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Abstract

Background: Prior to the COVID-19 pandemic, US hospitals relied on static projections of future trends for long-term planning
and were only beginning to consider forecasting methods for short-term planning of staffing and other resources. With the
overwhelming burden imposed by COVID-19 on the health care system, an emergent need exists to accurately forecast
hospitalization needs within an actionable timeframe.

Objective: Our goal was to leverage an existing COVID-19 case and death forecasting tool to generate the expected number
of concurrent hospitalizations, occupied intensive care unit (ICU) beds, and in-use ventilators 1 day to 4 weeks in the future for
New Mexico and each of its five health regions.

Methods: We developed a probabilistic model that took as input the number of new COVID-19 cases for New Mexico from
Los Alamos National Laboratory’s COVID-19 Forecasts Using Fast Evaluations and Estimation tool, and we used the model to
estimate the number of new daily hospital admissions 4 weeks into the future based on current statewide hospitalization rates.
The model estimated the number of new admissions that would require an ICU bed or use of a ventilator and then projected the
individual lengths of hospital stays based on the resource need. By tracking the lengths of stay through time, we captured the
projected simultaneous need for inpatient beds, ICU beds, and ventilators. We used a postprocessing method to adjust the forecasts
based on the differences between prior forecasts and the subsequent observed data. Thus, we ensured that our forecasts could
reflect a dynamically changing situation on the ground.

Results: Forecasts made between September 1 and December 9, 2020, showed variable accuracy across time, health care resource
needs, and forecast horizon. Forecasts made in October, when new COVID-19 cases were steadily increasing, had an average
accuracy error of 20.0%, while the error in forecasts made in September, a month with low COVID-19 activity, was 39.7%.
Across health care use categories, state-level forecasts were more accurate than those at the regional level. Although the accuracy
declined as the forecast was projected further into the future, the stated uncertainty of the prediction improved. Forecasts were
within 5% of their stated uncertainty at the 50% and 90% prediction intervals at the 3- to 4-week forecast horizon for state-level
inpatient and ICU needs. However, uncertainty intervals were too narrow for forecasts of state-level ventilator need and all
regional health care resource needs.
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Conclusions: Real-time forecasting of the burden imposed by a spreading infectious disease is a crucial component of decision
support during a public health emergency. Our proposed methodology demonstrated utility in providing near-term forecasts,
particularly at the state level. This tool can aid other stakeholders as they face COVID-19 population impacts now and in the
future.

(JMIR Public Health Surveill 2021;7(6):e27888) doi: 10.2196/27888
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Introduction

Since the novel coronavirus SARS-CoV-2 was identified and
declared a global pandemic on March 11, 2020 [1], a key
concern has been whether the demand for health care will exceed
available resources. Early case reports clearly demonstrated that
a large number of infections resulted in hospitalization, intensive
care unit (ICU) admission, and breathing assistance via
mechanical ventilation [2]. Further projection studies, which
show plausible outcomes under defined scenarios [3], showed
that COVID-19, the disease caused by SARS-CoV-2, had the
potential to overwhelm existing capacity, especially given its
limited treatment options [4-7]. In areas with limited resources
and high rates of transmission, health care capacity has indeed
been exceeded [8]. This threat has highlighted the need for
continuous monitoring of hospital resources and for forecasting
the impact of real-time changes in new cases on future strain
of the health care system.

Real-time forecasting of infectious diseases has become a crucial
component of decision support during public health
emergencies. Since 2013, when the US Centers for Disease
Control and Prevention (CDC) began hosting an annual
influenza forecasting challenge [9], the field of infectious disease
forecasting has grown. In the context of influenza, the task is
for modelers to supply probabilistic forecasts of influenza-like
illness for short-term targets, such as week-ahead incidence, at
multiple geographical scales, using a variety of models and
methods. From this effort, forecasting attempts for other
diseases, such as chikungunya [10], Ebola [11], and West Nile
[12], have proliferated in recent years, laying the groundwork
for a rapid pivot to forecasting COVID-19 incident cases, deaths,
and hospitalizations [13].

