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Abstract

Background: Although it is well-known that older individuals with certain comorbidities are at the highest risk for complications
related to COVID-19 including hospitalization and death, we lack tools to identify communities at the highest risk with fine-grained
spatial resolution. Information collected at a county level obscures local risk and complex interactions between clinical
comorbidities, the built environment, population factors, and other social determinants of health.

Objective: This study aims to develop a COVID-19 community risk score that summarizes complex disease prevalence together
with age and sex, and compares the score to different social determinants of health indicators and built environment measures
derived from satellite images using deep learning.

Methods: We developed a robust COVID-19 community risk score (COVID-19 risk score) that summarizes the complex disease
co-occurrences (using data for 2019) for individual census tracts with unsupervised learning, selected on the basis of their
association with risk for COVID-19 complications such as death. We mapped the COVID-19 risk score to corresponding zip
codes in New York City and associated the score with COVID-19–related death. We further modeled the variance of the COVID-19
risk score using satellite imagery and social determinants of health.

Results: Using 2019 chronic disease data, the COVID-19 risk score described 85% of the variation in the co-occurrence of 15
diseases and health behaviors that are risk factors for COVID-19 complications among ~28,000 census tract neighborhoods
(median population size of tracts 4091). The COVID-19 risk score was associated with a 40% greater risk for COVID-19–related
death across New York City (April and September 2020) for a 1 SD change in the score (risk ratio for 1 SD change in COVID-19
risk score 1.4; P<.001) at the zip code level. Satellite imagery coupled with social determinants of health explain nearly 90% of

the variance in the COVID-19 risk score in the United States in census tracts (r2=0.87).

Conclusions: The COVID-19 risk score localizes risk at the census tract level and was able to predict COVID-19–related
mortality in New York City. The built environment explained significant variations in the score, suggesting risk models could
be enhanced with satellite imagery.
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Introduction

The COVID-19 pandemic has disrupted major world economies
and overwhelmed hospital intensive care units worldwide [1].

In the United States alone, the virus has spread throughout urban
and rural communities and killed over 300,000 Americans to
date [2]. Case series and epidemiological surveillance data from
the United States [3-6] and around the world [7-11] have
implicated risk factors for COVID-19–related morbidity and
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mortality, including older age, male sex, impaired lung function,
cardiometabolic-related diseases (eg, diabetes, heart disease, or
stroke), and obesity. In the United States, comorbidities are
known to cluster in geographies such as the southeast states and
counties (eg, in chronic disease [12] and in COVID-19 [13-16]),
and are partly mediated by built environment features, such as
walkability [17]. Although race and ethnicity have been
identified as risk factors, systemic racism and discrimination
in the health care system play an important role in this
relationship [18-20]. Additionally, racial and ethnic
discrimination have influenced where individuals reside and
has played a substantial role in the increased morbidity and
mortality related to COVID-19 [21]. Other factors including
the built environment and air pollution have been associated
with COVID-19 infection and complications [22,23], but it has
been unclear how to prioritize these associations to prevent
complications. Both individual-level factors (eg, diabetes,
smoking, and asthma [3,8,10,11]) and geographical-level social
determinant factors (eg, census tract–level population density
and increased household occupancy) are strong risk factors for
COVID-19 infection and risk [24]. Social determinants of health
are defined as “conditions in the environments where people
are born, live, learn, work, play, worship, and age that affect a
wide range of health, functioning, and quality-of-life outcomes
and risks” [25]. Social determinants of health can be grouped
into five domains, including economic stability, education access
and quality, health care access and quality, neighborhood and
built environment, and social and community context [25].
Recently, Maharana and Nsoesie [26] developed an approach
to map the built environment to obesity prevalence using deep
learning analysis of satellite imagery, highlighting a potentially
novel method of using measurements of the built environment
to quantify disease risk.

At the time of writing, New York emerged as a location with
several COVID-19–related deaths spread across the 2141 census
tracts in the city. Even within city hot spots like New York City,
common chronic diseases and their risk factors for COVID-19
are geographically heterogeneous and vary per unit of
geography, including within and across states, counties, and
even cities. It is unclear how the heterogeneity of
community-based risk or prevalence of diseases at a census tract
level (median population sizes of ~3000-5000 individuals) is
related to COVID-19 risk. Furthermore, analyses on coarser
spatial resolutions will attenuate predictions and associations
[27].

