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Abstract

Background: Association between human mobility and disease transmission has been established for COVID-19, but quantifying
the levels of mobility over large geographical areas is difficult. Google has released Community Mobility Reports (CMRs)
containing data about the movement of people, collated from mobile devices.

Objective: The aim of this study is to explore the use of CMRs to assess the role of mobility in spreading COVID-19 infection
in India.

Methods: In this ecological study, we analyzed CMRs to determine human mobility between March and October 2020. The
data were compared for the phases before the lockdown (between March 14 and 25, 2020), during lockdown (March 25-June 7,
2020), and after the lockdown (June 8-October 15, 2020) with the reference periods (ie, January 3-February 6, 2020). Another
data set depicting the burden of COVID-19 as per various disease severity indicators was derived from a crowdsourced API. The
relationship between the two data sets was investigated using the Kendall tau correlation to depict the correlation between mobility
and disease severity.

Results: At the national level, mobility decreased from –38% to –77% for all areas but residential (which showed an increase
of 24.6%) during the lockdown compared to the reference period. At the beginning of the unlock phase, the state of Sikkim
(minimum cases: 7) with a –60% reduction in mobility depicted more mobility compared to –82% in Maharashtra (maximum
cases: 1.59 million). Residential mobility was negatively correlated (–0.05 to –0.91) with all other measures of mobility. The
magnitude of the correlations for intramobility indicators was comparatively low for the lockdown phase (correlation ≥0.5 for
12 indicators) compared to the other phases (correlation ≥0.5 for 45 and 18 indicators in the prelockdown and unlock phases,
respectively). A high correlation coefficient between epidemiological and mobility indicators was observed for the lockdown
and unlock phases compared to the prelockdown phase.

Conclusions: Mobile-based open-source mobility data can be used to assess the effectiveness of social distancing in mitigating
disease spread. CMR data depicted an association between mobility and disease severity, and we suggest using this technique to
supplement future COVID-19 surveillance.

(JMIR Public Health Surveill 2021;7(8):e29957) doi: 10.2196/29957
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Introduction

Infectious diseases have caused profound disruptions throughout
the history of humanity. Despite a decrease in the number of
deaths attributed to contagious diseases, there has been a
constant rise in the number of outbreaks over the past few years
due to emerging and re-emerging infectious agents [1].
Influenza, dengue fever, and HIV/AIDS are the three leading
contagious diseases that have infected millions of people
globally [2]. In addition to these, approximately 215 different
infectious agents have caused 12,102 outbreaks in 219 countries
over the last 30 years [3]. In general, there have been significant
advances in the treatment and curing of infectious diseases.
However, infectious diseases pose a considerable challenge to
the health system due to their frequency, infectivity, and
mobility in today’s extensively interconnected world. Therefore,
early detection and prevention of infectious diseases continues
to be a top priority among the global health community.

The current COVID-19 pandemic has disrupted and
overwhelmed health systems worldwide. COVID-19 is an
infectious disease that is caused by a newly discovered
coronavirus, and the main route of transmission is thought to
be through respiratory droplets [4]. The index case of COVID-19
was traced to December 1, 2019, in Wuhan, China [5]. The
aggressive nature of the spread of COVID-19 led to its
declaration as a “public health emergency of international
concern” and then a pandemic by the World Health Organization
(WHO) on January 30 and March 11, 2020, respectively. As
per the WHO, 216 countries had reported more than 121 million
cases and 2.6 million deaths due to COVID-19 as of March 17,
2021 [6]. There were 11.4 million confirmed cases in India
alone, with 0.16 million deaths, and it is among the most
severely affected countries to date [7]. Due to a lack of effective
treatment strategy, nonpharmaceutical interventions (NPIs),
such as restricted mobility, home quarantine, and lockdown
measures, were enforced worldwide to halt interhuman
transmission of the virus [8]. As India is the second most
populous country in the world, with suboptimal investment,
NPIs were seen as the most crucial part of pandemic mitigation.
Hence, the Government of India also implemented a
countrywide lockdown to halt disease progression on March
24, 2020 [9].

Research has demonstrated the association between mobility
and disease transmission for various infectious diseases, such
as cholera, dengue, influenza, Ebola, malaria, measles, and
COVID-19 [10-17]. NPIs are intended to slow the rapid disease
transmission and contain the disease burden until effective
pharmacological management options become accessible
[18,19]. Implementing NPIs in response to infectious disease
outbreaks is not a new method to limit mobility; they have been
used for centuries [20,21]. More recently, such measures were
implemented during the containment of the severe acute
respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS) epidemics, which occurred in the last decades
[22,23].

Although the connection between mobility and disease has been
known for centuries, establishing this causal association is

challenging, as measuring and quantifying the levels of mobility
at the population level is difficult. This can be attributed to the
challenges in obtaining access to mobility and disease data.
However, numerous mathematical models have demonstrated
such associations between mobility and infectious disease
transmission dynamics [24-26]. Moreover, during the current
pandemic, the digital ecosystem has supplemented traditional
surveillance to provide data about disease severity and mobility
in real time.