However, in the context of predicting impact on the health care
system, the stress resulting from COVID-19 cases depends not
only on the number of new hospitalized individuals but also on
their overlapping periods of hospitalization. To the best of our
knowledge, health care use forecasting in a probabilistic sense
had not existed prior to the current COVID-19 pandemic.
Hospitals had used historical data to make time series– and
regression-based projections for long-term planning (ie, planning
for the next 1 to 10 years). Generally, these projections
examined a single relevant metric, such as average length of
stay (ALOS) [14], discharges [15], demand for specific hospital
specialties [16], or occupancy/bed need [17,18], and considered
the impact of external trends, such as anticipated
sociodemographic changes, through consideration of multiple
scenarios [18]. Hospitals were also developing short-term

forecasting tools of total occupancy or bed use [19-21], total
occupancy as predicted by emergency department visits [22],
and various emergency department metrics [23-26]. These
short-term prediction efforts tended to approach the problem
either from a hospital administration perspective, by focusing
on operational measures informed by a single hospital’s [19-22]
or department’s [23-26] historic data or surgery schedule [27],
or from a research perspective by using hospital time series data
as a use case for the development and assessment of novel
statistical models [28-31] without regard to hospitals as complex
systems in response to a burgeoning pandemic.

In response to the overwhelming demand from government
agencies at the federal, state, and local levels to predict the
immediate future burden of COVID-19, Los Alamos National
Laboratory (LANL) first developed the COVID-19 Forecasts
Using Fast Evaluations and Estimation (COFFEE) tool [32].
COFFEE generates short-term (1 day to 6 weeks ahead)
forecasts of cumulative and incident confirmed cases and deaths
for all US counties and states, as well as all countries with at
least 100 confirmed cases and 20 deaths as reported by the
Center of Systems Science and Engineering (CSSE) at the Johns
Hopkins University (JHU) Coronavirus Resource Center
dashboard [33]. To forecast the health care needs expected to
arise from predicted cases, we additionally created the
COVID-19 Hospitalization, Intensive Care, and Ventilator
Estimator (CHIVE) forecasting tool, which combines forecasts
every Monday and Thursday from COFFEE for the state of
New Mexico, with current state-level data on hospitalizations,
ICU bed use, and mechanical ventilator use. CHIVE is most
useful as an actionable mid-term (ie, 2 to 4 weeks ahead)
predictor of hospital resource use, enabling hospitals to order
additional supplies and allocate existing staff and resources to
best serve an expected influx of patients.

The aim of this modeling effort was to create a flexible
forecasting tool to predict COVID-19–related health care use
needs 2 to 4 weeks ahead, a time period identified by state and
local stakeholders as being most useful for future planning.
Here, we present the CHIVE methodology and characterize its
performance over 29 forecasts made between September 1 and
December 9, 2020, for New Mexico. This performance period
includes both retrospective forecasts, as in, what the forecast
would have been if the data were available, and those submitted
in real time to the New Mexico Department of Health
(NMDOH). The results of this study can provide a platform for
other research groups or health departments to estimate health
care needs and support decisions regarding resource planning
and allocation.
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Methods

Data
From November 4, 2020, to January 5, 2021, as a result of our
partnership with NMDOH and Presbyterian Healthcare Services,
we received access to the statewide number of COVID-19
confirmed/suspected inpatient hospitalizations, the number of
patients in ICUs, and the number of patients on mechanical
ventilation as reported in EMResource, a web-based tool for

hospital resource reporting [34]. This data set contained
retrospective data beginning from July 20, 2020. We also
received individual hospital data on COVID-19 hospitalizations.
For each day of data, we created regional level time series by
summing the numbers of confirmed COVID-19 inpatient
hospitalizations, patients in ICUs, and patients on mechanical
ventilation across the hospitals within the counties assigned to
each of NMDOH’s five health regions (Figure 1A, Figure S1
in Multimedia Appendix 1).

Figure 1. New Mexico health regions, COVID-19 confirmed case time series from March 2020 to January 2021, and daily hospitalization rates from
September to December 2020. (A) Division of New Mexico’s 33 counties into five health regions. (B) The 2-week weighted daily hospitalization rate
for New Mexico (yellow) compared to the national average (blue) (C). The number of new daily cases at the state level, with the grey box denoting the
period of forecast performance evaluation. (D) The number of new daily COVID-19 cases for each of the five regions.

Daily Hospitalization Rate
Starting November 3, 2020, the United States Department of
Health and Human Services began publishing a time series
format of daily numbers of new hospitalizations by state [35],
hereafter referred to as the HealthData.gov time series, with
retrospective data for New Mexico going back to July 14, 2020.
These data were released weekly.

