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Abstract

Background: COVID-19 has been one of the most serious global health crises in world history. During the pandemic, health
care systems require accurate forecasts for key resources to guide preparation for patient surges. Forecasting the COVID-19
hospital census is among the most important planning decisions to ensure adequate staffing, number of beds, intensive care units,
and vital equipment.

Objective: The goal of this study was to explore the potential utility of local COVID-19 infection incidence data in developing
a forecasting model for the COVID-19 hospital census.

Methods: The study data comprised aggregated daily COVID-19 hospital census data across 11 Atrium Health hospitals plus
a virtual hospital in the greater Charlotte metropolitan area of North Carolina, as well as the total daily infection incidence across
the same region during the May 15 to December 5, 2020, period. Cross-correlations between hospital census and local infection
incidence lagging up to 21 days were computed. A multivariate time-series framework, called the vector error correction model
(VECM), was used to simultaneously incorporate both time series and account for their possible long-run relationship. Hypothesis
tests and model diagnostics were performed to test for the long-run relationship and examine model goodness of fit. The
7-days-ahead forecast performance was measured by mean absolute percentage error (MAPE), with time-series cross-validation.
The forecast performance was also compared with an autoregressive integrated moving average (ARIMA) model in the same
cross-validation time frame. Based on different scenarios of the pandemic, the fitted model was leveraged to produce 60-days-ahead
forecasts.

Results: The cross-correlations were uniformly high, falling between 0.7 and 0.8. There was sufficient evidence that the two
time series have a stable long-run relationship at the .01 significance level. The model had very good fit to the data. The
out-of-sample MAPE had a median of 5.9% and a 95th percentile of 13.4%. In comparison, the MAPE of the ARIMA had a
median of 6.6% and a 95th percentile of 14.3%. Scenario-based 60-days-ahead forecasts exhibited concave trajectories with peaks
lagging 2 to 3 weeks later than the peak infection incidence. In the worst-case scenario, the COVID-19 hospital census can reach
a peak over 3 times greater than the peak observed during the second wave.

Conclusions: When used in the VECM framework, the local COVID-19 infection incidence can be an effective leading indicator
to predict the COVID-19 hospital census. The VECM model had a very good 7-days-ahead forecast performance and outperformed
the traditional ARIMA model. Leveraging the relationship between the two time series, the model can produce realistic
60-days-ahead scenario-based projections, which can inform health care systems about the peak timing and volume of the hospital
census for long-term planning purposes.

(JMIR Public Health Surveill 2021;7(8):e28195) doi: 10.2196/28195
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Introduction

SARS-CoV-2 is a novel member of the coronavirus family, and
infections in humans can result in the disease COVID-19. The
virus is transmitted primarily through droplets from coughing
and sneezing and is highly infectious. Its basic reproduction
rate is estimated to be in the low to mid 2s based on different
models [1], compared to 2 for severe acute respiratory syndrome
(SARS) and 1.3 for the 2009 swine flu [2]. Moderate to severe
disease typically manifests with acute hypoxemia, and can
progress to acute respiratory distress syndrome, multiorgan
dysfunction, and death. Furthermore, an estimated 25%-30%
of patients admitted to hospitals require intensive care admission
[2]. In December 2019, the first cases were recorded in Wuhan,
China, with subsequent spread across the world. In early 2020,
the World Health Organization declared COVID-19 to be a
global health emergency [3]. At the end of December 2020,
SARS-CoV-2 had resulted in over 82 million documented cases
and nearly 2 million deaths [4].

Our work is motivated by the need of hospital leaders to have
timely and accurate forecasts to guide planning for surges in
hospital demands due to the pandemic. Adequate preparation
can help prevent or mitigate strains on hospital resources that
result when hospitals exceed their historical capacity. On the
contrary, being caught off-guard under a pandemic can devastate
the population and health care systems. For example, previous
models in India suggested falsely that it had reached herd
immunity, encouraging complacency and insufficient
preparation; however, on May 4, 2021, there was still a reported
rolling average of 378,000 cases a day, which overwhelmed
hospitals and health workers and resulted in a national health
crisis [5]. Thus, to a health care system, an essential tool is a
model that provides short- and long-range forecasting of the
number of COVID-19–positive patients who will be admitted.
This COVID-19 hospital census plays a central role in planning
decisions that frequently require considerable lead time, such
as increasing staff, creating physical beds and rooms, and
procuring vital equipment (eg, ventilators and personal
protective equipment).

