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Abstract

Background: Patient travel history can be crucial in evaluating evolving infectious disease events. Such information can be
challenging to acquire in electronic health records, as it is often available only in unstructured text.

Objective: This study aims to assess the feasibility of annotating and automatically extracting travel history mentions from
unstructured clinical documents in the Department of Veterans Affairs across disparate health care facilities and among millions
of patients. Information about travel exposure augments existing surveillance applications for increased preparedness in responding
quickly to public health threats.

Methods: Clinical documents related to arboviral disease were annotated following selection using a semiautomated bootstrapping
process. Using annotated instances as training data, models were developed to extract from unstructured clinical text any mention
of affirmed travel locations outside of the continental United States. Automated text processing models were evaluated, involving
machine learning and neural language models for extraction accuracy.

Results: Among 4584 annotated instances, 2659 (58%) contained an affirmed mention of travel history, while 347 (7.6%) were
negated. Interannotator agreement resulted in a document-level Cohen kappa of 0.776. Automated text processing accuracy (F1
85.6, 95% CI 82.5-87.9) and computational burden were acceptable such that the system can provide a rapid screen for public
health events.

Conclusions: Automated extraction of patient travel history from clinical documents is feasible for enhanced passive surveillance
public health systems. Without such a system, it would usually be necessary to manually review charts to identify recent travel
or lack of travel, use an electronic health record that enforces travel history documentation, or ignore this potential source of
information altogether. The development of this tool was initially motivated by emergent arboviral diseases. More recently, this
system was used in the early phases of response to COVID-19 in the United States, although its utility was limited to a relatively
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brief window due to the rapid domestic spread of the virus. Such systems may aid future efforts to prevent and contain the spread
of infectious diseases.

(JMIR Public Health Surveill 2021;7(3):e26719) doi: 10.2196/26719
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Introduction

Epidemiologic clues are critical to understand how infectious
diseases spread. When working up a rapidly unfolding event,
a history of travel to an endemic region can be a valuable piece
of evidence for public health authorities and biosurveillance
experts who must often work quickly in tracing linkages to
manage outbreaks. When information about travel to endemic
areas is present, it may confirm an existing understanding or
flag an epidemiologist to gather additional information.
Alternatively, an absence of travel records for patients who are
infected may suggest the possibility of local transmission. Even
on an individual patient level, the importance of evaluating
travel history has been previously recognized as crucial, in
addition to symptoms, in establishing an appropriate differential
diagnosis and optimizing testing [1,2].

Unfortunately, information about patient travel in the electronic
health record (EHR) is still not typically recorded in a structured
format but in unstructured clinical documents [3], especially
when screening questions have not been mandated for
emergency department triage. Instead, much of this information
can be recorded in notes by specialists or others who suspect a
travel-related disease. Although important, the need for
significant annotated data and an effective document selection
process are likely reasons why automatic extraction of travel
history from clinical documents has not been explored
extensively [4]. It has been noted that no standard tools exist
for identifying critical information. Several gaps remain in
gathering crucial data including accurate and timely patient
travel history [5]. Reliable methods are needed for automated
identification of such information from documents.

Machine learning has been applied increasingly to information
extraction tasks from text. Recent developments allow scaling
to large amounts of data while achieving accurate results. Such
methods have proven useful to identify hate speech in social
media [6] and for accelerating information gathering from legal
documents [7]. These advancements have shown to be effective
in several aspects of health care ranging from automated
processing of radiology reports [8] to detection and relation of
adverse drug events [9].

Previous work has identified geographic locations in text such
as newswire articles and social media posts [10,11]. Biomedical
literature has been previously used to extract geolocation
information for infected hosts to enable virus spread modeling
[12]. Although other means of identifying location exist, such
as mobile apps, challenges remain to use these resources in
health care, including privacy concerns and integration with
clinical indicators of disease such as laboratory results recorded

in the EHR. Using EHR documentation to identify patient travel
is rarely reported potentially due to the complexity of the task.

In health care, a comprehensive understanding of locations
visited by a patient is important for understanding key
epidemiologic links. This information is especially crucial for
respiratory diseases, which can be spread rapidly through
international travel [1]. Most notably, early efforts in managing
the spread of COVID-19 have relied upon information about
travel to prevent the spread of the virus [13-15]. Several recent
studies have leveraged publicly available data resources such
as social media to conduct surveillance of the virus including
travel history, symptoms, and concerns [16-18].

In this study, we created a reference standard for detection of
patient travel history from the EHR through manual chart
abstraction, developed an automatic text extraction pipeline,
and deployed the system in preparedness for public health
threats. The goal of the system in 2017 and 2018 was not only
to evaluate the travel in the context of Zika and other emerging
arboviral diseases at the time but also with the intent to expand
the system to support the surveillance of other emerging
infectious diseases. To that effect, this capability was used
during a brief window to monitor the initial spread of COVID-19
infections in the United States.

Methods

Data Set
The Veterans Affair (VA) Corporate Data Warehouse contains
clinical data from 170 medical centers and over 1000 outpatient
sites across the United States [19]. This study was developed
with Corporate Data Warehouse data from 2015 to 2017 across
more than 6.4 million patients with over 694 million clinical
notes. This study was conducted in VA to provide tools to
facilitate biosurveillance and health care operations. After the
initial development, accuracy was evaluated on a sample of 57
patients whose documents were authored up to April 2018. This
system currently continues to run for operational biosurveillance
data insights.

Annotation Guideline
The annotation guideline was developed in collaboration with
epidemiologists and natural language processing (NLP)
researchers. The scope of annotation was to collect past travel
history and differentiate it from future or hypothetical travel
discussion. Any reason for travel was allowed, including military
deployment or medical tourism. No restrictions were made on
the level of geographic specificity. Mentions of international
travel vary in the level of geographic specificity. Although some
travel locations are mentioned precisely (eg, “Mexico City”),
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others include landmarks (eg, “Great Barrier Reef”) or free-form
description (eg, “beach in the Mexican Riviera”). This
annotation scope was simplified into one sentence to enable
rapid annotation: “Does this text indicate that the patient has
been somewhere outside the United States?”