We defined the daily hospitalization rate (DHR) as the ratio of
new confirmed COVID-19 hospitalizations to new confirmed
COVID-19 cases on the same day. To obtain the number of new
confirmed COVID-19 hospitalizations from the HealthData.gov
time series, we summed the previous day’s admissions of adults
and pediatric COVID-19 cases. We used the number of new

cases as reported by the CSSE JHU Coronavirus Resource
Dashboard [33] as the number of new confirmed individuals
with COVID-19. We aligned the HealthData.gov admission
data for day t with the JHU data of t – 1 because the admission
data are listed as the previous day. To account for data reporting
anomalies (eg, “data dumps,” days with zero reported
hospitalizations or new cases), we calculated a 7-day rolling
average of each quantity. The DHR on day t, therefore, is the
7-day rolling average of hospitalizations divided by the 7-day
rolling average of new COVID-19 cases. Because the
HealthData.gov time series only provides state-level numbers,
we applied the same DHR(t) to the regional forecasts.

The daily number of new hospitalizations in the future will
impact the degree to which overlapping lengths of stay strain
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hospital resource capacity. To forecast the DHR into the future,
DHR(t)', we calculated a 2-week time-weighted average of the
DHR and then assumed this DHR would persist throughout the
forecast duration. Where t= 0 is the last day of the observed
data, the weight of each DHR (t – n) for n = 0: 13 was
determined as

The DHR is a convenient ratio that is obtainable from available
data. However, this metric is incorrectly defined because the
denominator population is not included in the numerator
population; thus, we used a 2-step modeling process to remove
this inherent bias. Our goal was to create the most accurate
forecast possible and not necessarily to maintain direct
interpretation of the variables used in the model. A more
traditional metric, such as case hospitalization rate, would
require further inference about the lag between new cases and
hospitalizations of those same cases, which is not necessary to
achieve an accurate forecast.

Baseline Parameters of Health Care Use
The stress that COVID-19 places on New Mexico’s health care
capacity depends not only on the rate of new hospitalizations
but also on the amount of overlapping time during which
individuals are hospitalized, which itself is dependent on the
individual illness severity and length of stay for each patient.

Therefore, we structured CHIVE around the probabilities that
certain hospital events would occur (ie, ICU need) given
hospitalization and the length of hospitalization given illness
severity. Specifically, our model depended on four parameters:
ALOS, ALOS for those admitted to the ICU or requiring
mechanical ventilation, and percentages of those hospitalized
and later admitted to the ICU and those hospitalized who were
later placed on mechanical ventilation (Table 1). Early evidence
showed that these parameters varied across age groups, and
later evidence showed that they varied temporally as new
treatment protocols were established [36]. For example, early
in the pandemic, individuals were frequently placed on
ventilators, leading to high percentages of hospitalized
individuals on mechanical ventilation. In addition, it is uncertain
how spatial variation in underlying health conditions and
transmission intensity impact health care patterns.

Baseline parameters were estimated from data on New Mexico’s
hospitalized COVID-19 cases from April 16 to June 15, 2020
[37]. In this time period, the ICU percentage of hospitalizations
ranged from 37% to 53% and the percentage of patients on
ventilation ranged from 22% to 36%. Rather than dynamically
inferring the parameters with limited noisy data going forward,
we used parameters that reflected these initial health care use
trends in New Mexico, and we developed a postprocessing
procedure (described in Step 2: Postprocessing Based on
Back-Fitting) that adjusted the forecasts to time-varying trends
without the need to determine new input values.

Table 1. New Mexico baseline parameters for COVID-19 health care use needs based on data from March to June 2020.

US rangeaNew Mexico baselineParameter

4-65Average length of inpatient stay, days

11-1414Average length of stay for those admitted to the ICUb or on mechanical ventilator, days

23.8-36.142.8Patients admitted to ICU among those hospitalized, %

12.0-22.128.2Patients on mechanical ventilation among those hospitalized, %

aFor comparison, we provide the best median estimate across age groups in the United States collected by the US Centers for Disease Control through
August 8, 2020 [36].
bICU: intensive care unit.