Prior research has demonstrated the utility of forecasting hospital
demands (eg, hospital admissions, intensive care unit census,
and hospital overall census) using univariate time-series models
such as the autoregressive integrated moving average (ARIMA),
the seasonal autoregressive integrated moving average
(SARIMA), and exponential smoothing [6-8]. Another approach
is to use ensemble-based modeling. For example, a hybrid of a
SARIMA model and a nonlinear autoregression artificial neural
network model has been used to forecast hospital admissions
[9]. In another example, two separate models, a time-series
model for hospital admission and a patient-level logistic
regression model for hospital discharge, were combined to
predict the hospital census [10]. While these examples
demonstrate the powerful potential of univariate time-series
and ensemble modeling, neither incorporate factors inherent to

the behavior of the pandemic, which may serve as important
leading indicators of hospital census, especially at times when
infection rates become increasingly dynamic (eg, on the
approach or descent of peak infection prevalence). To
incorporate pandemic indicators into modeling requires
recognition that such indicators are typically nonstationary.
Consequently, while a stationary multivariate time-series model,
called vector autoregression (VAR), has been successfully
employed to forecast emergency department patient census by
including other hospital resource indicators [11], it cannot be
used in this situation. Rather, our problem will require
nonstationary multivariate time-series models like the vector
error correction model (VECM).

Recently, VECM has been used to forecast the demand for
intensive care units during the COVID-19 pandemic by
including hospital admission as a leading indicator [12].
Although hospital admission is a natural choice as a leading
indicator, it has a short period of lead time (ie, hours to days)
and thus, limited predictive power. A more powerful indicator
for planning purposes would lead by days to weeks. We have
previously used VECM to forecast COVID-19 hospital census
using leading indicators from Google relative search volumes
for COVID-19 testing–related terms combined with the number
of people flagged as having possible COVID-19 when using an
internet-based virtual health screening bot [13]. However, these
COVID-19 indicators, which are based on symptoms, have
limitations. For example, the symptoms of COVID-19 cannot
be easily separated from other common conditions, such as the
seasonal flu, and search patterns may change due to other
external factors over time.

During the COVID-19 pandemic, many papers have been
devoted to developing predictive models for the volume of new
cases (ie, infection incidence) using various methods from
time-series analyses [14-16] to advanced machine learning
[17,18]. However, virtually no effort was focused on developing
statistical models linking infection incidence to hospitalization.
Because hospital admission typically follows the symptoms or
exposure that may provoke a person to be tested by roughly 1
week, we hypothesize that at a local population level, infection
incidence rates may have a stable relationship with and serve
as a reliable leading indicator for the COVID-19 hospital census.
In this paper, our main objective is to explore whether the local
COVID-19 infection incidence and the COVID-19 hospital
census can be successfully incorporated within a VECM to
delivery satisfactory 7-days-ahead forecast performance and
examine the application of this model to scenario-based
long-term forecasting. From our experience, since there can be
systematic changes due to the day of the week in a hospital time
series, we will need to account for weekly seasonal effects and
examine implications on short-term resource planning.
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Methods

Time-Series Data
Atrium Health is a large, integrated health care system operating
in North Carolina, South Carolina, and Georgia. In this paper,
the COVID-19 hospital census (census) refers to the daily
aggregate number of beds occupied by patients with COVID-19
at midnight across the subset of 11 Atrium Health hospitals in
the greater Charlotte metropolitan area of North Carolina, plus
a virtual hospital (Atrium Health Hospital at Home). The virtual
hospital uses telemedicine to treat patients who require only a
minimal level of care. The local COVID-19 infection incidence
(incidence) is the aggregate daily count of new
COVID-19–positive cases from 11 local counties belonging to
the Cities Readiness Initiative (CRI) region, as designated by
the North Carolina Department of Health and Human Services.
The CRI region roughly approximates the market catchment
area of these hospitals.

Using STL (seasonal and trend decomposition using Loess)
time-series decomposition [19], we observed that the two time
series had multiplicative weekly seasonality. We transformed
both time series to achieve additive seasonality and linearize
their relationship. The usual log transformation was applied to
incidence. For operational purposes, the health system had
previously decided to place an upper bound of 1000 patients
with COVID-19 on the hospital time-series range, so we applied
the following constrained log transformation so that the
back-transformed census forecasts would satisfy the constraint:

The forecast model described in the following sections was
developed for these transformed time series. Figure 1 shows a
plot of transformed census and incidence on a standardized scale
for the period from May 15 to December 5, 2020. To affirm the
association between the two transformed time series, we
computed the Pearson cross-correlations between census and
values of incidence at lags 0, –1, …, –21.