Given the highly infectious nature of COVID-19, the importance
of digital epidemiology could be felt in disease containment
[24-27]. Digital epidemiology is a branch of epidemiology that
uses data generated outside the public health system [28].
Google Flu and Google Trends have been successfully used to
study various communicable and noncommunicable diseases
[29,30]. On similar lines, Google released Community Mobility
Report (CMR) data collated from people who accessed its
applications using mobile and handheld devices. The restriction
in mobility by the Indian government and the data availability
provides researchers with an opportunity to empirically study
the relationship between social activity, mobility, and
COVID-19 incidence. However, there is a shortage of scientific
literature that documents the use of these data for surveillance
purposes. Very few researchers have tried to correlate mobility
trends with the aggressiveness of the disease [31-34]. Sulyok
and Walker [31] depicted negative correlations between CMR
data and case incidence for major industrialized countries of
Western Europe and North America. Wang and Yamamoto [32]
also depicted that a model using CMR data can describe the
combined effects of mobility at the local level and human
activities on the transmission of COVID-19. Cot et al [33]
analyzed Google and Apple mobility data. They concluded that
a substantial decrease in the infection rate occurred 2-5 weeks
after the onset of mobility reduction [33]. None of these studies
explored the association of mobility with any other
epidemiological indicators except disease incidence; meanwhile,
it has been established that disease incidence alone is not an
ideal measure for making comparisons [35]. Therefore, in this
study, we attempt to understand and explore the role of mobility
in spreading COVID-19 infection in India using mobility data
from Google. During the pandemic, the central government has
issued various health advisories; however, because health is a
state responsibility, the final implementation of those
instructions depends on the state itself. Therefore, we
hypothesized that the states with strict enforcement of lockdown
would witness fewer cases and vice versa. Hence, we have also
examined the states with the maximum and minimum numbers
of cases for changes in mobility as per CMR data.

Methods

Study Design
In this ecological study, we analyzed secondary data available
in the public domain between March 14 and October 16, 2020.

Study Period
Many interventions were implemented in India at the national
and subnational levels during the lockdown period and were
subsequently eased out in a phased manner. To begin, India
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issued travel advisories and restricted international travel
between January and March 2020. By early March, when case
numbers started to increase, states scaled up movement
restrictions. On March 25, India entered a nationwide lockdown
to ramp up preparedness [36]. The mobility data were assessed
for three significant periods, based on the implementation of
social mobility restrictions by the Indian government to mitigate
the pandemic [37]. Robust data for COVID-19 disease burden
were available in the public domain from March 14, 2020.
Hence, the three phases were labeled as prelockdown (March
14-24, 2020), lockdown (March 25-June 7, 2020), and unlock
(June 8-October 15, 2020).

Data Sources

COVID-19 Data
The data sets for COVID-19 cases in India were crowdsourced
and made freely available through an API by a volunteer group.
The API maintains the records of confirmed, active, recovered,
and deceased people for all the Indian states and union
territories. The data in the API are gathered daily using state
bulletins and official handles. After the data are validated, they
are made available daily through Google Sheets [7].

Mobility Data
Google collects and stores individuals’ commuting information
through a GPS linked to Google Maps. These data are made
available on the web in the public domain, after aggregating
and anonymizing personally identifiable information, as
“COVID-19 Community Mobility Reports” (Multimedia
Appendix 1) [38]. A CMR compares the changes in activity
and mobility during and after lockdown compared to before
lockdown. At the start of the study, the mobility data for 135
countries were available from Google. The mobility data for
India have been made available at the state and union territory
levels since February 15, 2020. Multimedia Appendix 1 contains
further details about this website. The CMR provides the
percentage changes in activity for 6 key categories (groceries
and pharmacies, parks, transit, retail and recreation, residential,
and workplaces) compared to the baseline days before the advent
of COVID-19 (5 weeks, from January 3 to February 6, 2020)
[39]. Daily activity changes are compared to the corresponding
baseline figure day. For example, data on Monday are compared
to corresponding data from the baseline series for a Monday.
Baseline day figures are calculated for each day of the week for
each country and are calculated as the median value [38]. The
values represent the relative changes in percentage compared
to the baseline days, not the absolute number of visitors. For
instance, a value of –50 in the workplaces data set on a Monday
indicates a 50% drop compared to the Monday in the reference
period. Similarly, a positive value indicates an increase in
mobility compared to the reference period.

Primary Outcome Variables and Covariates
The frequency of daily infected cases, deaths, and recovered
cases were the primary variables of this study. The disease
burden data for India by individual states and union territories
were depicted in cases per million (CPM), case fatality rate
(CFR), and doubling rate (DR), which were calculated using

the standard formulae [40-42]. We used census population data
from the different states of India as a reference [43]. The
mobility indicators pointing toward disease spread were the
covariates of interest. A CMR provides data for 6 mobility
indicators, used as covariates, which give information on
people’s movement. It was significant to assess the variability
in people’s mobility during the unlocking phase in response to
the caseload of each state during the lockdown. For the principle
of parsimony, we report the frequency of cases using the median
and range values for the states with the maximum and minimum
numbers of cases.

Data Analysis
We downloaded the mobility and COVID-19 data in the .csv
format on October 16, 2020, and we replaced the state codes
for the India COVID-19 data with state names using metadata.
The mobility data at the national and state levels were filtered
and stored. Subsequently, we merged the mobility and
COVID-19 data for India and the respective states and union
territories using the date variable and created a new spreadsheet.
Finally, we arranged the data in separate spreadsheets for the
national and state levels for further analysis. Subsequently, the
relationship between mobility and COVID-19 spread for the
prelockdown and unlock phases was investigated using the
Kendall tau correlation. This approach is more general and
consistent with the ranking system and is proportional to the
number of concordant pairs minus the number of discordant
pairs. The value of tau ranges from +1 to –1 for identically and
oppositely ranking pairs, respectively. Because it is an initial
empirical investigation of the relationship between mobility
and epidemiological indicators, the emphasis is on the magnitude
of the correlation rather than the P value. Further, we calculated
and reported the 95% CI with all the point estimates to provide
readers with an idea of the estimate range.

Ethical Clearance
Ethical clearance for the study was obtained from the
Institutional Review Board of the Postgraduate Institute of
Medical Education and Research, Chandigarh, India, vide letter
INT/IEC/2020/SPL-1594.