In this investigation, we sought to create a clinically focused
risk score that could be used to predict COVID-19 cases and
deaths within cities, identify hot spots at the subcounty (census
tract) level, and identify potentially vulnerable communities,
and to determine how the social determinants of health and the
built environment may explain the variance of this clinically
focused risk score and whether the built environment explains
statistically significant amounts of score variance even after
accounting for the social determinants of health. To do this, we
developed the COVID-19 community risk score (COVID-19
risk score) that summarizes the complex comorbidity and
demographic patterns of small communities at the census tract
level. Additionally, we examined how the social determinants

of health (including the built environment, measured using
satellite imagery methods [26]) explained score variance and
validated the risk score by examining its relationship with zip
code–level deaths during the late-May 2020 COVID-19
epidemic in New York City. Last, we deployed the COVID-19
risk score with an application programming interface and a
browsable dashboard [28].

Methods

Study Data
We obtained geocoded disease prevalence data at the census
tract level from the US Centers for Disease Control and
Prevention (CDC) 500 Cities Project (the December 2019
release, which is based on data from 2016 to 2017 [29]; Figure
1A). The project 500 Cities contains disease and health indicator
prevalence for 27,648 individual census tracts of the 500 largest
cities in the United States, and these prevalences are estimated
from the Behavioral Risk Factor Surveillance System [30].

From the 500 Cities data, we chose 13 population-level health
indicators that correspond to individual-level chronic disease
risk factors associated with COVID-19–related hospitalization
and death based on reports from China, Italy, and the United
States (eg, [3,8,10,11]). Disease indicators include the
prevalence among adults of diabetes, coronary heart disease,
chronic kidney disease, asthma, arthritis, any cancer, or chronic
obstructive pulmonary disorder. We also selected behavioral
risk factors including smoking and obesity, and the prevalence
of individuals on blood pressure medication. We chose these
comorbidities and risk factors with guidance from the CDC
because they were classed as among the strongest risk factors
for COVID-19–related hospitalization, intensive care unit use,
and death (eg, males and females older than 65 years, diabetes,
heart disease, and stroke); were indicative of risk for
cardiometabolic disease or impaired lung function, which are
risk factors for COVID-19 (eg, smoking, obesity, high blood
pressure, high cholesterol, kidney disease, asthma, or chronic
pulmonary obstructive disorder); or involve pharmacological
interventions that could result in an immunocompromised state
(eg, certain antineoplastic, arthritis, and antihypertensive
medications) [31].

We further obtained 5-year 2013-2017 American Community
Survey (ACS) Census data [32], which contain
sociodemographic prevalences and median values for census
tracts (Figure 1C), and corresponded to the 2016-2017 CDC
500 Cities data. We also selected the total number of individuals
in the tract, proportion of males and females older than 65 years,
and proportion of individuals by race and ethnicity, which
included African American, Mexican, Hispanic, Asian, and
White groups from the ACS. Race and ethnicity were examined
to determine if there were different risks associated with these
groups (where race is a socially constructed concept that can
be used as a proxy for the complex interplay of institutional and
individual-level racism and barriers to health care experienced
by these different groups [33]). These data also included
information on socioeconomic indicators including median
income, the proportion of individuals living in poverty,
unemployment, cohabitation with more than one individual per
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room, and having no health insurance. These measures were
previously identified as possible contributors to increased risk

of infection or mortality associated with COVID-19 [20,34].

Figure 1. Overview of study. (A) CDC 500 Cities; (B) satellite imagery of 500 cities from OpenMapTiles; (C) ACS Census summary statistics for
each census tract; (D) estimates of prevalence and coprevalence of disease and health indicators for risk of COVID-19 complications; (E) use of principal
components analysis to reduce dimensionality of diseases and health indicators; (F) construction of COVID-19 score from principal components; (G)
“XYDL” deep learning pipeline that inputs satellite imagery, social determinants of health indicators from ACS Census data to predict COVID-19
community risk score; (H) social determinants of health from ACS Census data; (I) visualization of the COVID-19 community risk score; (J) association
of the COVID-19 risk score with mortality in New York City; (K) creation of a dashboard; (L) mapping highest and lowest risk cities and tracts as a
function of the risk score. ACS: American Community Survey; CDC: Centers for Disease Control and Prevention.