CHIVE Forecasting Model
To capture the heterogeneity in the severity of individual
infections, we used probabilistic simulation. CHIVE works in
two steps. In the first step, 4-week-ahead daily forecasts, θt=1:28,
of new confirmed cases from COFFEE [32] were used as input
data to simulate 4 weeks of health care use. We simulated health
care use based on the forecasted number of new cases, θt=1:28,
the weighted two-week average DHR(t)', and the baseline
parameters. The output of the simulation is a forecast for the
numbers of occupied inpatient beds (H1,..., H28), ICU beds
(IC1,..., IC28) and in-use ventilators (V1,..., V28) due to
COVID-19. After simulating 1000 independent iterations of
Ht=1:28, ICt=1:28, and Vt=1:28, the second step adjusts the
magnitudes of summary quantiles q of Ht=1:28, ICt=1:28, and
Vt=1:28, based on observed differences between the prior weeks’
baseline forecasts and the subsequently observed data.

Step 1: Model Baseline Simulations
For an independent iteration i of the simulator, we first sampled
a trajectory of new COVID-19 cases, θt=1:28, from the
distribution specified by the 23 quantiles of θt=1:28 in the
COFFEE output. Let pi~Uniform(0,1) be the percentile of θt=1:28

sampled. We drew θt=1:28 such that pi was the same for all t
within iteration i.

For a day-ahead forecast t + n where t= 0 is the last day of
observed data, we generated our forecasts as follows:

1. Using a binomial distribution with the success probability
equal to DHR(t)', we sampled the number of new hospital
admissions yt+n,i using the forecasted number of new
confirmed cases θt+n,i on day t+n as the number of trials.

2. We next sampled the number of new individuals admitted
to the ICU, ut+n,i, from a binomial distribution with yt+n,i

trials and success probability equal to the ICU admission
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percentage among those hospitalized. Similarly, we sampled
the number of new individuals needing mechanical
ventilation wt+n,i from a binomial distribution with yt+n,i

trials and probability equal to the percent of all hospital
admissions that require mechanical ventilation. We assumed
that if wt+n,i≤ut+n,i, all individuals requiring mechanical
ventilation were also in an ICU; otherwise, we assumed
that some non-ICU admissions also required mechanical
ventilation. Thus, we calculated the number of new non-ICU
or ventilator admissions (ie, general inpatient bed
admissions), as y't+n,i = yt+n,i – max (ut+n,i, wt+n,i).

3. We next simulated the lengths of stay S for each new
admission z. For admissions in an inpatient bed, we drew
the lengths of stay from a Poisson distribution such that

.
4. Because we assumed that the length of stay was similar

between ICU patients and those on mechanical ventilation,
we drew the lengths of stay for these critical care individuals

from a Poisson distribution where .
To obtain the lengths of stay for individuals in the group
min (ut+n,i, wt+n,i), we sampled a subset without replacement

from .
5. For all admissions observed up through t+n, we decreased

the remaining length of stay for each individual by 1. The
number of needed inpatient beds Ht+n,i on t+n was then the
number of individuals who have a positive length of stay
remaining. Similarly, we tracked ICt+n,i and Vt+n,i.

We repeated this process for 1000 random samples of θt=1:28

and summarized the forecasts for day t + n by a set of 23
quantiles q at levels 0.01, 0.025, 0.05, 0.10, … , 0.95, 0.975,
and 0.99, such that we obtained Ht=1:28,q=1:23, ICt=1:28,q=1:23 and
Vt=1:28,q=1:23.

This method makes several simplifying assumptions. First, it
assumes instantaneous movement from confirmation of
COVID-19 to hospitalization. Second, it assumes that a
hospitalized individual requires the same category of health
care for the duration of their stay. We argue that because the
forecasting model is not meant to infer epidemiologic
parameters, these simplifications reduce the need for introducing
additional parameters when data may not exist to sufficiently
estimate them.

Step 2: Postprocessing Based on Back-Fitting
After generating the baseline 4-week forecasts Ht=1:28,q=1:23,
ICt=1:28,q=1:23, and Vt=1:28,q=1:23, we adjust their magnitudes by
finding scaling factors that bring the past week’s baseline
forecasts into alignment with the observed data (Table S1,
Multimedia Appendix 1). In this way, we do not need to adjust
the baseline parameters.

