MetS syndrome was higher than that
among healthy people, although this difference was only
statistically significant in women (P=.02) (Table 1).

The distribution of the characteristics of subjects in the training
and test datasets is presented in Table 2. The results showed no
statistically significant differences between the training and test
sets.
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Table 1. Baseline characteristics of participants who developed and did not develop metabolic syndrome (MetS) by gender.

AllWomenMenVariables

P valueMetS
(n=701)

No MetS
(n=2347)

P valueMetS
(n=390)

No MetS
(n=1509)

P valueaMetS
(n=311)

No MetS
(n=838)

<.00149.5
(12.3)

43.6 (12.1)<.00151.4
(10.6)

41.9 (10.1).0847.1 (12.9)45.8 (13.6)Age (years), mean (SD)

<.00129.5)
(4.3)

26.2 (4.2)<.00130.4 (4.3)26.5 (3.1)<.00128.3 (3.8)25.7 (3.9)BMI (kg/m2), mean (SD)

.002.84.008Marital status, n (%)

597
(85.2)

1874 (80.0)326
(83.6)

1201 (79.7)271 (87.1)673 (80.4)Married

104
(14.5)

470 (20.0)64 (16.4)306 (20.3)40 (12.9)164 (19.6)Single/divorced/widowed

.66.18.05Smoking, n (%)

624
(89.4)

2103 (89.7)381
(97.7)

1441 (95.7)243 (78.4)662 (79.0)Never

76(10.7)241 (10.3)9 (2.3)65 (4.3)67 (21.6)176 (21.0)Current/past

<.001<.001.003Education level, n (%)

195
(28.3)

1111 (47.7)74 (19.4)710 (47.2)121 (39.0)406 (48.6)Higher than diploma

423
(61.3)

1082 (46.4)792
(65.8)

717 (47.5)173 (55.8)372 (44.6)Diploma/below diploma

72 (10.4)137 (5.9)56 (14.8)80 (5.3)16 (5.2)57 (6.8)Illiterate/primary School

.345 (0.7)10 (0.4).194 (1.0)7 (0.5).931 (0.3)3 (0.4)Cancer history, n (%)

.0917 (2.4)35 (1.5).0212 (3.1)20 (1.3).845 (1.6)15 (1.8)Hospitalization, n (%)

<.00192 (14.4)41 (1.9)<.00166 (18.7)20 (1.5)<.00126 (9.1)21 (2.7)Diabetes, n (%)

<.001119.1
(15.5)

107.5 (13.2)<.001117.84
(15.7)

104.34
(12.3)

<.001120.69
(14.1)

112.9 (12.6)Systolic blood pressure
(mmHg), mean (SD)

<.00198.2 (9.8)88.9 (10.6)<.00198.2 (9.8)87.6 (10.4)<.00198.1 (96.6)91.3 (10.5)Waist circumference (cm),
mean (SD)

<.001545
(75.8)

309 (13.2)<.001299
(76.7)

168 (11.1)<.001246 (80.0)141 (16.8)High triglyceride, n (%)

.080.6 (0.3)2.1 (0.2).020.38 (0.1)1.5 (0.2).102.5 (0.4)2.8 (0.4)Physical activity (km/week),
mean (SD)

aP values are based on the unpaired t test and by the χ2 test for qualitative variables.
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Table 2. Comparison of baseline characteristics in the training and test datasets (N=2259).

P valueaTest set (n=678)Training set (n=1581)Variable

.70Marital status, n (%)

95 (14.0)239 (15.1)Single

550 (81.1)1279 (80.9)Married

17 (2.5)30 (1.9)Divorced

16 (2.4)33 (2.1)Widowed

.96Gender, n (%)

266 (39.2)622 (39.3)Men

412 (60.8)959 (60.7)Women

.38Cancer history, n (%)

4 (0.6)5 (0.3)No

674 (99.4)1576 (99.7)Yes

.81Smoking, n (%)

72 (10.6)178 (11.3)Never

606 (89.4)1403 (88.7)Current/past

.59Hospitalization, n (%)

11 (1.6)31 (2.0)No

667 (98.4)1550 (98.0)Yes

.26Diabetes, n (%)