Defining the COVID-19 Community Risk Score
Given the complex interplay between the social determinants
of health, chronic disease, and the built environment, we sought
to first examine how clinical comorbidities could be used to
predict COVID-19 rates by developing a clinically focused risk
score and then examine how these comorbidities relate to the

built environment and social determinants of health.
Understanding if the built environment and social determinants
of health can explain the variance of a clinically focused risk
score would show that more complex risk models could be built
using this data in the future. To do this, we used the statistical
programming language R (version 4.0.5; R Foundation for
Statistical Computing) [35] to merge disease and behavior
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prevalence data from the CDC 500 Cities Project for each of
the 27,648 census with ACS information and calculate their
Pearson pairwise correlations (Figure 1D) to determine how the
data were correlated with each other. We considered 15 variables
in total, including 13 health indicators (eg, diseases and risk
factors), and 2 demographic factors, the proportion of male and
female individuals older than 65 years in the risk score. The
disease prevalence included any form of cancer, arthritis, stroke,
chronic asthma, chronic obstructive pulmonary disease (COPD),
heart disease, diabetes, kidney disease, high blood pressure, and
high cholesterol. Behavioral and lifestyle-related risk factors
included smoking, obesity, and the rate of individuals on blood
pressure medication. Finally, demographic factors included the
prevalence of males and the prevalence of females older than
65 years.

Socioeconomic Correlates of the Community
COVID-19 Risk Score
Next, we examined the relationship between the ACS-derived
sociodemographic indicators with the COVID-19 risk score.
This was done by calculating multivariate linear and random
forest regressions to test the linear and nonlinear contribution
of the sociodemographic indicators in the COVID-19 score
(Figure 1H), and provide insight into the relationship of
sociodemographic factors and the clinical indicators used in the
COVID-19 score. This comparison to sociodemographic factors
also serves as a form of validation, as the risk increases, one
would expect certain sociodemographic indicators to also
increase, such as poverty. Further details concerning the
calculation of the linear and random forest regression can be
found in Multimedia Appendix 1 [28,35-38].

Association of the COVID-19 Community Risk Score
With Satellite Imagery
To correlate the COVID-19 risk score from satellite imagery
(Figure 1B), millions of satellite images (n=4,742,919) were
analyzed in an ensemble of an unsupervised deep learning
algorithm and a supervised machine learning algorithm. The
images are satellite raster tiles that were downloaded from the
OpenMapTiles database. The images have a spatial resolution
close to 20 meters per pixel, allowing a maximum zoom level
of 13 [39]. Images were extracted in tiles from the
OpenMapTiles database using the coordinate geometries of the
census tracts. After extraction, images were digitally enlarged
to achieve a zoom level of 18.

Many census tracts are large enough to contain multiple satellite
images. The median number of images per tract was 94, and
the number of images per census tract ranged from 1 image in
the census tract to the largest geographical tract with 162,811
images (in Anchorage, Arkansas) with an IQR from 43 to 182
images. The geographical coverage of the images per census

tract ranged from the smallest census tract covering 0.022 km2

and the largest census tract covering 5679.52 km2, with an IQR

from 0.93 km2 to 3.89 km2 and a median of 1.92 km2 per census
tract.

First, using the Python 3.7.7 programming language [40], we
passed images through AlexNet [41], a pretrained convolutional
neural network, in an unsupervised deep learning approach