We fitted linear regression models from the forecasts generated
over the past week to the observed data as follows for variable
X, where X is either H, IC, or V (Figure 2):

1. Let t=0 be the day of the last observed data. For each
forecast Xt–n, n=1,..., 7, we fit a linear regression model
from the 50th percentile Xt–n, q=50 baseline trajectory to the
eventually observed data Yt–n:t, in the form Yt–n =
βt–nXt–n,q=50.

2. Across the forecasts, we take a time-weighted mean of the
regression coefficients βt–n:t, assigning weights as in
Equation 1.

3. We multiply all baseline forecast quantiles by the weighted

mean to obtain X't=1:28,q=1:23.

We found separately for inpatient beds, ICU beds, and in-use
ventilators. All simulations and analyses were conducted using
R, version 3.6.1 (R Foundation for Statistical Computing) [38].
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Figure 2. Back-fitting procedure for the November 18, 2020, forecast for New Mexico. (A, C, E) For each forecast from over the week (the panels),
a regression was fit (blue line) from the 50th percentile of the baseline forecasts (yellow line) to the observed data (black dots). A time-weighted average
of the 2 regression coefficients from each panel was calculated separately for inpatient beds (A), ICU beds (C), and ventilators (E). (B, D, F) For the
November 18 forecast, the Baseline forecast was multiplied by the time-weighted average of the regression coefficients to produce the Scaled forecast
for the next four weeks. ICU: intensive care unit.

Results

Back-Fit Coefficients Are Dynamic by Time and
Geography

At the state level, the 1-week weighted coefficients fluctuated
through time (Figure 3A). All three health care use coefficients
showed three peaks: one in early September, a second in late
October, and a third in early December. During the first two
peaks, the baseline forecasted number of inpatient beds was
underestimated (coefficients greater than 1.0), while the baseline
forecasts of ICU beds and individuals on ventilators were
consistently overestimated (coefficients less than 1.0).

At the regional level, the baseline parameters most often
produced forecasts that were overestimates for each of the five
New Mexico regions (Figure 3B). In contrast to the state level,
baseline forecasts of needed ICU beds and ventilators were
underestimated for the Central region during mid-September.
Across health care use categories, the coefficients for the Central
region were closest to 1.0, indicating that the baseline parameters
were the best match for this region. The coefficients for the
Southeast region were consistently the smallest, indicating that
the baseline parameters did not reflect health care trends in this
region.
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Figure 3. The fitted scaling coefficients from September to December, 2020, for hospital inpatient beds, ICU beds, and ventilators at the state level
(A) and regional level (B). The solid black line represents a coefficient of 1.0, where the original 50th percentile forecast would be a good match for
the eventual observed data. ICU: intensive care unit.

Forecasts Showed Higher Error at the Regional Level
and for Ventilators
Using validation data through January 5, 2021, we compared
the accuracy of the 4-week forecast horizons for the 29 forecasts
made between September 1 and December 9, 2020 (Figure 4).
To compare accuracy across health care use categories, regions,
and time—where the observed magnitude varies widely—we
looked at the weighted absolute percentage error (WAPE) while
providing the mean absolute error (MAE) for context. The MAE
is the difference between the median forecast (50th percentile)
and the observed value. The WAPE is the sum of the absolute
differences divided by the sum of the observed values over the
4-week forecast horizon. The WAPE can accommodate observed
zero values, which occurred in our data at the regional level.

At the state level, the median forecasts were consistently 15%
to 25% off for all three health care use categories for the 1- to
2-week horizon, and they showed an increase in error up through
4 weeks ahead (Table 2). Looking at the completed months
during which a forecast was made, the October forecasts had
the lowest overall mean WAPE of 20.0%, while the September
forecasts had the highest WAPE of 39.7%. Of the three health
care use categories, inpatient bed forecasts had the lowest overall
WAPE (27.3%), while ICU beds had the highest (29.2%).

The regional level WAPEs similarly increased though the
3-week forecast horizon; however, for each forecast horizon,
the regional WAPEs often exceeded their corresponding
state-level WAPEs. Aggregated across forecast horizons and
regions, the regional-level WAPE was 40.0% for inpatient
hospitalizations, 40.4% for ICU units, and 40.0% for ventilators.
However, because of smaller quantities, these errors translate
to smaller absolute errors. For example, in the Northwest region,
ventilator median forecasts were off by between 55% and 75%
on average, corresponding to a raw difference of approximately
3 ventilators.