Figure 1. Scaled time series for COVID-19 hospital census and local COVID-19 infection incidence in the Cities Readiness Initiative region for the
period from May 15 to December 5, 2020. Transformed census (blue) and incidence (red) are linearly standardized to the 0-100 scale.

VECM
A VECM is a vector autoregressive model used for
nonstationary multivariate time series and accounts for stable
long-run relationships, that is, cointegration, between the time
series. A k × 1 time-series vector yt is said to be cointegrated if
there is at least one nonzero k × 1 vector βi, such that the linear

combination is trend-stationary. If r such linearly

independent vectors βi (i=1,…,r) exist, we say yt is cointegrated
with cointegration rank r [20].

Following Pfaff [20], we first describe the VAR representation
of order p of the VECM:
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for time t=1,…, T, where Πi (for i=1,…,p) are k × k coefficient
matrices of the lagged series at lag i, μ is a k × 1 vector of
constants, Dt is a 6 × 1 vector of weekly seasonal indicators, Φ
is a k × 6 coefficient matrix for seasonal indicators, and εt is a
k × 1 vector of random errors.

The VECM specification can be formulated as an algebraic
rearrangement of the VAR representation as:

where Δyt is a k × 1 vector of the differenced series

a n d

.

The model has the following assumptions:

• Assumption 1: The components of yt are at most I(1), that
is, an integrated of order 1

• Assumption 2: 0≤r=rank(Π)≤k
• Assumption 3: εt are identically and independently

distributed N(0,Σ) random vectors with covariance matrix
Σ.

We now discuss the implications of the assumptions. For
assumption 2, if r=k, then it can be shown that the VECM
becomes a standard VAR model. If r=0, then Π is the zero
matrix and there is no cointegration relationship between the
series. The VECM then becomes a VAR model for differenced

time series. If 0<r<k, then Π can be factored into Π=αβT, where
α and β are both k × r matrices. From assumption 1, the
differenced series Δyt, and its lags Δyt–1,…,Δyt–p+1 are stationary.

It follows that Πyt–1=αβTyt–1, as well as βTyt–1, also called the
error correction term, is (trend-)stationary, depending on the
specification of the deterministic components. The r linearly
independent columns of β are the cointegrating vectors, and the
rank r is equal to the cointegration rank of the system of time
series.

Estimation and Inference
The VECM was specified and fitted with the steps below.

First, to choose the order p of the VAR representation, we fitted
a VAR model to the data and made the decision based on the
Akaike information criterion (AIC) [21].

Second, we determined the number of cointegration relationships
(r=0 or r=1) using the Johansen trace test [22].

Third, we needed to decide where to place the constant μ in the
model. One option was to leave μ as shown previously to
account for linear trend in the data. Another option was to
restrict μ=αρ. The constant would be absorbed into the
cointegration relationship as an intercept, and the data would
not exhibit linear trend.

We made our decision about whether to restrict μ based on a
likelihood ratio test for linear trend, as described elsewhere
[23,24].

Fourth, we used maximum likelihood estimation to fit the model,
reported parameter estimates, the corresponding T tests, and the

omnibus F tests with a significance level of .05, following
Johansen [23].

Finally, we computed the 7-days-ahead forecasts and the 80%
forecast intervals. Once the forecasts of the transformed census
were made with the VECM, they were back-transformed to the
original scale of census. We created 80% forecast intervals for
the transformed census using a bootstrap procedure [25]. Then,
the lower and upper bound of the forecast intervals were also
back-transformed.

The model was fitted to the data between May 15 and December
5, 2020. All the data analysis was done using R statistical
software, version 4.0.3 (R Core Team). The implementation of
the VECM was done with the tsDyn, vars, and urca R packages.
Since there were no packages to make bootstrapped forecast
intervals for the VECM, we coded our own implementation.
The data and code used in the data analysis are publicly available
on GitHub [26].