called feature extraction [42] (Figure 1G). The resulting vector
from this process is a latent space feature representation of the
image comprising 4096 features. This latent space representation
is essentially an encoded (non–human readable) version of the
visual patterns found in the satellite images, which, when
coupled with machine learning approaches, is used to model
the built environment of a given census tract [26]. For each
census tract, we calculated the mean of the latent space feature
representation. We performed feature extraction on a NVIDIA
Tesla T4 GPU using the PyTorch package in Python. Finally,
the latent space feature representation was regressed against the
COVID-19 risk score variance using gradient boosted decision
trees [43]. We deployed existing AlexNet deep learning models
originally trained on images from the internet and fine-tuned
[44] them to predict the variance associated with the COVID-19
risk score, framing the analysis as a regression task. To do this,
we split the census tract data set (with the split being fully
randomized) into 80:20 and 50:50 training and testing groups
to get a conservative estimate of variance explained and
predictive capability of the sociodemographic variables in the
COVID-19 risk score while not overfitting the data. To train
the model, we used a maximum tree depth of 5, a subsample of
80% of the features per tree, a learning rate (ie, feature weight
shrinkage for each boosting step) of 0.1, and used threefold
cross-validation to determine the optimal number of boosted
trees. Training was completed on a NVIDIA Tesla T4 GPU
using Python 3.7.7 and the XGBoost package. In a separate
analysis, both satellite image features and the social determinants
of health features (previously mentioned) were regressed against

the COVID-19 risk score variance. We reported R2 for the
predictions in the test data (Figure 1G, 1H).

Association of the COVID-19 Community Risk Score
With Zip Code–Level COVID-19–Attributed Mortality
We downloaded case and death count data on a zip code
tabulation area (ZCTA) of New York City, a hot spot of the US
COVID-19 epidemic as of May 20, 2020, and then again on
September 20, 2020 (Figure 1J). We used 2010 census crossover
files to map census tracts to ZCTAs. We mapped the COVID-19
risk score to each ZCTA in New York City in April and
September 2020. Each ZCTA had information on the total
number of COVID-19 tests, positive cases, and
COVID-19–related deaths. We computed the average
COVID-19 risk score for the ZCTA, weighting the average by
population size of the census tract. As previously mentioned,
we estimated the ZCTA-level socioeconomic values and
proportions. We associated the COVID-19 risk score with the
death rate using a negative binomial model. We set the offset
term as the logarithm of the total population size of a zip code.
The exponentiated coefficients are interpreted as the incidence
rate ratio for a unit change (eg, 1 SD increase) in the variable
(vs no change). We also examined multicollinearity, calculating
the variance inflation factor (VIF) using the VIF function in the
regclass package in R.
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Data Availability Through the COVID-19 Risk Score
Application Programming Interface and Dashboard
Finally, the COVID-19 risk score was made publicly available
through an application programming interface and online web
dashboard (see Multimedia Appendix 1).

Ethics Approval
Ethics approval was not required for this investigation as the
study did not involve any human participants, and all of the data
used were obtained from publicly available data sets.

Results

Prevalence and Heterogeneity of
COVID-19–Associated Comorbidities and Risk Factors
Across 500 Cities of the United States
We present summary statistics of the prevalence of the 15
COVID-19 comorbidities and risk factors for 27,648 census
tracts across the United States using the 2019 release of the

CDC 500 Cities data (derived from data obtained in 2017) and
ACS data collected between 2013 and 2017 (Figure 1A, 1C).
Census tracts represent small communities that have a median
population size of 4091 (total range of 15-51,536). From the
500 cities analyzed, there was a median number of 28 (IQR
20-47) census tracts, with the most tracts found in New York
(2141 tracts, with a population of n=8,440,712), Los Angeles
(992 tracts, with a population of n=3,961,681), and Chicago
(794 tracts, with a population of n=2,726,431), while Meridian,
Idaho (4 tracts, with a population of n=53,442) has the fewest
number of tracts. There was a wide range of prevalence values
(ranging from 6% to 100%; Figure 1D, Figure 2) for the
different prevalence measures, and a wide range of IQR values
within cities was noted (Figure 3 and Tables S1 and S2 in
Multimedia Appendices 2 and 3).

Atlanta had the greatest IQR for obesity (22%-40%), high blood
pressure (20%-44%), and COPD (4%-9%), while Gainesville
had the highest variation in prevalence of high cholesterol
(18%-34%) and blood pressure medication (51%-74%).

Figure 2. Per census tract prevalence for health indicators (y-axis). BP: blood pressure; COPD: chronic obstructive pulmonary disease.
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Figure 3. Median prevalence within a city versus the IQR of the prevalence of health indicators (top 3 cities with the largest IQR are highlighted in
red). BP: blood pressure; COPD: chronic obstructive pulmonary disease.

