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Abstract

Communicable diseases including COVID-19 pose a major threat to public health worldwide. To curb the spread of communicable
diseases effectively, timely surveillance and prediction of the risk of pandemics are essential. The aim of this study is to analyze
free and publicly available data to construct useful travel data records for network statistics other than common descriptive
statistics. This study describes analytical findings of time-series plots and spatial-temporal maps to illustrate or visualize pandemic
connectedness. We analyzed data retrieved from the web-based Collaborative Arrangement for the Prevention and Management
of Public Health Events in Civil Aviation dashboard, which contains up-to-date and comprehensive meta-information on civil
flights from 193 national governments in accordance with the airport, country, city, latitude, and the longitude of flight origin
and the destination. We used the database to visualize pandemic connectedness through the workflow of travel data collection,
network construction, data aggregation, travel statistics calculation, and visualization with time-series plots and spatial-temporal
maps. We observed similar patterns in the time-series plots of worldwide daily flights from January to early-March of 2019 and
2020. A sharp reduction in the number of daily flights recorded in mid-March 2020 was likely related to large-scale air travel
restrictions owing to the COVID-19 pandemic. The levels of connectedness between places are strong indicators of the risk of a
pandemic. Since the initial reports of COVID-19 cases worldwide, a high network density and reciprocity in early-March 2020
served as early signals of the COVID-19 pandemic and were associated with the rapid increase in COVID-19 cases in mid-March
2020. The spatial-temporal map of connectedness in Europe on March 13, 2020, shows the highest level of connectedness among
European countries, which reflected severe outbreaks of COVID-19 in late March and early April of 2020. As a quality control
measure, we used the aggregated numbers of international flights from April to October 2020 to compare the number of international
flights officially reported by the International Civil Aviation Organization with the data collected from the Collaborative
Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard, and we observed high
consistency between the 2 data sets. The flexible design of the database provides users access to network connectedness at different
periods, places, and spatial levels through various network statistics calculation methods in accordance with their needs. The
analysis can facilitate early recognition of the risk of a current communicable disease pandemic and newly emerging communicable
diseases in the future.
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Introduction

Communicable diseases remain a major public health threat
worldwide. The COVID-19 pandemic is a stark reminder of the
ongoing challenge posed by communicable diseases on human
health [1]. Timely surveillance and estimation of the risk of a
pandemic are crucial for curbing the spread of communicable
diseases. Without efficacious medications and vaccines, the
implementation of nonpharmaceutical interventions, such as air
travel restrictions and social distancing measures, is vital for
controlling communicable diseases [2]. The conventional
method of estimating the risk of a pandemic based only on the
number of confirmed cases provides limited information about
pandemic trends. Network analysis is a powerful tool to estimate
the risk of a pandemic through network connectedness [3] when
air travel is a common route of communicable disease
transmission [4]. Network connectedness analysis using air
travel data records can help visualize the effect of air travel
restrictions on pandemic connectedness.

The risk of in-flight communicable disease transmission has
been a global health concern well before the emergence of
COVID-19 [5]. A number of in-flight communicable disease
transmissions have been documented, including influenza [6],
severe acute respiratory syndrome [7], multidrug-resistant
tuberculosis [8], measles [9], meningococcal infections [10],
norovirus [11], shigellosis [12], and cholera [13]. Studies on
the transmission of influenza [14] and severe acute respiratory
syndrome [15] on aircraft further indicated that air travel can
serve as a channel for the rapid spread of newly emerging
communicable diseases. A study on COVID-19 control in Latin
America suggested that countries serving as air transportation
hubs are more prone to disease transmission. The practicable
use of travel data for the prediction of the risk of the COVID-19
pandemic has been previously reported [16].

We previously analyzed travel data retrieved from the web-based
Collaborative Arrangement for the Prevention and Management
of Public Health Events in Civil Aviation (CAPSCA) dashboard
[17], which contains up-to-date and comprehensive
meta-information on civil flights from 193 national governments
in accordance with the airport, country, city, latitude, and the
longitude of flight origin and the destination. Unlike official
travel data sources, such as the Federal Aviation Administration
(FAA) and the International Air Transport Association (IATA),
the travel data of the CAPSCA are free and publicly available.