Model Diagnostics
We examined the omnibus F tests to look for signs of lack of
fit and also performed the multivariate Portmanteau test for the
existence of serial correlation in the errors. Autocorrelation
function and cross-correlation function plots were also generated
for visual inspection. We performed the univariate and
multivariate Jarque-Bera normality test on the errors [27] and
also checked whether the cointegration relationship was stable,
that is, stationary, using the Augmented Dickey-Fuller (ADF)
test [28] and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test [29]. Finally, we checked the stability of the estimated VAR
representation. To do so, we looked at the companion matrix
of the VAR representation and checked whether the maximum
eigenvalue modulus was strictly smaller than 1, which, if true,
would imply the stability of the VAR representation [30]. We
also generated a trace plot of the maximum eigenvalue modulus,
where the model was repeatedly fitted on a daily rolling basis,
to check for the consistency of this value over time.

Forecast Performance
We used mean absolute percentage error (MAPE) to evaluate
the 7-days-ahead forecasts of census:

where Fi is the forecast value and Ai is the actual value.

In order to approximate the sampling distribution of MAPE,
we performed time-series cross-validation. From June 16 to
November 28, 2020, for each day, we iteratively fitted the
model, made 7-days-ahead forecasts, and computed the MAPE.
Eventually, we obtained 166 values of MAPE, plotted the
distribution, and computed the median as well as the 95th
percentile. We will consider a median MAPE below 10% to be
satisfactory, based on the practical effect of a peak surge on bed
capacity at our health care system.

Scenario-Based Long-Term Forecasting
Leading up to and at the peak of infection prevalence, there can
be high anxiety and uncertainty about how much more incidence
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and, in particular, census may increase. Furthermore, traditional
univariate time-series models may give linear forecasts for
census that do not accurately represent pandemic behavior.
However, cointegration allows for census forecasts that leverage
subtle, but critical, changes in incidence (eg, concavity). This
suggests, if not necessitates, the forecasting of census under
different pandemic scenarios. For resource planning, hospital
leaders will want to understand the implications associated with
a worst-case scenario.

For our health care system, besides routine 7-days-ahead census
forecasts, we also deployed our model for 60-days-ahead census
forecasts, considering 3 different scenarios of what could happen
with incidence (ie, best case, base case, and worst case). On
January 9, 2021, we expected the winter surge to reach peak
infection prevalence around February 5, 2021, based on an
extension of an epidemiological model called the
susceptible-infected-removed model [31]. While peak infection

incidence typically leads peak infection prevalence, in the
absence of definitively knowing either peak date, we took a
conservative approach and linearly extrapolated incidence with
a positive trend up to the expected pandemic peak. The severity
of a scenario was controlled by a trend-dampening parameter
[32]. After the peak, the descent path was initially symmetric
to its ascent and then eventually became linear (Figure 2).

Using our model refitted on January 9, 2021, with an increased
capacity of 1250 patients, we generated forecasts iteratively
forward for 60 days using the past census forecasts together
with projected incidence under each scenario. To account for
uncertainty in future census and incidence, we also simulated
1000 conditional sample paths of the two time series under each
scenario using the bootstrap procedure mentioned earlier and
computed the 10th and 90th percentile at each horizon to obtain
the 80% forecast intervals.

Figure 2. The 60-day projected local COVID-19 infection incidence in the Cities Readiness Initiative region on the log scale, as of January 9, 2021.
Past values (black), worst-case scenario (red), base-case scenario (orange), best-case scenario (blue) are shown.

Ethical Review
Our research protocol was submitted to the Atrium Health
Institutional Review Board (IRB) prior to execution, and the
study was deemed exempt from IRB oversight. In compliance
with HIPAA (Health Insurance Portability and Accountability
Act) regulations, individual patient information was not
disclosed, and all data have been deidentified and reported as
aggregates. The procedures set out in this protocol, pertaining
to the conduct, evaluation, and documentation of this study,
were designed to ensure that the investigators abide by Good

Clinical Practice guidelines and under the guiding principles
detailed in the Declaration of Helsinki.

Results

Estimation and Inference
Our model was specified as a VECM with 7 lags in its VAR
representation (p=7), 1 cointegration relationship (r=1), and a
restricted constant parameter μ so that the series would not have
linear trend. The AIC scores of VAR models with a varying
number of lags from 2 to 14 were inconclusive. However, we
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found that 7 lags were sufficient to account for all the correlation
in the data, as evidenced by the autocorrelation function and
cross-correlation function plots of the residuals (Figure 3). The
Johansen trace test indicated that there was 1 cointegration
relationship (significant at 1%, based on tabulated critical
values). Finally, the likelihood ratio test for linear trend indicated
that there was no linear trend in the data (P=.32). Furthermore,
the restricted model had a lower AIC score than the unrestricted
model (the AIC scores were –1519 and –1516, respectively).