Annotation Corpus Selection
To train an automated text pipeline, we annotated a corpus for
travel history mentions. Some examples are illustrated in Figure

1. Since clinician documentation of patient travel history in the
EHR may vary, we used a strategy to identify likely candidate
statements. The cohort for these potential travel mentions were
all patients who received laboratory testing for the arboviral
diseases Zika, dengue, or chikungunya from January 2015 to
April 2017, a date range that corresponded with concerns about
Zika virus transmission. For this cohort, we included clinical
notes authored between 1 month before and 6 months after lab
specimens were taken.

Figure 1. Illustration of this study's contributions. Included here are synthetic text examples, annotation output format, and model extraction of positive
location mentions now deployed for public health response.

To further reduce the annotation corpus for relatively rare
events, a semiautomated process was implemented similar to
previous work [20]. The first step involved seed terms and
phrases likely related to travel. These terms were comprised of
cities and countries from the GeoNames gazetteer [21]. This
also included phrases likely related to travel history, such as
“recently returned from X” or “traveled on a cruise to X.” This
set also included curated patterns for travel history questions
common in the EHR. Some questions asked patients about
relatively recent concerns in 2017 such as Zika or dengue.
Meanwhile, others included questions about past travel related
to Ebola or Middle East respiratory syndrome. These question
patterns were not used as inclusion criteria for the annotation
corpus since this remained limited to arboviral testing patients.

Next, these initial terms and phrases were used to retrieve
documents from the patient cohort, which received arbovirus
lab testing. An iterative bootstrapping approach was then used
to collect additional documents. This approach was chosen to
efficiently identify patterns from a large corpus of notes. At

each iteration, new travel location terms and travel-related
phrases expanded the initial seed terms, as these were extracted
in a semiautomated fashion illustrated in Figure 2.

New travel locations were found when co-occurring with
detected travel phrases. Likewise, travel location matches were
used to extract new travel-related phrases by inspecting n-grams
collocated with locations such as “10 day vacation to X...” and
“symptoms after a 12 hour flight from X...” Where possible,
these phrases were generalized to regular expressions. Locations
of varying specificity and lexical variation were gathered, such
as “the big island,” “porto rica,” and “deep Mexico.” This
process was repeated several times until a set of candidate
documents had been gathered for annotation.

For rapid annotation, short snippets of three sentences were
collected where one of the sentences contained a location,
phrase, or question template. Document retrieval and sentence
retrieval rules were implemented using the Leo framework [22].
These snippets were then deduplicated by performing exact
lexical comparison with no preprocessing.
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Figure 2. Bootstrapping process to identify previously unknown locations and phrases to enrich a document set for travel history mentions.

Annotation Methods
Annotation was performed by three annotators and consisted
of span level annotation on short snippets in ChartReview [23].
In each reviewed snippet, annotators highlighted the span of a
travel location mention and specified whether the location was
affirmed to be a location that the patient visited or if travel was
negated (eg, the patient did not visit the location or denied such
visits). Examples of text and annotation data are presented in
Figure 1.

Annotation agreement was measured on a set of 100 snippets
annotated by two annotators. Agreement was measured at a
span level of locations and at a record level of travel history in
a snippet.

Location agreement was calculated for all annotated location
text spans and required an exact match of text offset and
negation status. Any difference in status was counted as a
disagreement and any difference in text span was considered
as a separate annotation element. Record agreement combined
any annotated location status so that each snippet would be
assigned a class of either no travel mentioned, negated locations,
positive locations, or mixed.

Extraction Methods
A text processing pipeline was built to test feasibility of travel
history extraction for operational use. This pipeline used models
trained from the reference standard created from arboviral illness
cases. The objective of this pipeline is to label affirmed travel
location mentions. Although negated locations were gathered
in annotation, these were not used in model training. Figure 1
provides an example of this consideration.

Given a requirement for rapid processing of documents with
available computing resources, the model was constructed using
conditional random fields (CRF) implemented in CRFSuite in
Python [24,25]. Classes of contextual features around tokens
were evaluated.

Annotated documents were split into 80% training, 10%
validation, and 10% test to be held out from any training or
evaluation until the final experiments. Feature types and model
hyperparameters (eg, token window size) were evaluated via
random search and cross validation using scikit-learn [26]. The
set of features in this model include tokens, lemmas, character
n-grams, part of speech tags, token shape (ie, capitalization,
digits, and punctuation), gazetteer match of cities and countries
from GeoNames [21], and word embedding clusters [27,28].
An example illustrating feature encoding is presented in Figure
3 and Table 1. Part of speech tags (eg, VBD) are defined as per
the Penn Treebank tag values [29].
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Figure 3. Illustration of feature encoding window for the token "Senegal" in an example sentence.

Table 1. Feature encoding examples for the token “Senegal” in Figure 3.

Encoding examplesaFeature class

-2_token: ‘traveled’; -1_token: ‘to’; 0_token: ‘senegal’; 1_token: ‘2’; 2_token: ‘weeks’Tokens

-2_lemma: ‘travel’; -1_ lemma: ‘to’; 0_ lemma: ‘seneg’; 1_ lemma: ‘2’; 2_ lemma: ‘week’Lemmas

-2_islower: 1; -1_islower: 1; 0_iscapital: 1; 1_isdigit: 1 2_islower: 1Token shape

-2_pos: ‘VBD’; 1_pos: ‘TO’; 0_pos: ‘JJ’; 1_pos: ‘CD’; 2_pos: ‘NNS’;

-2_-1_pos: ‘VBD_TO’; -1_0_pos: ‘TO_JJ’; […]

Part of speech [29]

[...]; 0_char_bigram_se: 1; 0_char_bigram_en: 1; [...]; 0_char_trigram_sen: 1; 0_char_trigram_ene: 1; [...]Character n-grams

-2_gaz: 0; -1_gaz: 0; 0_gaz: 1; 1_gaz: 0; 2_gaz: 0Gazetteer match

-2_cluster: ‘6101’; -1_cluster: ‘8804’; 0_cluster: ‘5470’; [...]; -2_-1_cluster: ‘6101_8804’; -1_0_cluster: ‘8804_5470’; [...]Word embedding clusters

aSingle quoted values are encoded as categorical features rather than ordinal. When present, a prefix ‘-2_’ indicates features for the token 2 to the left,
‘0_’ for the current token, etc.