At the regional level, forecast error varied by location, month,
and health care use category. All three health care use categories
in the Central region had the lowest forecast WAPEs in October
(hospital beds: 33.7%, ICU beds: 25.0%, ventilators: 28.6%),
while the lowest forecast WAPEs for the Southwest regions all
occurred in November (hospital beds: 39.8%, ICU beds: 42.7%,
ventilators: 35.3%). For the remaining combinations of regions
and health care needs, the results were split, with 66% of the
lowest WAPEs occurring in November.

To understand how time series properties may have impacted
the accuracy of the forecasts, we compared the monthly WAPE
against the monthly volatility of the time series. The volatility,

calculated as , is a measure that captures

JMIR Public Health Surveill 2021 | vol. 7 | iss. 6 | e27888 | p. 7https://publichealth.jmir.org/2021/6/e27888
(page number not for citation purposes)

Castro et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the noisiness of the observed time series data. We found no
relationship between the volatility of a monthly time series and
the WAPE. We also did not find a relationship between the

WAPE and the total number of each health care use need in a
particular month.

Figure 4. Reported health care use and example forecasts for New Mexico from October and November 2020. The numbers of concurrent hospitalization
beds, ICU beds, and ventilators needed throughout hospitals in New Mexico from September 1 to December 29, 2020 (red points and line). Forecasts
are day-ahead predicted medians (black line), and the 50%, 80% and 95% prediction intervals for 28 days (4 weeks). We show two examples, the first
beginning on October 11, 2020, and the second beginning on November 25, 2020. ICU: intensive care unit.
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Table 2. The WAPEs and MAEs of the predicted forecasted median for COVID-19 health care use numbers reported for September 1 to January 5,
2020, in New Mexico.

Forecast horizonbRegiona and type

4 weeks ahead3 weeks ahead2 weeks ahead1 week ahead

MAE (SD)WAPEMAE (SD)WAPEMAE (SD)WAPEMAEd (SD)WAPEc

State

210 (249)0.334179 (206)0.307130 (141)0.24481.8 (91.9)0.170Beds including ICUse

69.6 (81.0)0.38058.3 (64.1)0.33838.8 (39.4)0.24423.6 (22.4)0.163ICUs

34.2 (40.3)0.34929.2 (31.4)0.32421.2 (21.9)0.26113.5 (13.6)0.188Ventilators

Central

103 (113)0.48674.0 (97.9)0.38146.9 (60.9)0.26727.3 (33.9)0.175Beds including ICUs

42.8 (50.6)0.48531.8 (39.7)0.38519.5 (23.4)0.25712.1 (13.7)0.177ICUs

25.9 (32.6)0.40620.9 (26.2)0.35814.7 (17.3)0.2819.43 (10.7)0.204Ventilators

Northwest

34.0 (44.2)0.48026.5 (39.7)0.42517.9 (27.6)0.33512.8 (19.5)0.283Beds including ICUs

10.6 (14.2)0.5168.82 (11.3)0.4825.81 (7.07)0.3683.62 (4.09)0.261ICUs

3.73 (5.44)0.7293.53 (4.30)0.7572.76 (2.80)0.6732.06 (2.17)0.557Ventilators

Southeast

21.9 (19.5)0.46817.1 (16.4)0.39412.5 (12.9)0.3108.89 (7.59)0.240Beds including ICUs

9.90 (10.1)0.42510.1 (10.2)0.4467.98 (7.64)0.3675.49 (4.55)0.271ICUs

5.03 (4.86)0.6054.21 (4.55)0.5473.34 (3.43)0.4682.17 (2.21)0.346Ventilators

Southwest

45.0 (43.0)0.61841.0 (44.2)0.59526.9 (30.0)0.41315.1 (14.4)0.251Beds including ICUs

30.0 (34.4)0.60126.6 (33.5)0.56218.2 (21.1)0.41010.1 (9.47)0.249ICUs

12.9 (9.95)0.42811.4 (10.6)0.4129.06 (9.40)0.3665.32 (5.04)0.240Ventilators

Northeast

30.8 (34.8)0.67224.6 (30.4)0.58415.7 (20.1)0.41710.4 (13.3)0.306Beds including ICUs

9.46 (10.3)0.6507.63 (9.51)0.5705.27 (6.16)0.4343.25 (3.64)0.311ICUs

4.69 (4.11)0.6094.20 (3.83)0.5823.33 (3.15)0.5142.21 (2.34)0.408Ventilators

aRegions are listed in increasing order of overall WAPE across both the forecast horizon and health care categories.
bFor each forecast horizon, we considered all daily forecasts within that week.
cWAPE: weighted absolute percentage error.
dMAE: mean absolute error.
eICUs: intensive care units.