The use of an Automated Dependent Surveillance Broadcast
system as one of the travel data collection elements enables the
CAPSCA to provide up-to-date travel locations, among other
travel data (latitude and longitude of flight origin and the
destination alongside a timestamp) [18,19]. The CAPSCA
provides civil flight data for both passenger and cargo flights.
While it is common knowledge that cargo flight crews may
spread the disease through air travel, cargo is not always
considered a health risk [20]. Travel data from both passenger
and cargo flights are therefore more comprehensive for
pandemic connectedness analysis.

Flexible analysis of travel data can be performed through
in-database processing. Specifically, users can analyze travel
data through various network statistics calculations, including
network analysis [3], network density [21], and reciprocity [22],
which are powerful tools to estimate the risk of a pandemic
through network connectedness. Simple analyses with
time-series plots and spatial-temporal maps would facilitate
clear visualization of the analytical results. Time-series plots
show changes in network density and reciprocity, which are
likely to be early signs of alterations in the risk of a pandemic
[21]. Spatial-temporal maps during network analysis illustrate
the connectedness among places and reflect changes in the risk
of a pandemic before unprocessed data on the number of
confirmed cases are obtained [16]. Moreover, diverse tools can
be used to analyze pandemic connectedness.

The CAPSCA dashboard allows us to create a spatial-temporal
database by integrating the travel data from different airports
to illustrate connectedness at the city, country, or regional levels
in accordance with the users' preference. The database can
facilitate research and policymaking at local and global levels
and provide a spatial outlook of the evolution of the pandemic
network for predicting and assessing the risk of a communicable
disease pandemic.

Methods

Workflow of Data Collection and Analysis
The database enables the visualization of pandemic
connectedness through the workflow of travel data collection,
network construction, data aggregation, travel statistics
calculation, and visualization with time-series plots and
spatial-temporal maps. The workflow of data collection and
analysis is summarized in Figure 1.
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Figure 1. Workflow of data collection and analysis.

Data Collection
Travel data and meta-information were retrieved from the
CAPSCA dashboard through two separate procedures:

1. Extracting the airport meta-information from the rendered
JavaScript object “airportData” through a HyperText
Transfer Protocol request.

2. Downloading and extracting the flight numbers of civil
flights, including both passenger and cargo flights, from
the JavaScript Object Notation responses through multiple
Asynchronous JavaScript and Extensible Markup Language
requests.

The collected travel data were filtered for valid International
Civil Aviation Organization (ICAO)–formatted airport codes.
Raw JavaScript Object Notation responses contain formatted
airport codes from various data sources such as the ICAO,
IATA, and FAA. Each type of formatted airport code has its
specific format. Valid ICAO codes start only with a letter and
have 4 letters or digits, valid IATA codes consist of 3 letters,
while valid FAA codes are 3-5–character alphanumeric codes.
Each format type helps develop a filtering system to extract
travel data with specific codes.

Data Records
A live version of the data record, which is maintained up-to-date
with the latest data, can be downloaded from our travel database
project repository [23]. The data records consist of 2 major
parts: aggregated raw input and calculated or computed records.

The aggregated raw inputs are location metadata that contain
data at multiple levels—country, city, airport, and geolocation
(latitude and longitude)—and travel data, which contain daily

information regarding flight origin and the destination, starting
from January 2019. These data encompass >200 countries and
regions worldwide.