Model performance was evaluated with classification metrics
of precision, recall, and F1 as well as bootstrapped sampling
methods at a 95% CI [30,31]. All reported findings here used
strict matching such that if the annotator marked a multi-word
visited location such as “Western Africa,” both tokens must be
detected.

As a comparison, we selected two general purpose location
named-entity recognition (NER) models, which were evaluated
for geoparsing. Since these systems were developed for
geolocation detection and not travel history, the intent of this
comparison is to provide motivation that the task of travel
history is distinct from geoparsing. In one comparison
experiment, we applied the NER model from the Stanford NLP
library to the annotated travel corpus [10]. In the other
experiment, we used spaCy [32] to label the location entity.
Although these are general-purpose models for location
extraction, they have been used in several system comparisons
for parsing geographic locations from text [33]. Among the
potential libraries reviewed in [33], these were selected given
convenient usage in the Python programming language. As this
was a simple experiment to provide motivation of this being a
distinct task, these systems were not retrained or augmented
with gazetteer entries, as they were applied to the annotated
data set with no modifications. Spans labeled as locations by
each baseline model were used in this simplified evaluation of
identifying patient travel location. Two comparisons were made
since these existing systems do not allow for an ideal
comparison. One was limited to locations annotated for past
affirmed travel and the other for any annotated location, which
would include negated, future, or hypothetical travel.

Postdeployment Evaluation Methods
After an initial model had been deployed for operational
purposes, an analyst with clinical experience performed a chart
review to estimate system performance. This evaluation was
performed to account for a potential selection bias due to the
keyword-based selection of records for the original reference
standard and to evaluate the system on more recent data not
available during the training phase.

To conduct this evaluation, 57 unique patients were randomly
selected among patients who received laboratory testing for
Zika, dengue, or chikungunya prior to April 2018. For each
patient, clinical documents were reviewed surrounding the dates
of the specimen acquisition and test completion. This review
resulted in the manual gathering of past affirmed patient
locations. These locations were compared against automated
locations identified in operational reporting.

Ethics Approval
This analysis was performed under project approval from the
University of Utah Institutional Review Board and the VA Salt
Lake City Health Care System Research and Development
Office.

Results

Annotation Corpus Selection Results
The process for selecting candidate travel history mentions was
initiated on 250,133 clinical documents among 2274 unique
patients who received arbovirus testing. The mean age of these
patients was 59 years, and 1960 (86.2%) patients were male. A
total of 6482 snippets were identified as potential travel
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mentions, and 3894 (60.1%) were acquired from locations, 2576
(39.7%) from phrases, and 12 (0.2%) from template questions.

After removing duplicates, 4584 unique snippets remained to
be annotated. Since there were over 1800 duplicates in the
candidates, some of the most frequent are explained here. Many
of the duplicate snippets consisted of several travel question
templates, which were identical in hundreds of snippets across
multiple patients, such as “Has the patient traveled to an Ebola
affected area? [] Y [X] N” or “Has the patient traveled to West
Africa?” Other duplicates included verbatim travel history
records that had been pasted into the same patient’s medical
record multiple times across separate documents. Other frequent
duplicate snippets matched location strings yet were involved
in unrelated common clinical templates such as “Sleep
Disorders: Berlin and Epworth Questionnaires.”

Annotation Results
Of the 4584 unique snippets annotated, 2659 (58.0%) were
annotated as affirmed travel history and 347 (7.6%) were marked
as negated. The remaining 1578 (34.4%) snippets were
annotated as not containing any mention of travel history.

Both location and record agreement were calculated using Cohen
kappa [34]. In the set of 100 double annotated snippets, span
agreement was measured as κ=0.706 and record agreement as
κ=0.776.

Documentation of patient travel history in these annotations
vary in a spectrum from semistructured questionnaires (eg,
“Have you visited a region known for Zika transmission?” “Has
the patient recently returned from Brazil, Mexico or Miami,
Florida? [] Y [X] N”) to coarse grain descriptions (eg, “went to
Europe”) to detailed traces of travel activity (eg, “returned to
the United States on July 2 from Guatemala by way of Mexico
City (July 1)”).

Instances of annotator disagreement were examined to identify
the categories of differences and explore potential refinement
for the annotation guideline. Several disagreements stemmed
from differing attribution of past affirmed travel as opposed to

future or hypothetical travel. For example, in one synthetic
example, one annotator marked the mention “...travelling to
visit sister in Hungary in May” as future travel, while another
marked this as past affirmed travel. These errors were the most
frequent cause for disagreement.

Additional challenges in this task occurred as this study was
conducted using Department of VA records, where military
deployment is common but actual patient exposure may remain
ambiguous. For example, a template such as “Service Era:
Vietnam” does not necessarily imply that the patient was in
Vietnam. Statements like these on their own did not lead to
much disagreement, yet we observed that annotators made
different inferences in more complicated examples. In short
snippets, longer distance statements could lead to differing
interpretations. For example, in a snippet such as “Service:
Persian Gulf War...<another long sentence>...but after coming
home and getting married...,” one annotator inferred that the
patient had been in the Persian Gulf region while the other did
not.

Geographic specificity also led to some annotation disagreement.
Although the annotation gave no requirement for specificity,
there were instances where a sentence like “Pt traveled outside
the United States from early May to August” was marked by
one annotator as a past affirmed travel location “outside the
United States.” Although the value of such travel history could
be debated for the purposes of infectious disease surveillance,
additional examples in the annotation guideline could have
provided clarity in these situations.

The annotation identified 561 distinct locations across 8127
location spans. The most frequently annotated affirmed and
negated locations are listed in Table 2. These locations exhibit
a range of geographic specificity. Some mentions are specific
cities or countries, while others are entire continents or regions
(eg, Africa, West Africa) and others are highly specific such as
the name of a beach resort or an oceanic cruise itinerary. Some
location mentions are ambiguous, such as “Jamaica,” which
could refer to the country or the neighborhood in New York
City.
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Table 2. Most frequently affirmed and negated annotated locations and their percentage of the 8127 total location text spans annotated.