Results

Disease Burden During Different Phases of Lockdown
The line graphs display the mobility trend and rise in the number
of cases during these phases (Figure 1). At the end of phase 1,
as in, just before the national lockdown, the numbers of
cumulative cases, cumulative deaths, and cumulative recoveries
throughout India were recorded to be 567, 40, and 10,
respectively. The lockdown was enforced for 75 days, until June
8, 2020, but the surge in the cumulative caseloads continued
(Table 1). This was followed by sequential unlocking, after
which a further surge was witnessed. As of October 15, 2020
(second unlock phase), the reported numbers of cumulative
cases, cumulative deaths, and cumulative recoveries in India
surpassed 7.5 million, 0.1 million, and 6.6 million, respectively,
with marked interstate variations.
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Figure 1. Line diagram depicting COVID-19 cases and mobility trends for India from March 14 to October 14, 2020.

JMIR Public Health Surveill 2021 | vol. 7 | iss. 8 | e29957 | p. 4https://publichealth.jmir.org/2021/8/e29957
(page number not for citation purposes)

Kishore et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Statewise burden (cumulative total) of the COVID-19 pandemic in India during the different phases of the lockdown (March-October 2020).

Number of cases in each phase of lockdown, n (%)Region and state in
India

Unlock (June 8-October 15, 2020)Lockdown (March 25-June 7, 2020)Prelockdown (before March 25,
2020)

RDCRDCRcDbCa

6,658,418
(100)

114,042
(100)

7,546,965
(100)

123,848
(100)

7205 (100)257,478
(100)

40 (100)10
(100)

567 (100)India

North

301,716(4.5)6009 (5.3)331,017
(4.4)

10,999 (8.9)812 (11.3)28,936
(11.2)

6 (15)1 (10)30 (5.3)Delhi

138,350(2.1)1640 (1.4)150,033
(2.0)

1473 (1.2)28 (0.4)4448 (1.7)11
(27.5)

0 (0)30 (5.3)Haryana

116,925(1.8)3999 (3.5)127,154
(1.7)

2106 (1.7)51 (0.7)2608 (1)0 (0)1 (10)29 (5.1)Punjab

77,886 (1.2)1379 (1.2)87,942 (1.2)1216 (1)41 (0.6)4087 (1.6)0 (0)0 (0)6 (1.1)Jammu and
Kashmir

50,982 (0.8)927 (0.8)58,024 (0.8)528 (0.4)13 (0.2)1355 (0.5)0 (0)0 (0)4 (0.7)Uttarakhand

16,038 (0.2)263 (0.2)18,967 (0.3)219 (0.2)6 (0.1)411 (0.2)0 (0)1 (10)3 (0.5)Himachal
Pradesh

12,554 (0.2)208 (0.2)13,646 (0.2)274 (0.2)5 (0.1)314 (0.1)0 (0)0 (0)7 (1.2)Chandigarh

4615 (0.1)66 (0.1)5598 (0.1)50 (0)1 (0)103 (0)0 (0)0 (0)13 (2.3)Ladakh

Central

415,592(6.2)6658 (5.8)455,146
(6.0)

6185 (5)275 (3.8)10,536 (4.1)11
(27.5)

0 (0)35 (6.2)Uttar Pradesh

150,379(2.3)1747 (1.5)173,266
(2.3)

7754 (6.3)240 (3.3)10,599 (4.1)3 (7.5)0 (0)32 (5.6)Rajasthan

132,168(2)1478 (1.3)160,396
(2.1)

266 (0.2)4 (0.1)1073 (0.4)0 (0)0 (0)1 (0.2)Chhattisgarh

144,134(2.2)2774 (2.4)160,188
(2.1)

6331 (5.1)413 (5.7)9401 (3.7)0 (0)0 (0)7 (1.2)Madhya Pradesh

West

1,369,810
(20.6)

42,114
(36.9)

1,595,381
(21.1)

39,314
(31.7)

3059

(42.5)

85,975
(33.4)

0 (0)2 (20)107 (18.9)Maharashtra

141,753(2.1)3637 (3.2)159,725
(2.1)

13,643 (11)1249 (17.3)20,097 (7.8)0 (0)1 (10)34 (6)Gujarat

36,395 (0.5)544 (0.5)40,587 (0.5)65 (0.1)0 (0)300 (0.1)0 (0)0 (0)0 (0)Goa

3079 (0)2 (0)3176 (0)2 (0)0 (0)20 (0)0 (0)0 (0)0 (0)Dadra and Nagar
Haveli

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Daman and Diu

South

739,307(11.1)6425 (5.6)782,123
(10.4)

2669 (2.2)75 (1)4659 (1.8)0 (0)0 (0)8 (1.4)Andhra Pradesh

645,826(9.7)9889 (8.7)765,586
(10.1)

2132 (1.7)61 (0.8)5452 (2.1)3 (7.5)1(10)41 (7.2)Karnataka

637,637(9.6)10,642 (9.3)687,400
(9.1)

16,999
(13.7)

272 (3.8)31,667
(12.3)

1 (2.5)1(10)18 (3.2)Tamil Nadu

245,394(3.7)1162 (1)341,860
(4.5)

803 (0.6)16 (0.2)1915 (0.7)4 (10)0 (0)109 (19.2)Kerala

198,790(3)1271 (1.1)221,601
(2.9)

1742 (1.4)137 (1.9)3650 (1.4)1 (2.5)0 (0)37 (6.5)Telangana
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Number of cases in each phase of lockdown, n (%)Region and state in
India

Unlock (June 8-October 15, 2020)Lockdown (March 25-June 7, 2020)Prelockdown (before March 25,
2020)

RDCRDCRcDbCa

28,290 (0.4)574 (0.5)33,143 (0.4)49 (0)0 (0)119 (0)0 (0)0 (0)1 (0.2)Puducherry

3859 (0.1)56 (0)4104 (0.1)33 (0)0 (0)33 (0)0 (0)0 (0)0 (0)Andaman and
Nicobar Islands

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Lakshadweep

East

281,053
(4.2)

6056 (5.3)0 (0)3303 (2.7)396 (5.5)8187 (3.2)0 (0)1(10)9 (1.6)West Bengal

246,837
(3.7)