642 (94.7)1514 (95.8)No

36 (5.3)67 (4.2)Yes

.49Education, n (%)

34 (5.0)95 (6.0)Higher than diploma

330 (48.7)788 (49.8)Diploma/below diploma

314 (46.3)698 (44.1)Illiterate/primary school

.3444.1 (12.2)44.4 (11.7)Age (years), mean (SD)

.7026.8 (4.4)26.8 (4.4)BMI (kg/m2), mean (SD)

.902326.3 (1239.3)2278.6 (811.6)Energy (kilocalories), mean (SD)

.3587.2 (51.1)86.3 (35.7)Protein (g), mean (SD)

.81346.3 (215.6)338.1 (124.2)Carbohydrates (g), mean (SD)

.9325.6 (13.6)25.2 (12.5)Monosaturated fatty acids (g), mean (SD)

.9275.9 (37.7)74.6 (32.3)Total fat (g), mean (SD)

.541226.45 (1029.22)1231.2 (1246.76)Carotenoids (mg), mean (SD)

.651385.5 (681.9)1379.6 (628.8)Calcium (mg),mean (SD)

.30478.0 (367.9)471.1 (186.1)Magnesium (mg), mean (SD)

.2413.2 (9.5)13.5 (9.6)Zinc (mg), mean (SD)

.7144.5 (32.9)43.5 (20.0)Total fiber (g), mean (SD)

.4018.3 (11.0)17.8 (9.5)Glucose (g), mean (SD)

.5221.6 (13.4)21.1 (11.6)Fructose (g), mean (SD)

.344699.3 (29481.7)3464.8 (1578.6)Sodium (mg), mean (SD)

.86570.1 (275.3)559.9 (202.5)Folate (mg), mean (SD)

aP values are based on the t test for quantitative variables and on the χ2 test for qualitative variables.
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RF Model
The variable importance obtained by the training set using RF
is presented in Table 3, showing the results for each variable
when all variables were used as input in the RF algorithm. Here,
the variable importance was determined by the average decrease
in the Gini index. Based on variable importance, the most
important determinants of MetS were diabetes, BMI, age, marital
status, monounsaturated fatty acids, female gender, and total
fat. According to multiple logistic regression analysis, the
direction of the association for these variables was as follows:
history of diabetes (odd ratio [OR] 6.32, 95% CI 3.92-10.20;
P<.001), increased BMI (OR 1.19, 95% CI 1.15-1.22; P<.001),
increased age (OR 1.02, 95% CI 1.01-1.03; P<.001), female

gender (OR 0.50, 95% CI 0.38-0.63; P<.001), and increased
dietary monounsaturated fatty acid (OR 0.97, 95% CI 0.94-0.99,
P=.04) (Multimedia Appendix 4 and Table 3).

History of diabetes (OR=6.32, 95% CI: 3.92, 10.20; P<.001),
increased BMI (OR=1.19, 95% CI: 1.15, 1.22; P<.001),
increased age (OR=1.02, 95% CI: 1.01, 1.03; P<.001), female
gender (OR=0.50, 95% CI: 0.38, 0.63; P<.001), and increased
monounsaturated fatty acid (OR=0.97, 95% CI: 0.94, 0.99,
P=.04) (Multimedia Appendix 4 and Table 3).

We obtained an overall out-of-bag correct classification of
98.67% (Table 4). The proportion of error for subjects with and
without MetS was 99.24% and 96.55%, respectively.

Table 3. Variable importance obtained by random forest for predicting metabolic syndrome.

Variable importanceVariable

100Diabetes

67.8BMI

25.2Age

15.8Gender

13.9Monosaturated fatty acids

13.6Carotenoids

12.5Education

12.0Calcium

10.7Protein

10.7Total Fiber

9.8Sodium

9.4Total fat

8.9Folates

8.8Zinc

8.8Magnesium

8.6Smoking

7.9Energy

7.8Carbohydrates

7.6Fructose

7.0Hospitalization

6.9Cancer history

6.9Marriage

6.6Glucose

Table 4. Out-of-bag correct classification rates.