Annotations, n (%)Locations

Affirmed

471 (5.8)Iraq

374 (4.6)Mexico

251 (3.1)Vietnam

251 (3.1)Costa Rica

244 (3.0)Dominican Republic

236 (2.9)Afghanistan

187 (2.3)Jamaica

179 (2.2)Puerto Rico

Negated

341 (4.2)Liberia

341 (4.2)Guinea

333 (4.1)Sierra Leone

130 (1.6)Democratic Republic of Congo

114 (1.4)West Africa

114 (1.4)Mali

89 (1.1)Nigeria

81 (1.0)Western Africa

Extraction Results
The best performing model to label affirmed travel history
mentions was evaluated on the test set as 88.0% precision,
83.3% recall, and 85.6% F1 measure. A comparison to two
existing systems in detecting past affirmed travel is presented

in Table 3. Another example of these systems for any annotated
travel location mentions, whether affirmed, past, negated, or
future, is provided in Table 4. Although neither comparison is
ideal, these differences highlight that identifying travel history
is distinct from typical geolocation recognition.

Table 3. Comparison of our model to two other general-purpose baselines in the task of identifying past affirmed travel locations.

F1 scoreRecallPrecisionModel

52.876.740.2Stanford location NERa

45.562.036.0spaCy NER

85.683.388.0Proposed model

aNER: named-entity recognition.

Table 4. Comparison of the two other general-purpose baselines in the task of identifying any annotated travel location, whether affirmed, negated, or
future.

F1 scoreRecallPrecisionModel

70.781.762.3Stanford Location NERa

57.563.452.5spaCy NER

aNER: named-entity recognition.

Feature importance of our proposed model was measured as an
ablation experiment quantifying contribution of each feature

set with respect to a baseline set of surface-level features. The
results of this feature ablation are presented in Table 5.
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Table 5. Ablation results of model features.

F1 score (95% CI)Recall (95% CI)Precision (95% CI)Feature set

76.3 (72.7-79.5)69.1 (64.5-74.1)85.0 (80.8-87.0)Tokens, lemmas, token shape

79.1 (75.8-82.1)72.2 (67.6-76.9)87.4 (83.3-90.5)+ Part of speech

81.3 (78.0-84.3)77.2 (72.9-81.1)85.9 (82.1-89.4)+ Character n-grams

79.4 (76.0-82.6)75.2 (70.9-79.7)84.1 (79.9-87.1)+ Gazetteer match

80.8 (77.3-83.7)74.9 (70.7-79.3)87.6 (83.7-90.9)+ Word embedding clusters

85.6 (82.5-87.9)83.3 (78.9-86.6)88.0 (84.2-90.9)All features

Since hyperparameter values such as token window size and
the size of character n-grams have an impact on model
performance, some of these were varied to identify the optimal
parameters and quantify sensitivity to value changes. These

values did not appear to cause much variance in precision but
did improve recall. The best performing model integrated
features within a window size of 2 tokens and character n-grams
of size 2 and 3. This analysis is presented in Table 6.

Table 6. Results of varying certain feature extraction hyperparameters.

F1 score (95% CI)Recall (95% CI)Precision (95% CI)Parameter difference

84.1 (80.9-86.4)80.5 (76.7-84.3)87.8 (84.3-91.2)Window size=1

83.1 (79.7-86.1)79.2 (74.8-83.6)87.4 (83.9-90.9)Window size=3

85.2 (82.6-88.1)82.7 (79.0-86.4)87.9 (84.5-91.1)Character n-gram size=2

84.4 (81.4-87.0)81.2 (77.4-84.8)87.9 (84.0-91.0)Character n-gram size=3

84.3 (81.6-86.9)81.0 (77.1-84.6)87.9 (84.1-91.0)Character n-gram size=4

85.6 (82.5-87.9)83.3 (78.9-86.6)88.0 (84.2-90.9)Optimal hyperparameters (window size=2, character n-gram
sizes=2 and 3)

Since this pipeline has been deployed for running daily
operations, we have measured the total processing time for
querying source documents, processing them, and storing the
results back to the database. In February 2020, responding to
the spread of COVID-19, over 978,000 documents were
processed with a median length of 2414 characters. Throughput
for the system is an average of 2.01 documents per second using
a single machine core (ie, Intel Xeon E5-4650 @ 2.10 GHz).

Postdeployment Evaluation Results
Evaluation of the system on a previously unseen sample of
patients and documents following deployment resulted in an
estimated system performance of 71.9% precision, 78.1% recall,
and 74.9% F1 measure. In consultation with infectious disease
analysts, the measured performance was determined to be not
sufficient, so the newly created annotations were used to perform
an error analysis of model predictions. Several of the false
positives were instances in which the initial model predicted
future or negated travel. Many of the false negatives were
locations whose spelling did not match canonical gazetteer
entries. Besides these errors, the annotated corpus was reviewed,
and some annotations were adjudicated and modified. Several
of these adjudicated annotations occurred in statements of future
or hypothetical travel, indicating that the guideline may benefit
from refinement. Additional feature types were evaluated
including word embedding clusters and character n-grams.
Ablation experiments were performed to determine the best
feature set. Before these improvements, the model’s performance
on the test split of annotated documents was 82.9% precision,
76.4% recall, and 79.5% F1 measure. The improved model

exhibited a 6.1% increase in F1 and is reported in the preceding
section.

Discussion

Principal Findings
In this study, we have explored and demonstrated the feasibility
of extracting patient travel history from clinical documentation
of a large national cohort. Relying on semiautomated methods
for lexicon expansion, we manually labeled a data set to train
an extraction model. Our findings demonstrate that training an
accurate model to extract travel mentions is feasible in an
automated system. Both labeled sets and the modeling
approaches were chosen to minimize development time and
computational resources necessary to continue surveillance in
day-to-day operations. The baseline comparison presented here
is a simplified evaluation, but it demonstrates that
general-purpose geoparsing solutions alone result in lower
precision. This is due to these systems labeling all locations in
text, while the task in this study was to identify past affirmed
travel for public health response. Our system has been deployed
for operational use.