The data records (details) are structured into the following 3
comma-separated value (CSV) files:

1. [ICAO_airport_meta.csv] Table of the location metadata
(ICAO-CAPSCA airport meta). The fields of the table are
as follows:
a. countryName is the name of the country
b. countryCode is the International Organization for

Standardization (ISO)-3166 alpha-3 code of the country
c. airportName is the name of the airport
d. airportCode is the ICAO code of the airport
e. cityName is the name of the city
f. latitude is the geolocation (latitude) of the airport
g. longitude is the geolocation (longitude) of the airport

2. [flight_2019-01-01_2020-12-03.csv] Table of travel data
(daily flight numbers from origin to destination). The fields
of the table are as follows:
a. date is the record date
b. num_flight is the number of flights from the origin

airport to the destination airport
c. orig_airportCode is the ICAO code of the origin airport
d. orig_airportName is the name of the origin airport
e. orig_countryCode is the ISO-3166 alpha-3 country

code of the origin airport
f. orig_countryName is the country name of the origin

airport
g. orig_cityName is the city name of the origin airport
h. orig_latitude is the geolocation (latitude) of the

destination airport
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i. orig_longitude is the geolocation (longitude) of the
destination airport

j. dest_airportCode is the ICAO code of the destination
airport

k. dest_airportName is the name of the destination airport
l. dest_countryCode is the ISO-3166 alpha-3 country

code of the destination airport
m. dest_countryName is the name of the country where

the destination airport is located
n. dest_cityName is the name of the city were the

destination airport is located
o. dest_latitude is the geolocation (latitude) of the

destination airport
p. dest_longitude is the geolocation (longitude) of the

destination airport

3. [network_statistics.csv] Table of the calculated network
statistics. The fields of the table are as follows:
a. date is the reference date of the network statistics at

time t
b. Vt is the number of vertices (Vt) at time t
c. Et is the number of edges (Et) at time t
d. Dt is the edge density (Dt) at time t
e. Rt is the reciprocity (Rt) at time t

Dynamic Network Construction and Data Aggregation
The travel data can be used to construct the travel network
structure [24]. The basic network components involve nodes
(vertices) and links (edges). The nodes represent the target entity
(location), such as airport, city, or country. As the travel data

contain detailed airport-to-airport records, they can be
transformed by merging data from the airports to form nodes
of cities, countries, regions, or groups of any geolocations in
accordance with the users’ preference. A link represents a
relationship (connection) between 2 target entities. The
relationship can be binary or numeric (eg, flight frequency),
indicating the existence or strength of a travel connection,
respectively.

For example, if we focus on global analysis, we aggregate the
airport data at the country level and input the country data as a
new set of nodes to form travel subnetworks, which are
represented by the country-country–origin-destination matrix
with entries being the flight frequencies between 2 countries.

Data Analysis: Travel Network Statistics
We can further aggregate the travel data to obtain overall
worldwide flight information. Figure 2A shows the time-series
plots of worldwide daily flights in 2019 and 2020. By comparing
the 2 time-series curves in Figure 2A, we observed similar
patterns of worldwide daily flights from January to early-March
in 2019 and 2020. A sharp decline in the number of daily flights
recorded in mid-March 2020 was likely related to large-scale
air travel restrictions owing to the COVID-19 pandemic. In
addition, the subnetwork can be further used to generate the
degree matrix, where its diagonal entries contain the number of
edges connected to different nodes (number of connected
countries of each node). The combined use of the
origin-destination and degree matrices can yield spatial-temporal
maps (Figure 3).
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Figure 2. Time-series plots of (A) daily international flights, (B) global network statistics, and (C) daily reported number of confirmed COVID-19
cases.

If Vt is the number of vertices of the dynamic network at time
t, and Et is the number of edges of the dynamic network at time
t, network statistics such as Dt (network density [21]) and Rt
(reciprocity [22]) can be determined (Figure 2A). For example,
in the dynamic networks in Figure 3, countries are represented
by vertices, and travel connections are represented by edges.
Network density Dt is based on an undirected network structure,
and is defined as follows:

which refers to the ratio of the number of connections with
respect to the maximum possible connections among countries.

This equation illustrates how dense the connections in the
dynamic network are at time t.

Reciprocity Rt is based on a directed network structure and is
defined as follows:

where Rt is the ratio of the number of links pointing in both

directions, Et
<-> (mutual links), to the total number of links, Lt.

In other words, the value of Rt represents the average possibility
that a link is reciprocated.