1188 (1.0)268,364
(3.6)

1894 (1.5)11 (0.2)2856 (1.1)0 (0)0 (0)2 (0.4)Odisha

192,594
(2.9)

996 (0.9)204,212
(2.7)

2405 (1.9)30 (0.4)5070 (2.0)0 (0)1(10)3 (0.5)Bihar

89,011 (1.3)39 (0.7)96,327 (1.3)490 (0.4)7 (0.1)1103 (0.4)0 (0)0 (0)0 (0)Jharkhand

Northeast

171,680(2.6)872 (0.8)200,607
(2.7)

637 (0.5)3 (0)2682 (1.0)0 (0)0 (0)0 (0)Assam

26,199 (0.4)326 (0.3)29,465 (0.4)192 (0.2)0 (0)802 (0.3)0 (0)0 (0)0 (0)Tripura

11,741 (0.2)116 (0.1)15,463 (0.2)52 (0)0 (0)172 (0.1)0 (0)0 (0)1 (0.2)Manipur

10,315 (0.2)30 (0)13,348 (0.2)1 (0)0 (0)48 (0)0 (0)0 (0)0 (0)Arunachal
Pradesh

6034 (0.1)75 (0.1)8404 (0.1)13 (0)1 (0)36 (0)0 (0)0 (0)0 (0)Meghalaya

6142 (0.1)21 (0)7816 (0.1)8 (0)0 (0)116 (0)0 (0)0 (0)0 (0)Nagaland

3185 (0)60 (0.1)3610 (0)0 (0)0 (0)7 (0)0 (0)0 (0)0 (0)Sikkim

2148 (0)0 (0)2253 (0)1 (0)0 (0)34 (0)0 (0)0 (0)0 (0)Mizoram

aC: confirmed cases of COVID-19.
bD: deceased due to COVID-19.
cR: recovered from COVID-19.

Disease Severity/Epidemiologic Indicators
Table 2 presents crucial epidemiologic indicators that were used
to estimate disease burden in terms of the CPM, DR, and CFR
of COVID-19. CPM increased to 40 (36.6-43.3) at the national
level by the end of phase 3 (unlock). The disease DR also

increased to 33.4 (30.3-36.5), while CFR—a vital indicator of
the severity of the disease in an epidemic—decreased to 2.3%
(95% CI 1.9%-2.6%) on October 15, 2020. The states of Punjab
(4.6%, 95% CI 4.0%-5.3%) and Maharashtra (4.1%, 95% CI
3.4%-4.8%) reported the highest CFRs; meanwhile, Mizoram,
Lakshadweep and Daman, and Diu reported CFRs of zero.
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Table 2. Interstate comparison of COVID-19–related statistics during the different phases of lockdown in India (March-October 2020).

Statistics in each phase of lockdown, mean (95% CI)Region and state in India

Unlock (June 8-October 15, 2020)Lockdown (March 25-June 7, 2020)Prelockdown (before March 25, 2020)

CFRDRCPMCFRDRCPMCFRcDRbCPMa

2.3 (1.9-
2.6)

33.4 (30.3-
36.5)

40 (36.6-
43.3)

12 (9.7-
14.3)

10.6 (9.6-
11.5)

2.5 (2-3)22.0 (0-
47.6)

4.1 (2.8-
5.5)

0 (0-0.1)India

North

2.8 (1.5-
4.1)

58.5 (53-
64)

121.4
(111.7-
131)

12.6 (7.2-
18)

12.6 (10.6-
14.6)

20.6 (15.6-
25.6)

02.3 (0-4.8)0.1 (0-0.2)Delhi

1.5 (1.2-
1.7)

35.4 (31.7-
39.1)

38.8 (34.9-
42.8)

4.3 (0.9-
7.6)

20.9 (14.7-
27.2)

2.1 (1.3-
2.9)

04.3 (0-8.9)0.1 (0-0.2)Haryana

4.6 (4-5.3)35.9 (29.6-
42.3)

31.2 (26.9-
35.5)

12 (6.3-
17.7)

50.8 (8-
93.7)

1.1 (0.7-
1.5)

02.3 (0-5.3)0.1 (0-0.2)Punjab

2.6 (2.2-3)37.8 (33.9-
41.6)

46.3 (41.1-
51.6)

5.9 (1.7-
10.1)

14.4 (12.1-
16.8)

4 (2.6-5.4)00.8 (0-2.3)0 (0-0.1)Jammu and Kashmir

2 (1.7-2.4)36.8 (31.3-
42.3)

37.9 (31.9-
43.8)

4.8 (0.4-
10)

11.2 (7.6-
14.7)

1.6 (0.8-
2.4)

00.5 (0-1.3)0 (0-0.1)Uttarakhand

1.5 (1.1-2)32.4 (28.6-
36.1)

18.7 (16-
21.4)

2.9 (1.1-
6.8)

11.5 (8-
14.9)

0.7 (0.5-1)10.0 (0-
32.6)

00 (0-0.1)Himachal Pradesh

3.3 (1.5-5)39.9 (33-
46.7)

86.5 (71.4-
101.7)

8.8 (1.2-
16.4)

24.7 (12.2-
37.2)

3.5 (2.3-
4.8)

00.5 (0-1.6)0.5 (0.2-
1.2)

Chandigarh

057.3 (43.8-
70.8)

143 (123.6-
162.3)

1.6 (1.6-
4.8)

3.9 (1.4-
6.4)

4.2 (1.5-
6.8)

004.1 (1.7-
9.9)

Ladakh

Central

2.3 (2-2.6)35.5 (30.6-
40.5)

14.1 (12.6-
15.5)

6.7 (3-
10.3)

13.7 (12-
15.5)

0.6 (0.5-
0.7)

06.2 (3.5-
8.8)

0.1 (0.0-
0.2)

Uttar Pradesh

1.5 (1.3-
1.6)