Since graphics processing unit acceleration is not currently
available in the computing environments where system
development was conducted and models later deployed, more
costly model options such as recurrent neural networks and
contextual language models (ie, Bidirectional Encoder
Representations from Transformers, Generative Pre-trained
Transformer 2, and Universal Language Model Fine-tuning)
have not yet been evaluated [35-37]. Rather, we present a linear
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model that leverages information from neural language models
that can be rapidly trained on widely available hardware. Our
system has been deployed on a central processing unit to support
health care operations churning through large volumes of clinical
documents daily. Since deployment in November 2017 through
July 2020, more than 18 million documents have been processed
as part of a daily data pipeline.

Our proposed system exhibits promising performance of location
mention retrievals in text. Future work may attempt to
disambiguate location text or resolve mentions to a geolocation.
Additionally, annotation of timing or duration of travel could
provide another layer of travel history. We have not yet
measured how frequently such information is recorded in EHR,
but we hope to answer this question in a future study.

Further, although negated location mentions were annotated for
the reference standard, these were not used at the time of
training. The extraction model may be improved by
distinguishing between affirmed and negated locations, and
public health efforts could be assisted by such information when
conducting efforts to rule out exposures.

Originally deployed in November 2017, this system has been
used in VA to rapidly respond to public health events. Given
that this system processes millions of notes each week, it can
be integrated with other biosurveillance metrics to give a sense
to decision makers about the extent that travel history may be
playing a role in disease dynamics. These higher-level metrics
include the absolute counts and percentages of emergency
department visits with respect to syndromic categories such as
respiratory illness, gastrointestinal conditions, and diseases.

After this system was deployed, it was initially used by VA
biosurveillance analysts to rapidly screen new cases of Zika in
the nation. Rapid visibility of automated travel history
extractions allowed analysts to scan new cases and perform
additional chart review daily if there was no travel history in
the patient profile. For example, if a new case of Zika occurred
for a patient living in a midwestern state without an automated
travel profile, the next step could be to perform a chart review
to determine whether the case might be reflective of local
transmission. Since chart review can be a time-consuming
process, the fact that many patients already had a travel profile
to an endemic area meant that less time was consumed in manual
review. Cases that did have a profile could be easily verified
by performing keyword searches stemming from locations
visited.

This system was already running in early 2020 such that it could
be leveraged in response to the spread of COVID-19 in the
United States. This capability was useful in early stages of
transmission, as it was able to identify mentions of travel to
endemic areas.

One way that this extraction was useful was by setting up broad
surveillance and then using travel as additional criteria.
Specifically, case review could be prioritized using case
definitions for respiratory and influenza-like illness we had
developed for broad syndromic surveillance. These definitions
required both relevant International Classification of Diseases,
Tenth Revision (ICD-10) diagnostic coding and concepts for

signs and symptoms extracted from chief complaint text as
concept unique identifiers (CUI) in the Unified Medical
Language System [38]. ICD-10 codes were drawn from
resources provided by the International Society for Disease
Surveillance [39]. CUI values for these broad syndromic
definitions were collected from prior work [40]. Combining
multiple aspects of clinical data with travel information
permitted rapid selection of cases to review in January 2020.
During February 2020, as testing for COVID-19 became more
standard, combining orders or results for such testing and travel
regions permitted more specific case review.

This study was limited as the selection of annotation corpus
was performed by location keywords and travel phrases. This
could entail a bias in the location types and variants used in
annotation and model training. We attempted to address these
limitations of the annotation corpus by performing manual chart
review and random sampling. This review was limited by
resources, so future work may ensure that the annotation corpus
is free of potential bias by performing further review by random
sampling or other strategies leveraging clinical evidence.
Although acceptable, the relatively low level of annotator
agreement may be a potential limitation of our system.
Additionally, preliminary data from corpus selection indicates
that past affirmed travel mentions in clinical documents are
likely to be imbalanced. Given this, experiments in ongoing
work may achieve better model performance by exploring class
imbalance strategies such as undersampling or oversampling.

The utility of this system for COVID-19 specifically was limited
to a relatively brief window in the early phases of transmission
when containment was possible and travel was a pertinent risk
factor. The Centers for Disease Control and Prevention (CDC)
guidance for Persons Under Investigation on February 12, 2020,
included explicit mention for travel to Wuhan or Hubei Province
[41]. By March 4, the CDC removed these criteria and instead
encouraged clinicians to use best judgment for virus testing
[42]. In some surveillance efforts, travel history was deemed to
be less important in risk assessment once community acquisition
increased [43].

When planned in 2017, considerations for this capability were
primarily concerned with importation of infectious disease, so
the scope was focused on travel outside the United States.
Presently, the deployed model does extract some location
mentions within the continental United States, but the frequency
of these extractions and remaining false negatives have not yet
been estimated. Such a capability could be useful for aiding
containment and tracking of international spread for future
epidemics.

Future work would benefit from refining the annotation
guideline and training to prevent disagreement like the examples
presented here. Furthermore, model training would benefit from
additional annotation sampled from other time periods and
infectious diseases to assess true validity and improve
performance for continued surveillance preparedness. As no
data augmentation methods were applied in this study, there are
several approaches using keyword or pattern replacement that
could improve model performance with available resources
[44-46].
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Extracting travel history from clinical notes involves the same
challenges as any efforts based on secondary use of clinical
data. Patient travel history is not always recorded in clinical
notes, so this is still an incomplete representation of actual
events. Perl and Price [15] emphasized the importance of travel
history documentation in the EHR, particularly to enable timely
response to emerging pathogens like COVID-19 to protect both
patients and frontline health care providers. We note that
recording travel history in a structured format would yield more
accurate results if faithfully adhered to, but we shall continue
to monitor, evaluate, and improve this system as we leverage
it to attain a more complete picture of disease for global health.
It remains impossible to predict future transition phases in
response to COVID-19, but we believe that such a capability
could provide value in regions engaged in the phases of
prevention or containment.