JMIR Public Health Surveill 2021 | vol. 7 | iss. 3 | e27317 | p. 5https://publichealth.jmir.org/2021/3/e27317
(page number not for citation purposes)

Chu et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Spatial-temporal maps of connectedness in Europe at (A) the country level between March 13 and April 24, 2020, and (B) air transportation
hub level between May 8 and June 19, 2020.

Results

Data Visualization
Network statistics data were visualized using time-series plots.
In addition, data records of the origin-destination and degree
matrices can be visualized using spatial-temporal maps.

Figure 2 displays the time-series plots of worldwide daily flights
(Figure 2A), global network statistics (Figure 2B), and daily
reported confirmed COVID-19 cases (Figure 2C). We found
that changes in network density can serve as an early signal of
the risk of a pandemic.

The time-series plots of network density and reciprocity shown
in Figure 2B demonstrate the practical use of network statistics
to predict the risk of a global pandemic. With initial reports of
COVID-19 cases worldwide, a high network density and
reciprocity in early-March 2020 were early signals of the
COVID-19 pandemic and were associated with the rapid
increase in COVID-19 cases reported by the World Health
Organization (WHO) in mid-March 2020 (Figure 2C). The sharp
reduction in the network density and reciprocity in mid-March
2020 suggests a reduction in the risk of the pandemic, which
was associated with a steady number of daily confirmed cases
from mid-March to May 2020. The gradual increase in network
density and reciprocity from mid-May 2020 suggests an increase
in the pandemic risk, which was associated with a rapid surge
in COVID-19 cases from mid-May to August 2020. The
in-database processing system allows users to analyze network
density and reciprocity at local or global levels during selected
periods in order to identify possible trends in the evolution of
the risk of pandemics.

Figure 3 shows some spatial-temporal maps to illustrate the
network connectedness among countries under different spatial

levels. The levels of connectedness among places are strong
indicators of the risk of a pandemic. The spatial-temporal maps
showing the connectedness among places are constructed on
the basis of the origin-destination and degree matrices, which
provide directional data and summarized node data (degree of
vertices), respectively. The maps display the connectedness
among places in the form of connections and bubbles. The
connections (links) illustrate the connectedness among places.
The bubbles (vertices), which contain aggregated information
presented by the node size, further enhance the visualization of
connectedness, especially when the network density is high.
The in-database processing system allows users to generate
spatial-temporal maps at multiple spatial levels, such as airports,
cities, countries, or any regions of interest, with various temporal
settings, such as different periods and time-intervals. The
flexibility of the database facilitates data analysis in accordance
with the users’ preferences.

For example, to analyze the connectedness in Europe during
the first wave of the COVID-19 pandemic in early 2020,
spatial-temporal maps of Europe at 14-day intervals between
March and April 2020 were generated (Figure 3A). Maps
displaying connectedness at the country level are plotted, with
each bubble representing a country. The size of the colored
bubbles represents the number of vertices or countries. The
color intensity of the bubbles indicates the number of daily
confirmed COVID-19 cases per 1 million population of the
country. The light-green connections (links) represent the
number of daily international flights. Thicker the green line,
higher the connectedness between 2 countries. The map for
March 13, 2020, shows the highest level of connectedness
among European countries, reflecting a severe outbreak of
COVID-19 in late March and early April 2020. The significant
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reduction in connectedness from March 13 to April 24 indicates
that the first wave of the pandemic subsided in May 2020.

Figure 3B shows a different set of spatial-temporal maps to
analyze connectedness in Europe before the onset of the second
wave of the COVID-19 pandemic. Spatial-temporal maps of
Europe at 14-day intervals between May and June 2020 were
generated. As countries serving as air transportation hubs were
particularly prone to the spread of COVID-19 [16],
spatial-temporal maps at the country level for these hubs have
been plotted to investigate network connectedness between the
countries harboring these hubs during the growth of the
pandemic. Each bubble represents a country with airports
defined as among the top 10 air transportation hubs in Europe
by the Official Airline Guide MegaHub Index of 2019 [25]. The
color indicates the accumulated total number of confirmed
COVID-19 cases per 1 million population of a particular country
at time t (Figure 3B, ratio_Xit_per1M). The significant increase
in connectedness in mid-June 2020 indicates an increase in the
risk of the pandemic in Europe, especially among hub countries.