The output from the maximum likelihood estimation showed
that the cointegration relationship, that is, the error correction
term, had a significant negative effect on census change
(P<.001); no significant effect was observed for incidence
change (P=.26) (Table 1). The long-run cointegration
relationship was estimated as:

ectt–1 =censust–1 – 0.8013incidencet–1 + 7.8266

where ectt–1 was the (lagged) error correction term. Table 1 also
shows that past changes in census and incidence also had
meaningful effects on current census change. Past census
changes had significant effect at lag 2 (P=.002). Past incidence
changes had significant effects at lag 1 (P=.005), lag 2 (P=.04),
lag 4 (P=.02), lag 5 (P=.03), and lag 6 (P=.02).

From Table 2, there were some significant seasonal effects, that
is, differences in both census and incidence changes among
days of the week. Compared to Thursday, census change was
higher on Monday and incidence change was lower on Sunday,
with significant differences (P=.01 and P=.002, respectively).

Figure 3. Autocorrelation functions and cross-correlation functions of the residuals: (A) census residuals, (B) lagged census residuals and incidence
residuals, (C) census residuals and lagged incidence residuals, and (D) incidence residuals.
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Table 1. Parameter estimates and T tests for nonseasonal effects.

ΔIncidencetΔCensustPredictor

P valueT statisticsEstimateP valueT statisticsEstimate

.26–1.1323–0.1216<.001–5.6993–0.1265ect t–1

.101.65550.5487.48–0.7143–0.0489ΔCensust–1

<.001–8.6067–0.9808.005–2.8222–0.0665ΔIncidencet–1

.85–0.1844–0.0614.002–3.2277–0.2220ΔCensust–2

<.001–5.6431–0.6955.04–2.0881–0.0532ΔIncidencet–2

.850.18900.0643.32–0.9949–0.0700ΔCensust–3

<.001–5.3755–0.6428.06–1.9094–0.0472ΔIncidencet–3

.0042.88710.9769.26–1.1224–0.0785ΔCensust–4

<.001–4.8999–0.5564.02–2.4165–0.0567ΔIncidencet–4

.82–0.2341–0.0792.48–0.7140–0.0499ΔCensust–5

<.001–4.4634–0.4589.03–2.1907–0.0465ΔIncidencet–5

.181.34040.4533.910.11070.0077ΔCensust–6

.002–3.1739–0.2384.02–2.4015–0.0373ΔIncidencet–6

Table 2. Parameter estimates and T tests for day-of-the-week effects, in comparison with Thursday being the reference.

ΔIncidencetΔCensustPredictor

P valueT statisticsEstimateP valueT statisticsEstimate

.920.10240.0095.27–1.1120–0.0213Friday

.13–1.5176–0.1528.690.39800.0083Saturday

.002–3.0744–0.3340.890.13300.0030Sunday

.07–1.7950–0.1939.012.62050.0585Monday

.21–1.2655–0.1284.171.38960.0291Tuesday

.710.36720.0343.85–0.1895–0.0037Wednesday

Model Diagnostics
The omnibus F tests were significant for both census (P<.001)
and incidence P<.001) components.

The Portmanteau test did not show sufficient evidence that the
errors were autocorrelated (P=.19). From the residual
autocorrelation function and cross-correlation function plots,
the correlations were within the 95% confidence band (Figure
3). The Jarque-Bera normality tests failed to reject the normality
null hypothesis for the census errors (P=.71) but did for
incidence (P<.001). Specifically, the incidence residuals were
moderately left-skewed. The Jarque-Bera multivariate test also
rejected the multivariate normality null hypothesis (P<.001).

The Augmented Dickey-Fuller test for stationarity of the error
correction term rejected the unit root null hypothesis at the 10%
significance level but failed to reject the null hypothesis at the
5% significance level (based on tabulated critical values). The
KPSS test failed to reject the stationarity null hypothesis
(P=.10). Examination of the time plot of the predicted error
correction term showed no obvious departure from stationarity.