Comorbidity and Risk Factor Patterns Across the
United States
The Pearson correlations between the 15 different prevalence
values was calculated using census tract–level data (Figure 1D,
Figure 4), with a median absolute value of correlation of 0.63
(IQR 0.35-0.78) noted with disease prevalences. The mean
pairwise correlation between cardiometabolic diseases (diabetes,
stroke, and heart disease) was 0.92, for cardiovascular risk
factors (obesity, high blood pressure, and high cholesterol) was
0.62, and for smoking and respiratory conditions (asthma and
COPD) was 0.69. An average correlation of 0.78 existed for
diseases like diabetes, stroke, and heart disease, with obesity
highly correlated with all of them (mean correlation 0.54), and

a mean correlation of 0.78 was found for males and females
older than 65 years and cancer prevalence.

The first two principal components of the 15 COVID-19 health
indicators and risk factors described 85% of the total variation
(61% and 24% for component 1 and 2, respectively, see Figure
5) of the variation over all 27,648 census tracts (Figure 1E).
The first principal component had equal contribution from all
15 health indicators and risk factors, except for cancer and males
and females older than 65 years; the second principal component
was dominated by cancer and age (Table S3 in Multimedia
Appendix 2). This pattern of health indicator and risk factor
contribution to principal components was also noted when the
COVID-19 risk score was calculated at the city and county level
(Table S3 in Multimedia Appendix 2).
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Figure 4. Pearson correlation of health indicators across 27,648 census tracts (legend value corresponds to Pearson correlation value). BP: blood
pressure; COPD: chronic obstructive pulmonary disease.

Figure 5. Scatterplot showing the relationship between the first and second principal components from principal component analysis, with each point
indicating a city or census tract in the United States (top 10 cities/tracts by principal component 1 or 2 are highlighted in red).
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Calculating a Robust COVID-19 Community Risk
Score
The COVID-19 risk score was calculated using the 15 disease
and health indicators for 27,648 included census tracts. The

average score was 33.7 (SD 8.6); the median was 33.32 (IQR
28-38). Table 1 shows the communities with the highest
variation of scores in the United States. The average error of
the COVID-19 risk score across the census tracts was 1.25 (SD
0.85).

Table 1. Cities with the largest variation of COVID-19 risk score.

IQRSD75th percentile25th percentileMaxMinMedianCity, State

15.010.035.720.742.66.332.2Athens, GA

17.611.041.423.853.74.733.7Atlanta, GA

16.616.252.135.581.321.641.7Boynton Beach, FL

16.212.834.117.945.23.429.8Champaign, IL

21.915.038.516.675.22.227.1Gainesville, FL

17.011.153.436.467.930.141.2Hemet, CA

14.214.743.229.084.67.732.2Mesa, AZ

14.19.847.633.561.315.041.0Montgomery, AL

14.68.646.331.757.322.036.9St. Louis, MO

32.620.658.726.177.924.130.2Surprise, AZ

12.99.649.336.457.918.843.9Birmingham, AL

12.08.249.337.363.330.343.4Cape Coral, FL

12.08.051.539.666.428.742.9Clearwater, FL

11.69.149.638.078.318.342.4Cleveland, OH

11.211.849.838.678.16.043.1Dayton, OH

12.78.445.632.956.322.142.7Huntsville, AL

10.17.546.536.454.027.441.5Lake Charles, LA

10.910.949.238.365.818.043.9Lakeland, FL

12.211.653.241.175.326.145.0Largo, FL

11.07.554.843.758.133.946.8Palm Coast, FL

11.59.748.537.064.327.143.6Pompano Beach, FL

12.18.649.737.764.021.742.8Shreveport, LA

7.65.254.647.161.842.550.8Gary, IN

COVID-19 Community Risk Score Variance Can Be
Explained by Social Determinants of Health and
Satellite Images of the Built Environment
The social determinants of health measures (excluding built
environment) and demographic characteristics of a community
(Figure 1C, 1H) explain 54% of the total additive variation

calculated using multiple linear regression (r2=0.54; P<.001)
of the COVID-19 risk score in the testing data set (when using
a 50:50 and 80:20 fully randomized training:testing split). In
this regression analysis, low to moderate multicollinearity was
found with VIFs ranging from 1.41 for the variable not employed
to 4.71 for less than high school. We found an additional 11%
of variation attributed to nonlinear relationships, or a total of
65% between social determinants and the COVID-19 risk score,
in the testing data using random forest–based regression

(r2=0.65; P<.001). The built environment features captured by
satellite images contributed to 27% of the variation in the

COVID-19 risk score. In total, combining both social
determinants and satellite imagery explained 87% of the
variation of the COVID-19 risk score when using an 80:20
training:testing split (Figure 1G, 1H).

