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Abstract

Background: Modelling COVID-19 transmission at live events and public gatherings is essential to controlling the probability
of subsequent outbreaks and communicating to participants their personalized risk. Yet, despite the fast-growing body of literature
on COVID-19 transmission dynamics, current risk models either neglect contextual information including vaccination rates or
disease prevalence or do not attempt to quantitatively model transmission.

Objective: This paper attempted to bridge this gap by providing informative risk metrics for live public events, along with a
measure of their uncertainty.

Methods: Building upon existing models, our approach ties together 3 main components: (1) reliable modelling of the number
of infectious cases at the time of the event, (2) evaluation of the efficiency of pre-event screening, and (3) modelling of the event’s
transmission dynamics and their uncertainty using Monte Carlo simulations.

Results: We illustrated the application of our pipeline for a concert at the Royal Albert Hall and highlighted the risk’s dependency
on factors such as prevalence, mask wearing, and event duration. We demonstrate how this event held on 3 different dates (August
20, 2020; January 20, 2021; and March 20, 2021) would likely lead to transmission events that are similar to community transmission
rates (0.06 vs 0.07, 2.38 vs 2.39, and 0.67 vs 0.60, respectively). However, differences between event and background transmissions
substantially widened in the upper tails of the distribution of the number of infections (as denoted by their respective 99th quantiles:
1 vs 1, 19 vs 8, and 6 vs 3, respectively, for our 3 dates), further demonstrating that sole reliance on vaccination and antigen
testing to gain entry would likely significantly underestimate the tail risk of the event.

Conclusions: Despite the unknowns surrounding COVID-19 transmission, our estimation pipeline opens the discussion on
contextualized risk assessment by combining the best tools at hand to assess the order of magnitude of the risk. Our model can
be applied to any future event and is presented in a user-friendly RShiny interface. Finally, we discussed our model’s limitations
as well as avenues for model evaluation and improvement.

(JMIR Public Health Surveill 2021;7(12):e30648) doi: 10.2196/30648
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Introduction

Background

Evaluating the Safety of Live Events
More than a year after a global and unprecedented cancellation
of live events in March 2020, the future of live events and the
entertainment industry remains uncertain despite increasing
vaccination rates and low community prevalence levels (at the
time of writing). The main concern raised by these gatherings
lies in their susceptibility to “super-spreading”—a scenario
whereby a few contagious participants inadvertently infect a
disproportionately large number of others [1-6] and that has
been highlighted as a significant driver of the pandemic [7-10].
Despite the re-opening of live events in the United Kingdom
on July 19, 2021, the threat of existing and emergent COVID-19
variants coupled with dwindling immunity from vaccination
over time suggests that policy makers and event organizers will
likely continue to struggle with the following 2 questions: (1)
Is the COVID-19 transmission risk posed by these events
tolerable? and (2) What additional safety measures can be
feasibly deployed to reduce this risk?

The answer to these questions is inherently tied to the estimation
of 2 quantities: the number of infections occurring at the event
and the postevent secondary attack rate, or number of subsequent
infections in the participants’social circles. Evaluating the safety
(or lack thereof) of large public gatherings can then be reframed
as quantifying the significance and magnitude of their effect on
the distribution of the number of primary and secondary
COVID-19 cases. Yet, despite the growing body of literature
on COVID-19 risk evaluation and recent efforts to evaluate the
safety of live events, this effect remains ill-characterized.
Nevertheless, over the past several months, several calculators
were developed to estimate this risk [11-14]. These methods
can typically be placed in 1 of 3 categories: ranking heuristics,
context-based heuristics, and transmission risk calculators.

Ranking Heuristics
These estimators typically rank events on a scale ranging from
“low” risk to “high” risk based on the feedback of medical
experts [13,15-17]. However, these heuristics do not take into
account contextual information, including the prevalence. For
example, the risk associated with an event would be classified
as high regardless of whether it was held in August 2020
(background prevalence of 1 in 3000 individuals in the United
Kingdom) or January 2021 (prevalence of 1 in 60 individuals
[18]).

Context-Based Heuristics
These calculators estimate the probability of encountering 1
COVID-19 case based on the number of people attending an
event [11,12]. While more context-aware than risk assessment
charts, such estimators do not attempt to model transmission
dynamics—which is undeniably one of the main unknowns in
the spread of viral epidemics—and consequently rarely stratify
risk by type of activity. To exemplify, a classical music recital
of 1.5 hours for the BBC Proms would potentially be considered
equally risky to a 3-hour concert in which participants could be
expected to sing along.

Transmission Risk Calculators
Stemming from physics or fluid dynamics, these calculators
focus on modelling the aerosolization and spread of
microdroplets—typically in a closed or indoor environment
[19-22]. These fine-grained models thus must be combined with
extensive and often prohibitive simulations of crowd movements
in order to model transmission dynamics during any given event.