35.3 (33.7-
36.9)

15.1 (13.8-
16.4)

7.3 (3-
11.7)

14.6 (12.7-
16.5)

1.7 (1.5-2)02.5 (0.7-
4.2)

0 (0-0.1)Rajasthan

1.5 (1.2-
1.9)

22.4 (20.6-
24.3)

40.7 (33.7-
47.7)

0.4 (0.1-
0.8)

7.4 (4-
10.8)

0.5 (0.3-
0.7)

000Chhattisgarh

2.3 (2.1-
2.6)

36.8 (34.2-
39.4)

13.3 (11.6-
14.9)

16.1 (10.4-
21.8)

18.2 (12.7-
23.7)

1.5 (1.2-
1.7)

00.9 (0-2.5)0.1Madhya Pradesh

West

4.1 (3.4-
4.8)

39.5 (35.3-
43.7)

92.2 (84.1-
100.2)

19.1 (14.2-
24.1)

10.7 (9.4-
12)

9.3 (7.4-
11.2)

33.3 (0-
87.5)

5.8 (3.6-
8.0)

0.1(0,0.1)Maharashtra

2.5 (2.1-
2.8)

49.5 (46.5-
52.5)

16.4 (15.7-
17.2)

22.1 (16-
28.1)

14 (11.5-
16.4)

4.2 (3.5-
4.9)

01.7 (0-4.0)0(0,0.1)Gujarat

1.4 (1.2-
1.6)

28.5 (24.7-
32.3)

191 (169.5-
212.4)

06.2 (2.5-
9.9)

2.5 (0.8-
4.2)

000Goa

0.1 (0.1-
0.3)

114.3
(63.4-
165.1)

25.3 (34.2-
42.9)

00.4 (0.1-
0.8)

0.4 (0.1-
0.9)

000Dadra and Nagar
Haveli

0038.5 (34.2-
42.9)

000.4 (0-0.9)000Daman and Diu

South

1.5 (1.2-
1.7)

36.1 (29.9-
42.3)

108.4
(96.5-
120.4)

7.5 (3-
11.9)

17.3 (14.6-
19.9)

1.2 (1-1.3)02 (0-4.2)0.1Andhra Pradesh

2.7 (2.3-
3.1)

26.9 (24.1-
29.7)

84.6 (76-
93.2)

8.4 (4.2-
12.5)

16.5 (13-
20.1)

1.1 (0.7-
1.4)

03.2 (0-5.7)0.1 (0-0.1)Karnataka
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Statistics in each phase of lockdown, mean (95% CI)Region and state in India

Unlock (June 8-October 15, 2020)Lockdown (March 25-June 7, 2020)Prelockdown (before March 25, 2020)

CFRDRCPMCFRDRCPMCFRcDRbCPMa

1.9 (1.7-2)43.5 (39-
48)

63.3 (60.4-
66.3)

5.1 (1.8-
8.3)

11.9 (10.3-
13.6)

5.4 (4.2-
6.7)

01.2 (0-2.1)0Tamil Nadu

0.6 (0.5-
0.7)

19.7 (18.5-
20.8)

71.6 (57.9-
85.3)

2.2 (0.5-4)42.4 (26.5-
58.4)

0.7 (0.5-
0.9)

04.9 (0-9.9)0.3 (0.1-
0.4)

Kerala

2.6 (0.5-
4.7)

38 (33.3-
42.7)

41.6(38.6,44.7)10.9 (5.4-
16.4)

34.4 (22.3-
46.5)

1.2 (1-1.5)03.3 (1.9-
4.8)

0.1 (0-0.1)Telangana

2.7 (2-3.4)27.3 (23.1-
31.6)

175.7
(153.3-
198)

02 (0.8-3.2)1.1 (0.6-
1.7)

000.1 (0-0.2)Puducherry

070.7 (56.3-
85.2)

73.4 (58.3-
88.5)

00.4 (0.2-
0.9)

1.1 (0.4-
1.7)

000Andaman and Nicobar
Islands

000000000Lakshadweep

East

2.4 (2.2-
2.6)

19.9 (18.8-
21.1)

23.6 (21.7-
25.6)

14.5 (8.7-
20.2)

9.9 (8.6-
11.1)

1.1 (0.8-
1.4)

0(0,0)0.7 (0-1.9)0.1West Bengal

0.7 (0.6-
0.7)

26.3 (23.3-
29.3)

43.1 (37.8-
48.3)

3.6 (0-7.9)10.5 (8-13)0.8 (0.6-
1.1)

000.0Odisha

0.6 (0.5-
0.7)

46.8 (40.2-
53.3)

12 (10.6-
13.4)

1 (0.3-1.6)12.8 (9.7-
15.8)

0.5 (0.4-
0.7)

00.3 (0-1)0.0Bihar

1.6 (1.2-2)33.9 (28.9-
39)

18.6 (16-
21.1)

2.1 (1.5-
5.6)

13.6 (9.3-
17.9)

0.4 (0.2-
0.5)

000Jharkhand

Northeast

0.1 (0-0.2)43.4 (33.4-
53.3)

41.8 (37.1-
46.5)

4.7 (0.6-
10)

6.4 (4.2-
8.7)

1 (0.6-1.5)000.0Assam

2.3 (0.6-
3.9)

46.9 (34.6-
59.2)

51.7 (44.3-
59.1)

08.8 (2.5-
15)

2.6 (1.2-
3.9)

000.0Tripura

1.5 (0.7-
2.4)

34.8 (30.4-
39.2)

37.2 (32.5-
41.9)

01.4 (0.1-
2.8)

0.7 (0.4-
1.1)

000 (0-0.1)Manipur

1.1 (0.5-
2.7)

24.8 (21.4-
28.2)

64.5 (55.3-
73.8)

00.8 (0.1-
1.5)

0.4 (0-0.8)000.0Arunachal Pradesh

2.6 (0.7-
4.5)

26 (22.3-
29.6)

18.7 (15.3-
22.1)

01.6 (0.5-
2.8)

0.1 (0.1-
0.2)

000.0Meghalaya

0.9 (0-1.7)54.7 (44-
65.4)

25.7 (21.5-
30)

00.5 (0.1-
0.9)

0.7 (0.2-
1.2)

000.0Nagaland

2.4 (1.1-
3.7)

47.2 (34.6-
59.7)

39.2 (32.8-
45.7)

00 (0-0.1)0.1 (0-0.3)000.0Sikkim

069.8 (65.7-
73.1)

13.5 (10.6-
16.3)

00.2 (0.1-
0.6)

0.4 (0-0.7)000.0Mizoram

aCPM: cases per million.
bDR: doubling rate.
cCFR: case fatality rate.
dValues <0.1 are rounded to 0.