Concerning important features, all 13 sociodemographic
variables correlated with the COVID-19 risk score (linear
regression P<.001 for 11 out of 13 variables) illustrated in Table
2. The variables that had the largest additive contribution
included the proportion of the community that was nonemployed
(for a 1 SD change in proportion of nonemployed was associated
with a 5.3 unit increase in the COVID-19 score; P<.001). A 1
SD increase in the increase of individuals with less than a high
school education was associated with a 2 unit increase in the
score. However, a 1 SD change in the increase of those at or
below the poverty level was associated with a 3.3 unit decrease
in the COVID-19 risk score. We found low to moderate VIFs
associated with each sociodemographic variable (Table 2).
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When assessing the explained variance using nonlinear
regression (random forest) methods, the most important
variables in the training data (ascertained through a permutation
of each variable sequentially) included the proportion of the
tract that was not employed (273% increase of mean squared
error [MSE] when permuted), of Asian ethnicity (93% increase

of MSE), at or below poverty (91% increase of MSE), Hispanic
(78% increase MSE), and less than high school (78% increase
MSE). The rank order of the importance of these variables was
similar to the strength of their association in the linear model
(Table 2). The same results were observed when the
training:testing split was 50:50 and 80:20.

Table 2. Multivariate coefficients and CIs for linear regression and random forest regression of the COVID-19 risk score.

VIFc,dNode puritybMSEaHigh (95% CI)Low (95% CI)P valueLinear coefficientVariable

3.6859,73642–1.16–1.53<.001–1.34Median income

2.2133,163390.01–0.27.07–0.13Median home value

3.0478,89061–3.07–3.42<.001–3.24At or below poverty (%)

1.6968,364870.860.60<.0010.73Unemployment (%)

1.42316,9032855.505.26<.0015.38Nonemployed (%)

4.7163,048712.331.90<.0012.12Less than high school (%)

2.1834,818500.830.55<.0010.69No health insurance (%)

2.4641,38759–0.73–1.04<.001–0.89More than 1 occupant (%)

2.0984,497680.870.59<.0010.73African American (%)

4.1263,84778–2.10–2.49<.001–2.30Hispanic (%)

1.4293,67591–1.02–1.25<.001–1.14Asian (%)

2.4545,30169–0.36–0.67<.001–0.51Other race (%)

aMSE: mean standard error.
bNode impurity: residual sum of squares for the random forest model.
cVIF: variance inflation factor.
dFor the linear regression model.

COVID-19 Community Risk Score Was Associated
With COVID-19 Death Rate in New York City
A 1 SD increase in the COVID-19 risk score was associated
with a 40% increase in the incident rate ratio (IRR 1.40 per 1
SD increase; P<.001; Figure 6 and Table 3) in both May and

September 2020. For zip codes (eg, Figure 6 annotated zip
codes) that had COVID-19 risk scores greater than 40, there
was an almost twofold increase in death rates (IRR 1.98, 95%
CI 1.43-2.77; P<.001). Additionally, we assessed
multicollinearity by calculating the VIFs for each variable and
found moderate to high multicollinearity.

Figure 6. COVID-19 deaths as a function of the COVID-19 risk score in New York City for each zip code (middle panel). The zip codes with the
highest and lowest death rates are annotated. Blue points denote data on the epidemic death counts in September 2020. Red points denote epidemic
death counts in May 2020.
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Table 3. Multivariate incidence rate ratios (for 1 SD change in the variable) for zip code–level deaths in New York City in May and September 2020.