Prediction Intervals Start Off Narrow and Increase
With Time
We assessed how well the forecasts were calibrated by
measuring how often the observed data fell within a range of
prediction intervals. If a forecasting model is well calibrated
(ie, the prediction intervals are the correct width), the observed
data should fall into the nominal prediction interval of the model
with the expected frequency. For example, the observed data
should fall into the 50% nominal prediction interval 50% of the
time. Across the two geographic regions, prediction intervals
were conservative (overconfident) at both the 50% and 90%
prediction intervals. At the state level, the empirical coverage

approached the nominal coverage by the 3- and 4-week-ahead
forecast horizons (Figure 5, Table 3) for inpatient beds and
needed ICU beds. However, across the regional levels and health
care categories, the prediction intervals remained consistently
narrow.

At the state level, we ranked the calibrations by comparing the
relative absolute coverage error, as in, (nominal coverage –
observed coverage)/nominal coverage. Between health care
categories, the hospitalization forecasts were the best calibrated
at both geographic scales, while the ventilator forecasts were
the worst calibrated. At the regional scale, the Central region
was the best calibrated model, while the Northeast region was
the worst (Figure S3, Multimedia Appendix 1).
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Figure 5. Coverage plot for New Mexico state-level forecasts at 4-week ahead horizons made between September 1 and December 9, 2020. Colored
lines are labeled by their nominal coverage, while the position on the y-axis indicates its empirical coverage. If a forecast is well-calibrated, the empirical
coverage should fall along the y-axis at its corresponding nominal coverage. ICU: intensive care unit.

Table 3. Observed prediction interval coverage for COVID-19 health care use needs in New Mexico reported from September 1 to December 9, 2020.

Observed prediction interval coverageMeasure (% coverage)Model and type

Forecast horizon

4 weeks ahead3 weeks ahead2 weeks ahead1 week ahead

State

0.500.50 a0.340.2250Beds including ICUsb

0.880.870.800.4790

0.520.450.310.2150ICU

0.890.880.760.4290

0.390.320.150.1350Ventilators

0.820.770.550.3590

Regionalc

0.300.360.330.2750Beds including ICU

0.600.700.690.5490

0.380.360.290.2950ICU

0.710.700.650.5790

0.330.270.230.2050Ventilators

0.670.620.510.4990

aItalicized quantities are within 5% of their nominal coverage.
bICUs: intensive care units.
cRegional results are averaged across the five regions.

Discussion

Principal Findings
Given the uncertainty and unavailability of data regarding health
care parameters associated with COVID-19, we chose to

implement a naïve model and fitting procedure in which the
main intent was to produce forecasts of the expected health care
use levels up to 4 weeks into the future. Although COVID-19
case data have been widely available, hospitalization data have
been consistently sparse and not always timely. Therefore,
alternative approaches such as naive models may prove to be
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more robust in addressing these challenges. Our evaluations
show that using a simple model and available forecasts of cases,
one can forecast future health care use levels with sufficient
accuracy for operational planning. During the pandemic, these
data were used across local health care systems to determine
staffing, equipment, and contingency plans, enabling superior
preparation for surges in cases. Additionally, transport logistics
were informed by our forecasts, ensuring that communities had
the necessary capabilities to move patients to higher levels of
care.

We found that CHIVE varied in its ability to accurately forecast
across space, time, and health care needs. First, CHIVE was
more accurate and better calibrated at the state level than for
the five regions of New Mexico. We may have obtained this
result because although CHIVE forecasts the expected needed
number of beds, ICU beds, and ventilators, decision-making on
the ground of individual treatment and new incoming patient
diversions based on capacity, staffing resources, etc, will impact
these numbers. These individual decisions will have more of
an impact on the regional numbers than overall state numbers.
Second, at both geographic scales, the forecasts of inpatient
beds had the smallest error, possibly because of fewer
unaccounted-for downstream effects that could impact the
number of ICU beds and ventilators. Third, the forecasting
model was most accurate at the 1-week forecast horizon but
improved its uncertainty coverage at the 2-week forecast
horizon. Finally, CHIVE performed well in October and
November, when confirmed COVID-19 cases and new
hospitalizations were rising. This finding suggests this method
is flexible for different phases of the epidemic. Overall, our
results suggest that the conditions for which CHIVE is most
suited include forecasting the number of hospital inpatient beds
at higher geographical scales in the 2-week horizon.