Mobility Indicators and Intramobility Correlation
Table 3 depicts the changes in the mobility patterns in all 6
categories reported in CMRs for India and for the states of
Maharashtra (most cases) and Sikkim (fewest cases). At the
national level, mobility in 5 of the 6 categories was reduced
during the lockdown period compared to the reference period,

with the exception being residential areas. During the lockdown,
maximum restrictions were seen at retail and recreation areas,
followed by transit, parks, and workplaces. The leading drop
of –77.2% (95% CI –78.7% to –75.8%) at the national level
occurred for the retail and recreation category during the
lockdown. In contrast, residential mobility increased by 24.6%
(95% CI 23.4% to 25.8%) during the lockdown. During unlock,
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the areas with the lowest to highest mobility were residential,
groceries and pharmacies, workplaces, transit, parks, and retail
and recreation. With the maximum number of cases,
Maharashtra State displayed the highest restriction in movement,
with a drop of –82.4% (95% CI –83.3% to –81.5%) in the
lockdown phase for retail and recreation. Sikkim depicted higher
mobility compared to Maharashtra for all 6 categories of places
reported in CMRs. The state of Sikkim displayed a drop of
–65.4% (95% CI –67% to 63.9%) during lockdown for retail

and recreation. The spiral bar charts in Figure 2 display the
changes in mobility for the states of Sikkim and Maharashtra
as well as at the national level across the different phases of the
lockdown. Table 4 exhibits the intramobility correlation. In
general, residential mobility was negatively correlated with all
other measures of mobility. The magnitude of correlations for
the intramobility indicators was comparatively low for the
lockdown phase compared to the prelockdown and unlock
stages.

Table 3. Percentage changes in mobility patterns during different stages of lockdown during the COVID-19 pandemic as per the Google Community
Mobility Reports for India (March-October 2020).

Percentage change in each phase of lockdown, median (95% CI)Region and mobility indicator

Unlock (June 8-October 15, 2020)Lockdown (March 25-June 7, 2020)Prelockdown (before March 25, 2020)

India

–50.5 (–52.1 to –48.9)–77.2 (–78.7 to –75.8)–29.6 (–46.7 to –12.4)Retail and recreation

–35.2 (–36.4 to –34)–59.5 (–62.0 to –57.1)–25.7 (–42 to –9.4)Transit

–49.0 (–49.7 to –48.2)–56.8 (–58.0 to –55.6)–18.3 (–31.2 to –5.3)Parks

–28.2 (–29.5 to –27)–51.9 (–55.2 to –48.6)–21.1 (–36.2 to –5.9)Workplaces

–5.7 (–7.2 to –4.1)–38.0 (–42.4 to –33.6)–14.0 (–31.4 to 3.4)Groceries and pharma-
cies

13.9 (13.6 to 14.3)24.6 (23.4 to 25.8)9.4 (3.8 to 15)Residential

State with highest number of cases at the end of lockdown (Maharashtra)

–29.4 (–33.5 to –25.3)–82.4 (–83.3 to –81.5)–40.3 (–58.8 to –21.8)Retail and recreation

–44.3 (–46.2 to –42.4)–71.3 (–72.8 to –69.8)–35.6 (–53.8 to –17.3)Transit

–52.2 (–54.1 to –50.2)–70.4 (–71.5 to –69.2)–30.7 (–45 to –16.5)Parks

4.4 (–0.5 to 9.3)–65.3 (–68 to –62.6)–31.8 (–50.1 to –13.6)Workplaces

–52.5 (–55.7 to –49.4)–48 (–50.9 to –45.2)–20.1 (–38.6 to –1.6)Groceries and pharma-
cies

22.2 (21.3 to 23.2)31.8 (30.6 to 32.9)14.5 (7.3 to 21.6)Residential

State with lowest number of cases at the end of lockdown (Sikkim)

–52.3 (–55.1 to –49.6)–65.4 (–67.0 to –63.9)–8.6 (–23.3 to 6.1)Retail and recreation

–54.5 (–57.1 to –51.9)–65.2 (–67.3 to –63)–22.4 (–38.8 to –5.9)Transit

–39.3 (–43 to –35.6)–48.3 (–52.5 to –44.1)–12.5 (–30.8 to 5.8)Groceries and pharma-
cies

–43.6 (–44.1 to –43.1)–43.5 (–44.1 to –42.8)–16.4 (–29.9 to –2.8)Parks

–15.6 (–17.8 to –13.4)–20.2 (–23.3 to –17.1)0.8 (–8.1 to 9.7)Workplaces

13.5 (12.7 to 14.3)12.8 (12.1 to 13.5)3.6 (0.4 to 6.7)Residential
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Figure 2. Spiral bar charts displaying the changes in the Google Community Mobility Reports mobility patterns for the states of Sikkim and Maharashtra
compared to India across the different phases of lockdown.
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Table 4. Intracorrelations between the mobility indicators during the COVID-19 pandemic in India (March-October 2020).