VIFSeptember P valueSeptember IRR (95% CI)VIFbMay P valueMay IRRa (95% CI)Variable (per 1 SD unit)

2.20<.0011.40 (1.27-1.53)2.20<.0011.40 (1.27-1.55)COVID-19 risk score

9.12.900.99 (0.82-1.18)9.06.801.02 (0.84-1.22)Median income

19.64.100.81 (0.62-1.06)19.80.100.81 (0.008-1.81)Less than high school

10.77.500.93 (0.76-1.14)10.83.500.93 (0.26-1.92)College educated

3.95.011.16 (1.03-1.30)3.91.031.14 (1.03-2.78)African American

3.73.500.97 (0.87-1.07)3.72.600.9 (0.87-1.08)Mexican

5.60<.0011.29 (1.12-1.47)5.60<.0011.27 (1.19-1.46)Hispanic

4.34.021.15 (1.02-1.28)4.34.051.12 (1.00-1.26)Asian

8.92.900.99 (0.83-1.17)8.94.601.04 (0.87-1.25)At or below poverty

4.71.101.10 (0.98-1.23)4.83.061.12 (1.00-1.27)More than 1occupant per room

4.68.701.03 (0.91-1.16)4.66.701.02 (0.91-1.16)No health insurance

3.36.701.02 (0.91-1.14)3.36.801.01 (0.91-1.13)Unemployment

2.88.101.09 (0.98-1.21)2.94.101.08 (0.97-1.21)COVID-19 case count

aIRR: incidence rate ratio.
bVIF: variance inflation factor.

Discussion

Principal Results
In this multi-scale analysis integrating and comparing spatial
disease information from gold standard disease prevalence
sources such as the US CDC, social determinants of health
information from the US census, and satellite imagery data, we
demonstrate an approach to identify characteristics of
communities at risk for COVID-19 complications. We used the
tools of unsupervised learning to develop a COVID-19 risk
score that provides a single interpretable number that
summarizes a communities’ (census tract) aggregate risk. The
constituents of the COVID-19 risk score included census
tract–level chronic disease risk factors that corresponded to
previously identified individual-level risk factors for COVID-19,
such as age, obesity, diabetes, and heart disease.

Others have deployed similar risk scores to identify communities
at risk for COVID-19 [16] and have used social determinants
of health to identify this risk [45-47]. Furthermore, we were
inspired by the work of others that demonstrate how remote
sensing images predict obesity prevalence [26]. However, to
our knowledge, this is the first study to examine the relationship
between COVID-19 risk in neighborhoods (quantified using
the COVID-19 risk score) and the social determinants of health
and satellite image information. We found that, by combining
established social determinants, information measured on earth
with the built environment from space can explain most of the
variation in the COVID-19 risk score, with a mere 13
sociodemographic variables explaining 50% of variation and,
when combined with satellite images, could explain ~90% of
variation. As more COVID-19 data becomes available, this
finding suggests that future risk models for COVID-19 could
incorporate satellite imagery together with social determinants
of health to better model risk. Currently, comprehensive

measurement of the built environment is not typically used in
the public health response to outbreaks, and COVID-19
pandemic risk models are typically modeled at the county level
[46,47], a coarse geographical resolution that can obscure local
hot spots or areas of need. Building models using the approach
outlined here could help facilitate precision public health
responses down to the local community (census tract) or
subcensus tract level, thereby facilitating more precise
allocations of resources to areas that need it.

Although it could be argued that the deep learning analysis of
satellite imagery is simply a measurement of population density,
this approach also measures several other factors that may
contribute to COVID-19 infection and death rates independent
of population density, such as built environment features that
contribute to the development of COVID-19 risk factors and
features that may put individuals at risk of contracting
COVID-19. Examples of features that may put individuals at
risk for developing risk factors include walkability (which
contributes to obesity [48]) and road proximity (which can
increase risk for heart disease [49]). Additionally certain
architectural and built environment features that might put
individuals at risk of COVID-19 infection, such as the
configuration of pedestrian traffic in an urban area [50], can be
partly quantified with this approach.