The companion matrix of the VAR representation had a
maximum eigenvalue modulus of 0.97, strictly less than 1.
Although this value was close to 1, the trace plot showed that
this value had been slowly declining and below 1 across time
when the model was fitted repeatedly in a daily rolling basis
from June 16 to November 28 (Figure 4).
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Figure 4. Trace plot of the maximum eigenvalue modulus for the period from June 16 to November 28, 2020.

Forecast Performance
We obtained the approximate sampling distribution of the
out-of-sample MAPE from the time-series cross-validation
(Figure 5). The typical value (median) of MAPE was 5.9% and
the 95th percentile of MAPE was 13.4%. For the sake of
comparison, the corresponding values from an ARIMA model

using the COVID-19 hospital census only were 6.6% and 14.3%.
Additionally, after fitting the data from May 15 to December
5, we forecasted the census out to 7 days. Subsequently, the
actual values were accurately forecasted with a MAPE of 1.9%
and were all within the 80% bootstrapped forecast intervals
(Figure 6).

Figure 5. Distribution of the 7-days-ahead mean absolute percentage error from the time-series cross-validation for the period from June 16 to November
28, 2020. Median (blue) and 95th percentile (red) are shown.
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Figure 6. One-step-ahead in-sample and 7-days-ahead out-of-sample predictions for COVID-19 hospital census in the Cities Readiness Initiative
region. True values (black), in-sample and out-of-sample predictions (red line), 95% prediction intervals (blue band), 80% forecast intervals (red band)
are shown. The model is fitted on data from May 15 to December 5, 2020.

Scenario-Based Long-Term Forecasting
In all scenarios, due to cointegration, census followed
corresponding concave trajectories with peaks occurring
approximately 2 to 3 weeks later than incidence depending on

the scenario. In the worst-case scenario, census was projected
to peak on February 16, 2021 (11 days later than incidence),
with approximately 850 patients at the 80% forecast interval
upper bound (Figure 7).

Figure 7. Worst-case-scenario, 60-day forecasts for COVID-19 hospital census in the Cities Readiness Initiative region, as of January 9, 2021. Past
values (black), forecasts (red line), and 80% forecast intervals (red band) are shown.
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Discussion

Principal Results
Our VECM provides a very good fit to the data and outperforms
models with no or other leading indicators. Significant omnibus
F tests showed that the model fit was better than that of a
reduced VECM representation with no predictors (ie, a bivariate
random walk model). When we examined model diagnostics,
there was no sign of any serious departure from model
assumptions. From the Portmanteau test, the errors were not
different from white noise (ie, the errors do not exhibit serial
correlation). Although the normality assumption (for incidence)
was not met, the asymptotic properties of our estimation and
hypothesis tests in the VECM would not be affected [33]. To
address the possible effect of this violation on the forecast
intervals, we implemented a bootstrap procedure for the forecast
intervals. Both the ADF test and KPSS test showed reasonable
evidence that the long-run relationship was stable. With the
maximum eigenvalue modulus of the VAR representation
consistently below 1 across time, the model itself was quite
stable. Examining the day-of-the-week effects, we observed a
higher increase in census at the beginning of the week. This
agrees with our observations of hospital operations and suggests
higher resource allocation when starting the week, as is also
reflected in the forecasts (Figure 7). In terms of forecast
performance, the VECM yielded a smaller MAPE, in terms of
the median and the 95th percentile, when compared to an
ARIMA model using the COVID-19 hospital census only. Our
VECM also performed better than another VECM that uses two
internet-based leading indicators (median MAPE of 10.5%),
albeit on time domains that were partially overlapping [13].

The long-run relationship plays a crucial role in the model. Our
model results show how future census responds to perturbations
in the long-run cointegration relationship in the direction that
would preserve the stability of the relationship. For instance, if
incidence increases significantly and drives the error correction
term below 0, the next-day census will tend to increase so that
the error correction term will move back toward 0. Compared
to short-run relationships between census change and past
changes in incidence and census, the long-run relationship effect
is also strongly significant and is a major driver in the model.