Correct classification rateActual statusPredicted status

No MetSMetSb

96.65140MetS

99.35294No MetS

aMetS: metabolic syndrome.
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Evaluation Criteria
The RF algorithm had high sensitivity (0.97) and specificity
(0.99) for the test set. The NPV and PPV performance of RF
for the test set were 0.99 and 0.96, respectively. Both the LR+
(103.83) and LR– (0.03) for the test set showed the high ability
of the RF algorithm to predict a correct diagnosis of MetS.

Finally, partial plots provided the marginal effect of predictors
on MetS (Multimedia Appendix 5).

Discussion

Principal Findings
In this prospective study, the total incidence rate of MetS was
229.98 per 1000 person-years. The most important determinants
of MetS were a history of diabetes, increased BMI, older age,
male gender, and low dietary monounsaturated fatty acid intake.

In this study, diabetes was identified as the most important risk
factor (ranking first) for MetS. This finding is expected to be
associated with common risk factors of diabetes and MetS (eg,
increased BMI, hypertension, high-fat diet, and insulin
resistance–linked obesity). In addition, some analytical studies
have shown that MetS predicts diabetes independently of other
factors [30]. Another study showed that MetS was associated
with a 3 to 5-fold increase in the risk of developing type 2
diabetes mellitus [31].

BMI was identified as the second most important risk factor for
the incidence of MetS. The development of insulin resistance
and the role of inflammatory mediators in MetS are the most
important mechanisms in the pathogenesis of obesity. Various
studies have shown relationships among hyperinsulinemia,
insulin resistance, and increased inflammatory mediators such
as C-reactive protein with the development and progression of
MetS [14,17,32].

Increased age was the third-ranking factor that was associated
with MetS in this study. Aging usually leads to decreased
physical activity, followed by an increase in BMI, which can
contribute to MetS. Previous studies showed that less than 10%
of people in their 20s and 30s were affected by MetS, whereas
MetS affected 40% of those over 60 years of age [33,34].

Male gender was the fourth-ranking factor associated with MetS.
We observed a significantly higher incidence of MetS among
men than among women (27% vs 20%). Although previous
studies in Iran showed that the prevalence of MetS was higher
among women than among men [35,36], more recent studies

confirm our findings, demonstrating the opposite pattern [7].
One reason behind this phenomenon may be the higher
prevalence of basic MetS-related characteristics in the men of
our study, such as hypertension, higher waist-hip ratio, and
higher triglyceride levels.

A low monounsaturated fatty acid intake was identified as the
fifth most important factor for a lower occurrence of MetS. Our
result is consistent with a recent systematic review that reported
that a diet with decreased monounsaturated fats was associated
with improving lipoprotein profiles and triglyceride levels [37].
As mentioned earlier, hyperlipidemia is one of the components
of MetS. Thus, this finding is consistent with other studies in
this area.

Strengths and Limitations
This study used a population-based cohort (as the gold standard
in observational studies) designed based on standard tools for
measuring clinical and other variables. This study had some
limitations. First, the role of socioeconomic status as an
important factor influencing the dietary pattern of subjects was
not determined; however, this study was performed on people
living in District 13 of Tehran, which is classified as an area
with an average income level.

Another limitation of this study was use of the FFQ. Completing
a long list of foods consumed over the past year has the potential
for recall bias and consequently measurement error, which may
distort the results [38,39]. Another important factor for the
incidence of MetS is physical activity status; this variable was
not included in the analysis due to the large number of missing
data.

Finally, the main strength of this study was that the most
important risk factors and nutritional factors were ranked. In
contrast, previous studies often investigated the predictive
factors using classical approaches and neglected the importance
of paying attention to risk/protective factors by considering the
ranking of the impact of each factor on the outcome. Therefore,
lifestyle modification (eg, having a balanced weight and healthy
diet) is one of the most important ways to reduce the incidence
of MetS.

Conclusion
In summary, our findings show that the incidence rate of MetS
in Tehran was 229.98 per 1000 person-years. The most
important determinants of MetS were history of diabetes,
increased BMI, increased age, male gender, and decreased
dietary monounsaturated fatty acid.
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