We believe that the COVID-19 risk score can be a tool in the
growing armamentarium for public health and health care
companies’ toolbox to enable communities to prepare for the
potential onslaught of cases in the coming winter months,
ultimately helping to “flatten the curve” [51] and achieve
precision public health goals of improving local health. Notably,
we found that the zip code–level COVID-19 risk score for New
York City and surrounding areas predicted risk for COVID-19
complications such as death. Zip codes with the highest
COVID-19 scores (in the top 5%) had double the risk of
COVID-19 death versus zip codes with the lowest scores. As
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of this writing, New York City is contemplating another
lockdown due to a surge in the same zip codes we identified as
high risk [52]. Given the heterogeneity of various census tracts
and neighborhoods across the United States and the range of
COVID-19 rates and deaths, a more comprehensive national
analysis will need to be performed using nationally
representative comorbidity data and satellite data before
extending the conclusions from the New York City analysis to
similar jurisdictions in the United States or across the whole
country.

As a byproduct of developing a risk score for communities, we
observed that there is substantial variation of chronic disease
prevalence within cities and across cities in the United States.
With the exception of New York City and a few other places
in the United States, public health agencies mostly collect
COVID-19 case and death records at the county level across
the country. However, the findings in our study implicate that
smaller populations are at risk, and counties are heterogeneous.

We demonstrated how COVID-19 rates can be modeled using
the COVID-19 risk score and how social determinants of health
and the built environment can explain most of the score variance.
Through simulations of the coprevalences of each of the 27,648
census tracts, we found that the point estimates for the
community risk scores were robust to simulated sampling error.
Many cities in the southwest and southeast demonstrated wide
ranges in the COVID-19 risk score values. For example,
Surprise, Arizona had a COVID-19 risk score with an IQR of
26 to 59. Atlanta, Georgia had an IQR of 24 to 41 (Figure S1
in Multimedia Appendix 2). Social determinants of health are
hierarchical in structure and distributed over both geographic
space and time whose measurement can occur on both the
individual level (exposure of a person) or area level (exposure
levels of a place). Satellite images provide a microscope into
the area-level built environment, a concept that encapsulates
the physical structures of how humans live, such as the city
layout, resource presence, and landscape. A total of 65% of
COVID-19 community risk score variance was explained by
demographics and the social determinants of health, and 87%
explained when the built environment was included. Given the
large proportion of variance explained by the built environment,
future precision public health strategies like hot spot
identification and vaccine prioritization could be quickly
improved by including measurements of the built environment
to identify geographical areas in need of assistance.

This large proportion of COVID-19–associated risk variance
explained by the social determinants of health and built

environment may be partly due to how discrimination affects
where people live, their built environment, and access to health
care [15,53,54]. Since the built environment and social
determinants of health were found to play an important role in
explaining the variance associated with the COVID-19 risk
score, we plan to integrate this information into future
COVID-19 risk score calculations that can be extended across
the United States beyond the 500 Cities data set. We found that
~90% of the variation of prevalence of the 15 disease and health
indicator prevalences (eg, diabetes, obesity, cardiovascular
disease, populations that take blood pressure medication, and
average age) can be explained by just two dimensions.

Limitations
The following are limitations of this study. First, we relied on
disease and health indicator prevalence from the 500 largest
cities in the United States but missed out on less urban areas
whose populations are at risk for COVID-19 complications. In
the future, we aim to task satellite imaging technology to
locations that cannot be covered by resource-limited public
surveillance programs. Second, although the CDC 500 Cities
data are reflective of the diversity of individuals who live in a
census tract, they are updated every 2 years and are dated to the
latest collection (2019 data release reflects disease prevalence
in 2017). Relatedly, neither individual-level disease nor
COVID-19 status of individuals from these communities are
measured. Third, satellite image data are captured at a resolution
of approximately 20 m per pixel. It is not clear from our study
if higher resolution images (that can theoretically capture more
human-visible details of the built environment) would lead to
better predictions of the COVID-19 risk score. Finally,
interpretations of the New York–related data is limited due to
the fact that it is aggregated to the zip code level. It is clear that
COVID-19 is a disease of disparity; however, we cannot make
a causal claim between the instruments such as the COVID-19
risk score, satellite imagery, and census tract–level
sociodemographic factors, and eventual individual-level
COVID-19–related complications.

Conclusions
Although it is clear that individual-level comorbidities are
associated with risk for COVID-19, here we show that
communities’ clinical coprevalence structure are predictive of
risk quantified by the COVID-19 risk score, and the variance
of that score can be explained using the social determinants of
health and the built environment measured from satellite
imagery. We provide all our tools to monitor COVID-19 risk
and related data in an interactive web-based dashboard.
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