Conclusion
We have proposed methods for automated extraction of patient
travel history from clinical documents and have demonstrated
enhanced capabilities for improving public health systems. This
system has been combined with surveillance metrics to inform
decision makers on the role of travel history in disease dynamics.
It has also been used to reduce a manual chart review to verify
whether an infectious disease case may have been imported or
locally acquired. These methods have now been deployed to
ongoing operations to support enhanced understanding and
monitoring. Validity of the system has been sufficient to reduce
analyst burden, while computational requirements remain low,
allowing thousands of documents to be processed daily. Such
capabilities have been leveraged in infectious disease responses,
such as Zika and the importation of COVID-19 to the United
States, amid dynamically evolving situations. Such systems
may aid future efforts to prevent and contain the spread of
COVID-19 and other infectious diseases.

Acknowledgments
This project was funded by the Department of Homeland Security, National Biosurveillance Integration Center. This project was
supported with facilities at the VA Salt Lake City Informatics, Decision Enhancement, and Analytic Sciences Center in Salt Lake
City, Utah and data resources from VA Informatics and Computing. The views expressed are those of the authors and do not
necessarily reflect the position or policy of the Department of VA or the United States government. We thank the editor and
anonymous reviewers for their feedback in ameliorating the reporting of this study.

Conflicts of Interest
None declared.

References

1. Duong TN, Waldman SE. Importance of a travel history in evaluation of respiratory infections. Curr Emerg Hosp Med Rep
2016;4(3):141-152 [FREE Full text] [doi: 10.1007/s40138-016-0109-y] [Medline: 32226655]

2. Alexander C, Cottom L, Smith K, Perrow K, Coyne M, Jones B. Schistosomiasis in Scottish travellers: public health
importance of laboratory testing and the need for enhanced surveillance. J Public Health (Oxf) 2018 Mar 01;40(1):138-145.
[doi: 10.1093/pubmed/fdx024] [Medline: 28335010]

3. Chapman WW, Gundlapalli AV, South BR, Dowling JN. Natural language processing for biosurveillance: detection and
characterization from textual clinical reports. In: Castillo-Chavez C, Chen H, Lober WB, Thurmond M, Zeng D, editors.
Infectious Disease Informatics and Biosurveillance: Research, Systems and Case Studies. Berlin, Germany: Springer;
2011:279-310.

4. Peterson K, Denhalter D, Patterson OV, Jones M. Can electronic clinical notes identify travelers with Zika? Open Forum
Infect Dis 2018;5(suppl_1):S168. [doi: 10.1093/ofid/ofy210.457]

5. Morris T, Cicchinelli M, McGarvey S, Johnson J, Conn L, Loonsk J. PHIN preparedness: outbreak management. 2005
Presented at: 2005 AMIA Annual Symposium; 2005; Washington, DC.

6. Salminen J, Almerekhi H, Milenković M, Jung SG, An J, Kwak H, et al. Anatomy of online hate: developing a taxonomy
and machine learning models for identifying and classifying hate in online news media. 2018 Presented at: International
AAAI Conference On Web And Social Media; 2018; Stanford, CA.

7. García-Constantino M, Atkinson K, Bollegala D, Chapman K, Coenen F, Roberts C, et al. CLIEL: context-based information
extraction from commercial law documents. In: Proceedings of the 16th edition of the International Conference on Articial
Intelligence and Law. 2017 Presented at: ICAIL '17; June 2017; London, UK p. 79-87. [doi: 10.1145/3086512.3086520]

8. Steinkamp JM, Chambers C, Lalevic D, Zafar HM, Cook TS. Toward complete structured information extraction from
radiology reports using machine learning. J Digit Imaging 2019 Aug;32(4):554-564 [FREE Full text] [doi:
10.1007/s10278-019-00234-y] [Medline: 31218554]

9. Christopoulou F, Tran T, Sahu S, Miwa M, Ananiadou S. Adverse drug events and medication relation extraction in
electronic health records with ensemble deep learning methods. J Am Med Inform Assoc 2020 Jan 01;27(1):39-46 [FREE
Full text] [doi: 10.1093/jamia/ocz101] [Medline: 31390003]

JMIR Public Health Surveill 2021 | vol. 7 | iss. 3 | e26719 | p. 10https://publichealth.jmir.org/2021/3/e26719
(page number not for citation purposes)

Peterson et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://europepmc.org/abstract/MED/32226655
http://dx.doi.org/10.1007/s40138-016-0109-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32226655&dopt=Abstract
http://dx.doi.org/10.1093/pubmed/fdx024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28335010&dopt=Abstract
http://dx.doi.org/10.1093/ofid/ofy210.457
http://dx.doi.org/10.1145/3086512.3086520
http://europepmc.org/abstract/MED/31218554
http://dx.doi.org/10.1007/s10278-019-00234-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31218554&dopt=Abstract
http://europepmc.org/abstract/MED/31390003
http://europepmc.org/abstract/MED/31390003
http://dx.doi.org/10.1093/jamia/ocz101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31390003&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


10. Finkel JR, Grenager T, Manning C. Incorporating non-local information into information extraction systems by Gibbs
sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. 2005 Presented at:
ACL '05; June 2005; Ann Arbor, MI p. 363-370. [doi: 10.3115/1219840.1219885]

11. Liu X, Zhang S, Wei F, Zhou M. Recognizing named entities in tweets. 2011 Presented at: 49th Annual Meeting of the
Association for Computational Linguistics; June 19-24, 2011; Portland, OR p. 359-367.