Correlation coefficientsMobility indicators

Unlock (June 8-October 15, 2020)Lockdown (March 25-June 7, 2020)Prelockdown (before March 25, 2020)

SikkimMaharashtraIndiaSikkimMaharashtraIndiaSikkimMaharashtraIndia

Retail and recreation

0.380.680.370.170.400.400.900.930.60Groceries and pharma-
cies

0.170.810.690.320.480.450.810.990.96Parks

0.520.790.770.270.290.380.950.960.97Transit

0.250.430.260.140.200.290.720.820.85Workplaces

–0.33–0.50–0.30–0.29–0.33–0.44–0.85–0.84–0.91Residential

Groceries and pharmacies

0.250.750.46–0.11–0.070.030.850.950.67Parks

0.590.660.470.690.800.910.960.960.56Transit

0.630.27–0.080.700.510.630.710.820.47Workplaces

–0.80–0.34–0.05–0.71–0.40–0.60–0.74–0.81–0.58Residential

Parks

0.100.720.67–0.15–0.23–0.040.870.990.90Transit

0.240.340.10–0.22–0.27–0.180.600.840.77Workplaces

–0.19–0.36–0.080.110.140.07–0.73–0.85–0.91Residential

Transit

0.370.570.350.720.700.700.670.860.88Workplaces

–0.53–0.64–0.35–0.79–0.61–0.69–0.79–0.84–0.89Residential

Workplaces

–0.63–0.74–0.49–0.66–0.85–0.84–0.78–0.99–0.88Residential

Correlation Between Mobility and Epidemiological
Indicators
A general trend of a high correlation coefficient between
epidemiological and mobility indicators was observed for the
lockdown and unlock phases compared to the prelockdown
phase. With few exceptions, the correlation coefficients between
epidemiological and mobility indicators for India and
Maharashtra are similar. The highest correlation for India,
Maharashtra, and Sikkim was observed in the unlock stage for
retail and recreation and all epidemiological indicators. It was
interesting to see a substantial increase in correlation between

park visits and epidemiological indicators from the lockdown
phase to the unlock phase. Only 7 cases were reported in Sikkim
before unlock; therefore, intercorrelations for CFR and recovery
are not available during the pre-unlock phases. Table 5 gives
details of the correlation coefficients between mobility and
epidemiological indicators. Initial exploration indicated that
there are substantially high correlations between various
epidemiological and Google mobility indicators. Figure 1
displays the cumulative rise in the frequency of cases with the
mobility indicators. There was a rapid surge in the number of
cases in the unlock phase after flat linear growth up to the
lockdown stage.
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Table 5. Intercorrelation between the mobility and epidemiological indicators during the COVID-19 pandemic in India (March-October 2020).

Correlation coefficientsMobility and epidemiological
indicators

Unlock (June 8-October 15, 2020)Lockdown (March 25-June 7, 2020)Prelockdown (before March 25, 2020)

SikkimMaharashtraIndiaSikkimMaharashtraIndiaSikkimMaharashtraIndia

Retail and recreation

0.270.660.720.150.290.29—a0.110.00Doubling rate

0.37–0.55–0.64—–0.33–0.21—-0.55–0.49Case fatality rate

0.120.640.63—0.300.32——0.02Recovery

Groceries and pharmacies

–0.010.430.150.190.620.78—0.160.00Doubling rate

–0.16–0.35–0.05—–0.41–0.69—–0.37–0.44Case fatality rate

–0.300.370.00—0.760.85——–0.14Recovery

Parks

0.020.590.510.05–0.13–0.06—0.110.05Doubling rate

–0.07–0.48–0.44—–0.060.14—–0.57–0.41Case fatality rate

–0.050.550.43—–0.20–0.07——–0.06Recovery

Transit

0.130.600.590.140.620.79—0.11–0.02Doubling rate

0.09–0.49–0.51—–0.39–0.68—–0.55–0.53Case fatality rate

–0.080.550.47—0.800.87——0.04Recovery

Workplaces

–0.100.350.350.130.460.59—0.07–0.09Doubling rate

–0.06–0.35–0.37—–0.23–0.56—–0.55–0.40Case fatality rate

–0.310.380.35—0.570.70——–0.02Recovery

Residential

0.02–0.41–0.35–0.16–0.40–0.55—–0.070.05Doubling rate

0.080.340.30—0.230.51—0.570.36Case fatality rate

0.31–0.36–0.25—–0.48–0.65——0.06Recovery

aNot applicable.

Discussion

We used the CMRs provided by Google to assess the national
and subnational patterns of mobility before, during, and after
the COVID-19 pandemic lockdown enforced by the government
of India and their correlations with disease severity. There are
specific critical findings in our study. First, there were marked
interstate variations in the disease burden during the three phases
of our study period. By the end of the lockdown phase, although
the CPM and DR continued to increase, disease severity, as
depicted by the CFR, started to decrease. The CMR data
depicted that mobility decreased during the lockdown and then
increased again during the unlock phase. We observed
intramobility solid patterns among the 6 mobility indicators.
Residential mobility was seen to be inversely associated with
mobility in public places. A significant correlation was seen
between mobility and epidemiological indicators.

Inter- and intramobility networks play significant roles in disease
transmission dynamics in the modern era [44]. We observed
wide subnational variations in the disease burden, as depicted
by various epidemiological indicators used in the study. The
state of Maharashtra was among the most greatly affected states
in the country. This can be attributed to its large population size,
as it is the second most populous state in India after Uttar
Pradesh. Moreover, COVID-19 was a relatively urban
phenomenon during the study period, and Maharashtra is one
of India's most urbanized states (more than 50% urbanized).
More than half of the COVID-19 cases in Maharashtra were
reported from four major cities: Mumbai, Thane, Pune, and
Nagpur. In contrast, the proportion of urbanization in other
populous states such as Uttar Pradesh is 22%. Also, Maharashtra
attracts more people from other states for education and jobs;
hence, it has a very high population density. This demographic
profile has a significant impact on the COVID-19 transmission
dynamics. However, if we consider total CPM, many other
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states, such as Goa, Delhi, and Andhra Pradesh, reported more
cases than Maharashtra by the end of lockdown. Also, any state
with an efficient and sensitive surveillance system in place will
detect more cases during an epidemic. Maharashtra has always
been among the top performers in India in this regard [45]. On
the other hand, the state of Sikkim depicted the minimum
number of cases throughout the country. Sikkim is a remote
state in a hilly area, with a small population size and lower
population density, fewer migrations, more rural areas, and less
interstate trade and transit; this explains its lower number of
cases during the study period.