The aforementioned data were visualized using igraph in the R
software package (The R Foundation) or software facilitating
network visualization, such as Gephi (The Gephi Consortium).

Technical Validation
CAPSCA is a voluntary cross-sectorial and multi-organizational
collaborative program managed by the ICAO with support from
the WHO. The quality of the data on the dashboard should be
guaranteed. As a quality control measure, we used the
aggregated number of international flights from April to October
2020 to compare the number of COVID-19 cases at hub airports
officially reported by the ICAO [26] with the data collected
from the CAPSCA dashboard. We analyzed the correlation
between the 2 data sets for 7 different regions during this period:
Asia Pacific, East and South Africa, Europe and North Atlantic,
Middle East, North America and the Caribbean, South America,
and West and Central Africa. The results are summarized in
Table 1. We found that most coefficients of correlation were
>0.99, except for the Asia Pacific region (r=0.96). This
difference probably results from data synchronization (lagging
by 3 days) by the ICAO after collecting the daily raw counts.

Table 1. Correlation between the number of daily international flights officially reported by the International Civil Aviation Organization and those
obtained from the Collaborative Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard for 7 geographic
regions from April to October 2020.

Coefficient of correlationICAOa-identified geographic regions

0.96Asia Pacific

1.00East and South Africa

1.00Europe and North Atlantic

1.00Middle East

0.99North America and the Caribbean

1.00South America

1.00West and Central Africa

aICAO: International Civil Aviation Organization.

Discussion

Principal Findings
Ongoing systematic surveillance is important to help detect
early outbreaks and to evaluate the effectiveness of public health
measures and programs [27,28]. In this study, we attempted to
conduct flexible analysis of freely available travel data collected
from the CAPSCA dashboard to identify certain patterns and
early signals of the COVID-19 pandemic, which may help
policymakers take appropriate action. By linking the database
to daily numbers of confirmed COVID-19 cases, we can develop
a user-friendly platform for timely and flexible visualization of
network connectedness to facilitate surveillance and early
recognition of the risk of a pandemic, including the high network
density and reciprocity in early March 2020 through time-series
analysis and the high level of connectedness among European
countries on March 13, 2020, through spatial-temporal mapping.
The surveillance and findings are important for curbing the
spread of communicable diseases and balancing disease control
and economic recovery.

Our study provides a clear workflow for data collection and
analysis and the suggested software for analysis. Because air
transportation is highly relevant to the dissemination of
communicable diseases, the database and the analysis can also
be applied to investigate the risk of other communicable disease
pandemics occurring currently or emerging in the future. In
addition, researchers may replicate our workflow for assessing
pandemic connectedness by using the same database or other
databases.

For data quality assurance, we conducted correlation analysis
and validated the database. We compared the number of
aggregated international flights officially reported by the ICAO
for 7 regions from April to October 2020 with corresponding
data we collected from the CAPSCA dashboard. We found only
minor differences probably owing to data synchronization
performed by the ICAO after collecting the daily raw counts of
COVID-19 cases. We expect that our findings may help
researchers explore and validate freely available health-related
databases to conduct ongoing and systematic analysis and
interpretation to identify early warning signals, such that
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necessary action can be taken to prevent and control the spread
of communicable diseases.

Conclusions
In this study, we demonstrated a workflow to analyze freely
available travel data retrieved from the CAPSCA dashboard,
together with data on confirmed COVID-19 cases reported by
the WHO, for systematic surveillance. Flexible analysis of the

travel data can be performed through in-database processing,
which allows us to visualize and analyze the risk of a pandemic
and pandemic connectedness by using different tools such as
time-series plots and spatial-temporal maps. This analysis
facilitates early recognition of the risk of pandemics of current
communicable diseases and newly emerged communicable
diseases in the future.
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