12. Magge A, Weissenbacher D, Sarker A, Scotch M, Gonzalez-Hernandez G. Deep neural networks and distant supervision
for geographic location mention extraction. Bioinformatics 2018 Jul 01;34(13):i565-i573 [FREE Full text] [doi:
10.1093/bioinformatics/bty273] [Medline: 29950020]

13. Niehus R, De Salazar PM, Taylor AR, Lipsitch M. Estimating underdetection of internationally imported COVID-19 cases.
medRxiv. Preprint posted online February 14, 2020. [FREE Full text]

14. Niehus R, De Salazar PM, Taylor AR, Lipsitch M. Quantifying bias of COVID-19 prevalence and severity estimates in
Wuhan, China that depend on reported cases in international travelers. medRxiv. Preprint posted online February 18, 2020.
[FREE Full text] [doi: 10.1101/2020.02.13.20022707]

15. Perl TM, Price CS. Managing emerging infectious diseases: should travel be the fifth vital sign? Ann Intern Med 2020 Apr
21;172(8):560-561 [FREE Full text] [doi: 10.7326/M20-0643] [Medline: 32120386]

16. Mackey T, Purushothaman V, Li J, Shah N, Nali M, Bardier C, et al. Machine learning to detect self-reporting of symptoms,
testing access, and recovery associated with COVID-19 on Twitter: retrospective big data infoveillance study. JMIR Public
Health Surveill 2020 Jun 08;6(2):e19509 [FREE Full text] [doi: 10.2196/19509] [Medline: 32490846]

17. Dawood FS, Ricks P, Njie GJ, Daugherty M, Davis W, Fuller JA, et al. Observations of the global epidemiology of
COVID-19 from the prepandemic period using web-based surveillance: a cross-sectional analysis. Lancet Infect Dis 2020
Nov;20(11):1255-1262 [FREE Full text] [doi: 10.1016/S1473-3099(20)30581-8] [Medline: 32738203]

18. Xu B, Kraemer MUG, Open COVID-19 Data Curation Group. Open access epidemiological data from the COVID-19
outbreak. Lancet Infect Dis 2020 May;20(5):534 [FREE Full text] [doi: 10.1016/S1473-3099(20)30119-5] [Medline:
32087115]

19. Veterans Health Administration. US Department of Veterans Affairs. URL: https://www.va.gov/health/ [accessed 2021-03-15]
20. Alba P, Patterson O, Viernes B, Denhalter D, Bailey N, Wilson A, et al. The super annotator: a method of semi-automated

rare event identification for large clinical data sets. 2016 Presented at: AMIA 2016 Annual Symposium; November 12-16,
2016; Chicago, IL.

21. GeoNames. 2020. URL: http://www.geonames.org/ [accessed 2021-03-15]
22. Cornia R, Patterson O, Ginter T, DuVall S. Rapid NLP development with Leo. 2014 Presented at: AMIA 2014 Annual

Symposium; November 15-19, 2014; Washington, DC.
23. DuVall S, Forbush T, Cornia R, Ginter T, Adams B, Palmer M, et al. Reducing the manual burden of medical record review

through informatics: 772. Pharmacoepidemiology Drug Safety 2014:772.
24. Lafferty J, McCallum A, Pereira FCN. Conditional random fields: Probabilistic models for segmenting and labeling sequence

data. In: Proceedings of the Eighteenth International Conference on Machine Learning. 2001 Presented at: ICML '01; June
2001; Williamstown, MA p. 282-289 URL: https://repository.upenn.edu/cis_papers/159/

25. Okazaki N. CRFsuite: a fast implementation of conditional random fields (CRFs). Naoaki Okazaki. 2007. URL: http://www.
chokkan.org/software/crfsuite/ [accessed 2021-03-15]

26. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J
Machine Learning Res 2011;12:2825-2830.

27. Guo J, Che W, Wang H, Liu T. Revisiting embedding features for simple semi-supervised learning. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing. 2014 Presented at: EMNLP '14; October 2014;
Doha, Qatar p. 110-120 URL: http://www.aclweb.org/anthology/D/D14/D14-1012.pdf [doi: 10.3115/v1/d14-1012]

28. Chapman AB, Peterson KS, Alba PR, DuVall SL, Patterson OV. Detecting adverse drug events with rapidly trained
classification models. Drug Saf 2019 Jan;42(1):147-156 [FREE Full text] [doi: 10.1007/s40264-018-0763-y] [Medline:
30649737]

29. Marcus M, Santorini B, Marcinkiewicz MA. Building a large annotated corpus of English: The Penn Treebank. Penn
Libraries 1993.

30. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. New York, NY: Chapman and Hall/CRC; 1994.
31. Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 1983

Jun;78(382):316-331. [doi: 10.1080/01621459.1983.10477973]
32. spaCy. URL: https://spacy.io/ [accessed 2021-03-15]
33. Gritta M, Pilehvar MT, Collier N. A pragmatic guide to geoparsing evaluation: toponyms, Named Entity Recognition and

pragmatics. Lang Resour Eval 2020;54(3):683-712 [FREE Full text] [doi: 10.1007/s10579-019-09475-3] [Medline:
32802011]

34. Cohen J. A coefficient of agreement for nominal scales. Educ Psychological Meas 2016 Jul 02;20(1):37-46. [doi:
10.1177/001316446002000104]

35. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
arXiv. Preprint posted online October 11, 2018. [FREE Full text]

JMIR Public Health Surveill 2021 | vol. 7 | iss. 3 | e26719 | p. 11https://publichealth.jmir.org/2021/3/e26719
(page number not for citation purposes)

Peterson et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://dx.doi.org/10.3115/1219840.1219885
http://europepmc.org/abstract/MED/29950020
http://dx.doi.org/10.1093/bioinformatics/bty273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29950020&dopt=Abstract
https://www.medrxiv.org/content/10.1101/2020.02.13.20022707v1
https://www.medrxiv.org/content/10.1101/2020.02.13.20022707v2
http://dx.doi.org/10.1101/2020.02.13.20022707
https://www.acpjournals.org/doi/10.7326/M20-0643?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.7326/M20-0643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32120386&dopt=Abstract
https://publichealth.jmir.org/2020/2/e19509/
http://dx.doi.org/10.2196/19509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32490846&dopt=Abstract
http://europepmc.org/abstract/MED/32738203
http://dx.doi.org/10.1016/S1473-3099(20)30581-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32738203&dopt=Abstract
http://europepmc.org/abstract/MED/32087115
http://dx.doi.org/10.1016/S1473-3099(20)30119-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32087115&dopt=Abstract
https://www.va.gov/health/
http://www.geonames.org/
https://repository.upenn.edu/cis_papers/159/
http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/
http://www.aclweb.org/anthology/D/D14/D14-1012.pdf
http://dx.doi.org/10.3115/v1/d14-1012
http://europepmc.org/abstract/MED/30649737
http://dx.doi.org/10.1007/s40264-018-0763-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30649737&dopt=Abstract
http://dx.doi.org/10.1080/01621459.1983.10477973
https://spacy.io/
http://europepmc.org/abstract/MED/32802011
http://dx.doi.org/10.1007/s10579-019-09475-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32802011&dopt=Abstract
http://dx.doi.org/10.1177/001316446002000104
http://arxiv.org/abs/1810.04805
http://www.w3.org/Style/XSL
http://www.renderx.com/