In our study, residential mobility increased during the lockdown.
It also correlated negatively with other measures of mobility.
These findings are consistent with studies conducted by Saha
et al [34,46], which found that people stayed at home during
the lockdown. The mobility trends display that mobility started
to decrease even before the government implemented the
lockdown measure. Although legal enforcement was the prime
reason for reducing mobility, people also restricted their
movements voluntarily and avoided crowded places due to
apprehensions regarding the disease [47-49]. Mobility in other
places was reduced during the lockdown and then gradually
rescaled during the unlock phase. This pattern is coherent with
those in other studies, which found that people rescheduled or
canceled travel and transport plans in the wake of public health
emergencies [50,51].

We used the Kendall tau correlation to quantify the relationship
between mobility and epidemiological indicators, as this
correlation is more robust and consistent for nonnormal data.
The mobility indicators depicted strong correlations with
epidemiological characteristics for both the lockdown and
unlock phases. This trend is consistent with many theoretical
studies that have predicted the role of mobility for infectious
diseases [10,52,53]. Previous studies have demonstrated the
utility of mobility in the spread of COVID-19 data globally
[31,54]. Our analysis indicates that mobility is a potential metric
to monitor and predict disease outbreaks. However, the statistical
analysis is exploratory and univariate and requires rigorous
statistical evaluation before mobility can be adopted as an
indicator of surveillance.

Moreover, our models depicted wide interstate variations in
mobility patterns. We discussed variations only in the states of
Maharashtra and Sikkim, as they reported the maximum and
minimum numbers of cases, respectively, at the end of lockdown
to understand the relationship between mobility and disease
dynamics. Addressing diseases such as COVID-19 from a
mathematical perspective can reveal the internal pattern and
potential structure of pandemic control, and it can help provide
insights into the transmission dynamics of such diseases and
the potential role of different public health intervention strategies
[55]. Lockdown interventions to prevent the spread of infection
lead to different patterns of mobility. However, lockdown
measures only serve their purpose when they ate strictly
enforced. Our data suggest that the growth trajectory for the
rise in cases was linear compared to the steep trajectory post
lockdown. Many authors have previously discussed the impact
of lockdown in controlling the spread of COVID-19 in India
[56,57]. However, lockdown measures to save lives were

recommended and championed by the WHO and other leading
agencies. There are numerous discussions and debates in the
literature regarding the appropriateness of total lockdown
measures [58-60]. A group of medical researchers published
the “Great Barrington Declaration,” in which they emphasized
the concept of “Focused Protection” as an alternative to
lockdowns [61]. Simultaneously, other researchers disagreed
and called for strict measures until a vaccine became available;
they published the “John Snow Memorandum” [62]. However,
it may take a long time to assess the overall strengths and
shortcomings of the lockdown.

This study is the first pan-Indian empirical study quantifying
the role of mobility in disease transmission. However, there are
some obvious limitations to our study. The major limitation is
the dynamic nature of COVID-19 and the mobility patterns.
Therefore, it is challenging to obtain robust estimates unless
disease transmission stabilizes. Moreover, an ecological study
uses normative mobility data; this study may thus be impacted
by ecological fallacy. The disease infection rate varies per
gender, accessibility to health care, and literacy level; however,
the data for the current study limit its generalization to these
subgroups.

Similarly, no attempt can be made to examine the psychological
and sociological issues affecting mobility. The data used by
Google to generate the mobility estimates may have questionable
concordance with the actual mobility rates. Mobile phones may
not reflect the actual mobility in the community, especially in
rural areas, where GPS-enabled smartphones are not used by
many people. Similarly, apprehensions about data misuse may
prevent many smartphone users from using maps, undermining
the actual estimates. Less frequent GPS usage may be a reason
why we could not find intermobility patterns for Sikkim in our
analysis. Finally, per CMR, baseline dates do not account for
the seasonality of movements. The lack of accounting of
seasonality may also affect the accuracy and precision of
estimates. Moreover, Google’s CMR data do not directly equate
to some specific COVID-19 control measures. We could not
assess the reasons underlying the patterns observed in mobility.

To conclude, we can use mobile-based open-source mobility
data to assess the effectiveness of social distancing. CMR data
depicted an association between community mobility with
disease severity indicators. We suggest that data related to
community mobility can be of utility in future COVID-19
modeling studies. With the declaration of COVID-19 as a
pandemic, mobility levels declined, which can be primarily
attributed to legal enforcement or increased fear of disease
leading to personal behavioral changes. Google’s CMR depicts
the effect of these measures on community movement. CMR
can provide an effective tool for the authorities to evaluate the
timing and impact of social distancing efforts, mainly related
to movement restrictions. We recommend using these data
whenever applicable to supplement the existing surveillance
methods in any country. This approach does not involve any
additional cost and can provide quick action points about the
adherence to social distancing measures. This method can be
used to forecast mass movements during nonpandemic
conditions, such as the famous gatherings during Kumbh Mela
in India, and can help us assess preparedness accordingly. An
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attempt can also be made to forecast mass movements, which
is needed to make informed decisions. With the increase in
mobile internet usage, the real-time data method is expected to
increase accuracy. Future studies should focus on establishing

the cultural, social, and economic issues that are responsible
for some of the differences in adherence to social distancing
measures.
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