Both a strength and limitation of our method is that it is
dependent on the LANL COFFEE model. First, the resolution
of the case forecasts limits the resolution of the hospitalization
forecasts. At the state and regional levels, the model is not
resolved enough for individual hospital planning in its current
form; however, it can still provide intuition about how rising
case numbers translate to stresses on capacity. Real-time
awareness of where cases are rising and the features of specific
hospitals (ie, rural vs urban) by public health professionals can
provide synergistic information that can translate to an indication
of where capacity may be stressed and needs to be reinforced.
Second, the coverage, or prediction interval widths, were
consistently too small. Because the distribution of case forecasts
was used as input, this may be a reflection of overconfident
intervals of the COFFEE model. Finally, both COFFEE and
CHIVE are agnostic to on-the-ground public health actions. For
example, the Governor of New Mexico reimposed a strict
lockdown on November 13, 2020, to curtail rising case numbers
[39]. The forecast for November 25 (Figure 4) overpredicted
the number of inpatient beds, ICU beds, and ventilators. This
may be because the effects of the stay-at-home order had yet
not been observed in the data, so neither COFFEE nor the
postprocessing step of CHIVE anticipated the reduction in new
cases at the start of December.

Separate from COFFEE, a limitation of our method is that new
hospitalizations are assumed to be a fraction of newly confirmed
cases; meanwhile, data have shown that there is a median of 6
days between symptom onset and hospitalization and of 3 days
between symptom onset and administration of a SARS-CoV-2
test [36]. Future iterations of the model could consider
identifying the correct lag. However, we assume that lag is also
a dynamic parameter. Finally, ALOS and other average values
used are poor representations of the underlying distributions of
hospital stays, which are known to have very long tails [40].

Nonetheless, we believe that given the availability of COFFEE
forecasts for many geographic regions, this simple method could
be used as a situational awareness tool for many health care
departments across the nation (and even worldwide), who would
only need to have their locale’s health care occupancy data
available to supplement the forecasts of confirmed cases from
COFFEE. For quantities that prove to be well calibrated,
individual hospitals can use prediction intervals rather than
point forecasts for their own needs. For example, if a hospital
consistently sees their own caseloads around the lower 5%
prediction interval, they can use this estimate for their individual
needs. Alternatively, individual hospitals can use prediction
intervals to determine their own risk avoidance by balancing
the cost of unused beds versus going over capacity. In addition,
this type of model could be used in nonpandemic settings where
forecasts of disease burden take place, such as seasonal
influenza.

The COVID-19 pandemic has highlighted the need for continued
development of health care use forecasting. Seasonal
hospitalization rates of influenza-like illnesses will be altered
for years to come, compromising previous methodology that
relied on historical time series to predict seasonal demand.
Short-term forecasting may help state health departments and
hospitals gain key situational awareness about what is expected
in the near future. In addition, forecasting at a finer resolution,
such as regions, can provide the opportunity for coordination
of necessary resources. These modeling techniques may also
prove helpful in addressing emergent needs in special and
diverse populations that may otherwise go unmet and
recognized. We see a strong and urgent need for continued
collaboration between infectious diseases modelers, public
health officials, and hospital managers. Although modelers can
provide an outlook on transmission activity in the general
population and translate transmission forecasts to incoming
numbers and resources needed, hospital operations subject
matter experts are best able to understand the limits of hospital
capacities and resources, while public health officials can aid
policy.

Conclusions
Although there is uncertainty in our forecasts, the proposed
methodology is intended to provide estimates to decision makers
and public health officials regarding the potential need of health
care resources resulting from a burgeoning pandemic.
Specifically, the results of this study can help research groups,
departments of health, and ministries of health estimate future
health care needs and support decisions regarding resource
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planning and allocation to ultimately reduce negative health care outcomes and save lives.
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