36. Howard J, Ruder S. Universal language model fine-tuning for text classification. arXiv. Preprint posted online January 18,
2018. [FREE Full text] [doi: 10.18653/v1/p18-1031]

37. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI
Blog 2019;1(8):9.

38. Lindberg DAB, Humphreys BL, McCray AT. The Unified Medical Language System. Methods Inf Med 2018 Feb
06;32(04):281-291. [doi: 10.1055/s-0038-1634945]

39. Hicks P, Pavlin JA, Baer A, Swenson D, Kite-Powell A, Jayatilleke AU, et al. Syndromic surveillance. Online J Public
Health Inform 2015;7(1):e28.

40. Chapman WW, Dowling JN, Baer A, Buckeridge DL, Cochrane D, Conway MA, et al. Developing syndrome definitions
based on consensus and current use. J Am Med Inform Assoc 2010;17(5):595-601 [FREE Full text] [doi:
10.1136/jamia.2010.003210] [Medline: 20819870]

41. Evaluating and reporting persons under investigation (PUI). Centers for Disease Control and Prevention. URL: https://web.
archive.org/web/20200213123640/https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html [accessed
2020-02-13]

42. Evaluating and reporting persons under investigation (PUI). Centers for Disease Control and Prevention. URL: https://web.
archive.org/web/20200305002956/https:/www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html [accessed
2020-03-05]

43. Krausz M, Westenberg JN, Vigo D, Spence RT, Ramsey D. Emergency response to COVID-19 in Canada: platform
development and implementation for eHealth in crisis management. JMIR Public Health Surveill 2020 May 15;6(2):e18995
[FREE Full text] [doi: 10.2196/18995] [Medline: 32401218]

44. Kobayashi S. Contextual augmentation: data augmentation by words with paradigmatic relations. 2018 Presented at: 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2; June 2018; New Orleans, LA p. 452-457. [doi: 10.18653/v1/n18-2072]

45. Wang X, Pham H, Dai Z, Neubig G. SwitchOut: an efficient data augmentation algorithm for neural machine translation.
2018 Presented at: 2018 Conference on Empirical Methods in Natural Language Processing; October 2018; Brussels,
Belgium. [doi: 10.18653/v1/d18-1100]

46. Wei J, Zou K. EDA: easy data augmentation techniques for boosting performance on text classification tasks. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing. 2019 Presented at: EMNLP-IJCNLP '19; November 2019; Hong Kong, China. [doi:
10.18653/v1/d19-1670]

Abbreviations
CDC: Centers for Disease Control and Prevention
CRF: conditional random fields
CUI: concept unique identifiers
EHR: electronic health record
ICD-10: International Classification of Diseases, Tenth Revision
NER: named-entity recognition
NLP: natural language processing
VA: Veterans Affairs

Edited by T Sanchez; submitted 23.12.20; peer-reviewed by M Rodrigues, Z Ren, O Serban, S Das Bhattacharjee; comments to author
18.01.21; revised version received 05.02.21; accepted 12.02.21; published 24.03.21

Please cite as:
Peterson KS, Lewis J, Patterson OV, Chapman AB, Denhalter DW, Lye PA, Stevens VW, Gamage SD, Roselle GA, Wallace KS, Jones
M
Automated Travel History Extraction From Clinical Notes for Informing the Detection of Emergent Infectious Disease Events:
Algorithm Development and Validation
JMIR Public Health Surveill 2021;7(3):e26719
URL: https://publichealth.jmir.org/2021/3/e26719
doi: 10.2196/26719
PMID: 33759790

©Kelly S Peterson, Julia Lewis, Olga V Patterson, Alec B Chapman, Daniel W Denhalter, Patricia A Lye, Vanessa W Stevens,
Shantini D Gamage, Gary A Roselle, Katherine S Wallace, Makoto Jones. Originally published in JMIR Public Health and

JMIR Public Health Surveill 2021 | vol. 7 | iss. 3 | e26719 | p. 12https://publichealth.jmir.org/2021/3/e26719
(page number not for citation purposes)

Peterson et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://arxiv.org/abs/1801.06146
http://dx.doi.org/10.18653/v1/p18-1031
http://dx.doi.org/10.1055/s-0038-1634945
http://europepmc.org/abstract/MED/20819870
http://dx.doi.org/10.1136/jamia.2010.003210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20819870&dopt=Abstract
https://web.archive.org/web/20200213123640/https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
https://web.archive.org/web/20200213123640/https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
https://web.archive.org/web/20200305002956/https:/www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
https://web.archive.org/web/20200305002956/https:/www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
https://publichealth.jmir.org/2020/2/e18995/
http://dx.doi.org/10.2196/18995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32401218&dopt=Abstract
http://dx.doi.org/10.18653/v1/n18-2072
http://dx.doi.org/10.18653/v1/d18-1100
http://dx.doi.org/10.18653/v1/d19-1670
https://publichealth.jmir.org/2021/3/e26719
http://dx.doi.org/10.2196/26719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33759790&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Surveillance (http://publichealth.jmir.org), 24.03.2021. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly
cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this
copyright and license information must be included.

JMIR Public Health Surveill 2021 | vol. 7 | iss. 3 | e26719 | p. 13https://publichealth.jmir.org/2021/3/e26719
(page number not for citation purposes)

Peterson et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