We observed that local infection incidence led the hospital
census by about 2 weeks. The cross-correlations between
incidence and census were uniformly high, between 0.7 and 0.8
at different lags, but the highest correlation was at lag 14.
Clinically, we know that after someone is diagnosed with
SARS-CoV-2, it can take several days before they become sick
enough to be hospitalized. During the summer 2020 wave of
the pandemic, incidence peaked 18 days earlier, on July 10,
than when census peaked, on July 28. In the model, we also
saw that past incidence changes at multiple lags have statistically
significant effects on census. While previous studies have
focused on other types of leading indicators [12,13], our model
results and our observations demonstrate that local infection
incidence can be a very effective leading indicator for
COVID-19 hospital census.

Applying the model to scenario-based forecasting in a health
care system is an important method for long-term forecasting
when approaching an infection prevalence peak and helps
determine the potential for resource capacity to be exceeded
under a worst-case scenario. There are several advantages to
our approach. With a scenario-based and epidemiologically
informed approach, the VECM produces realistic, nonlinear,
long-range trajectories of census. In contrast, an ARIMA model
can have an upward linear trajectory even as we approach and
arrive at the infection prevalence peak because it is agnostic to
incidence. Hence, the VECM fit with scenario-based incidence
will provide better accuracy since it is more reflective of
pandemic behavior. Additionally, when the concern is a specific
scenario, our approach is particularly useful at minimizing
long-range forecast uncertainty, since the bootstrapped sample
paths are constrained to fluctuate around the marginalized
scenario-based census projection. Without such a constraint,
60-day forecasts can typically have wide forecast intervals that
are of no practical utility.

Our study has mathematically ascertained the stable long-run
relationship, that is, cointegration, between the COVID-19
hospital census and the local infection incidence, and we have
developed a statistical incidence-based model to forecast the
COVID-19 hospital census. In comparison, prior COVID-19
hospital capacity planning models that make use of infection
incidence data rely on simplified assumptions about the
incidence-census relationship. For example, in the COVID-19
Hospital Impact Model for Epidemics (CHIME) at the
University of Pennsylvania [34], the ratio between hospital
admissions and infection incidence is a scenario parameter
defined by the user and is not time varying.

Limitations
Although our model has been thoroughly developed, it is not
free of limitations. First, it is possible that we may lose the stable
long-run relationship at some point in the future, either because
it has run its course or due to structural changes in the time
series. For instance, in the latter case, inadequate
community-based testing might suddenly underestimate the
actual local infection incidence, and there may be a level shift
in the relationship that would have to be accounted for by a
modified VECM [35,36]. In other cases, more complex
structural changes may arise and be challenging to model.
Second, in the future, other regions may find that the ratio
between asymptomatic and symptomatic cases fluctuates
considerably over time. Because case severity affects the time
to hospitalization, this situation may require model revision. A
potential remedy is to include both the number of asymptomatic
and symptomatic cases as two leading indicators with census
in a VECM in the hopes that some cointegration exists among
the three variables. Third, it is relatively more difficult to fit a
VECM. For univariate models such as ARIMA and exponential
smoothing, well-developed R packages exist for automated
model specification and estimation. With the VECM, more
deliberate modeling decisions and careful checking of
assumptions need to be made to fit a reliable model. Finally,
the inclusion of seasonal effects in our model requires that the
seasonality is deterministic. However, another health care system
may find that their time-series data have stochastic seasonality
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or multiple deterministic seasonality. If seasonality is not
important, we potentially may resolve this by simply
deseasonalizing the series. Otherwise, it may be possible to
account for this with more advanced parameterization of the
seasonal effects.

Conclusions
The construct presented here provides a framework in the
context of a health care system for incorporating other leading
indicators that may yield further increases in forecasting
performance. For instance, the VECM that uses internet-based
leading indicators [13] could potentially be improved by
including incidence. It is also possible to incorporate other
nested hospital-related time series, such as the number of
intensive care units and the number of ventilators, into the

VECM if there was a need to simultaneously forecast other
resources. Additionally, a VECM could be a valuable candidate
for a model-averaged ensemble. This can be particularly useful
if the ensemble consists only of agnostic univariate time-series
models.

We have shown that infection incidence can be successfully
tethered with hospital census in a multivariate time-series model
to achieve accurate forecasting of COVID-19 hospital census.
When coupled with scenario-based forecasting, the model helped
our leaders evaluate resource capacity against different possible
peak resource demands. In hindsight, our analyses correctly
assured our leaders of our capability to handle a worst-case
scenario, alleviated uncertainty, and effectively guided long-term
planning of adequate staffing, bed capacity, and equipment
supplies through the pandemic.
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