Limitations of Existing Estimators
Regardless of their category, most of these models rely on a
large number of input parameters, including (but not restricted
to) the prevalence of the disease. While certain calculators
attempt to bridge the gap between expert heuristics and physical
models [11,23], they are not capable of predicting the risk of a
future event. Moreover, all of these estimators provide point
estimates—in other words, their output is a single number to
quantify the risk. Given the uncertainty associated with all the
inputs and the parametrization of the problem as well as the
high stochasticity of viral transmission, the provision of a single
consolidated outcome or number can potentially be misleading.
This is because a singular focus on the expected outcome
precludes consideration of the distribution of all possible
outcomes, including worst-case scenarios. In the context of
COVID-19, where the majority of new cases has been shown
to be caused by a minority of index cases [24-26], the modelling
of tail events and potential super-spreader phenomena takes on
significant importance for risk assessment [26,27].

Mitigating Transmission Risk
Meanwhile, with the increasing vaccination rates in several
countries around the world, a few initiatives have begun to
evaluate the outbreak risk associated with live events empirically
[28-31]. This is because vaccinated individuals may still be
infected with SARS-CoV-2 [32,33], and even antigen-test based
screening of ticket holders offers no guarantee due to false
negatives [34,35]. The estimation of what constitutes an
admissible level of risk thus poses a difficult conundrum to the
live event industry. To begin answering these questions, the
CAPACITY study [36]—a partnership between Certific (a
private, remote testing, health status, and identify certification
service) and Imperial College London—aims to predict and
measure the outcomes of full capacity live events while ensuring
rigorous implementation and alignment to current public health
and recommended safety measures. Central to this study is the
provision of a streamlined and efficient pre-event screening
protocol of all ticket holders using professionally witnessed
rapid at-home antigen tests followed by postevent monitoring
based on antigen tests, surveys, and safety recommendations
(see Multimedia Appendix 1). In this setting, providing risk
estimates not only becomes essential in communicating to the
ticket holders their own level of risk so that they may make an
informed decision of whether to attend the event but also
necessary to inform event managers and policy makers on the
likelihood of an outbreak task that serves here as the motivating
application behind this paper.

A Working Example: Concert at the Royal Albert Hall
In order to understand and illustrate the potential challenges
that arise in the risk estimation for the CAPACITY study, we
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considered as an example a concert at the Royal Albert Hall
(RAH) and demonstrate how to estimate the associated risk
assuming a near capacity attendance of 5000 in the main concert

hall, which has a volume of 86,650 m3 [37], with a dwell time
of 3 hours. Attendees will be assumed to be a cross-section
representative of the general British public and will be required
to have a negative COVID-19 antigen test result within 2 days
prior to the event, as well as satisfying other self-declared
symptoms and exposure-risk questions. Vaccination status would
be requested, but not required, for attendance, and full
compliance with mask wearing was assumed in our default
example.

Goals and Contributions
The objectives of our modelling approach were threefold: (1)
enable the quantitative comparison of different activities and
event characteristics, (2) estimate the efficacy of various safety
protocols, and (3) provide a predictive risk assessment (ie, the
risk associated with a scheduled future event). To this end, we
delineated our approach into 3 sequential steps (see Figure 1):
(1) estimating the number of contagious participants, (2)
evaluating the transmission dynamics, and (3) comparing the
risk of holding the event with the null model (ie, if the event
had not taken place). We illustrated the application of our risk
modelling pipeline in the RAH example to highlight the risk’s
dependency on factors such as prevalence, mask wearing,
number of attendees, and event duration. In particular, we
demonstrated how this particular event held on 3 different dates
corresponding to 3 distinct COVID-19 prevalence regimes in

the United Kingdom (stable low prevalence: August 20, 2020;
high prevalence peak: January 20, 2021; medium declining
prevalence: March 20, 2021) would likely lead to transmission
events that were on par with community transmission rates (0.06
vs 0.07, 2.38 vs 2.39, and 0.67 vs 0.60, respectively; see Table
1). However, the 99th percentile of the prediction interval for
the infections at the event would likely be substantially higher
than the background rate (1 vs 1, 19 vs 8, and 6 vs 3,
respectively), further demonstrating that sole reliance on
vaccination and antigen testing to gain entry would significantly
underestimate the tail risk of the event. However, we emphasize
that the goal of this paper is not to present a novel
“state-of-the-art” risk estimation procedure. This is because
COVID-19 transmission mechanisms remain poorly
characterized, and we acknowledge that our approach requires
certain simplifications and assumptions that we discuss at length
in the last section of this paper. Rather, faced with the need to
provide a risk evaluation tool despite many unknowns, our
estimation pipeline combined the best tools at hand to assess
the order of magnitude of the risk—thereby opening the avenue
for further work on contextualized COVID-19 risk assessment.
Consequently, in providing a pipeline for risk estimation, our
objective was twofold: (1) developing a publicly available
platform to increase risk awareness and promote informed
consent for event organizers and participants, while
simultaneously (2) encouraging the data collection that is
currently so desperately needed for risk assessment. Our model
can be applied to any event occurring in the near future and is
presented in a user-friendly RShiny interface [38].

Figure 1. Summary of our modelling pipeline.

Table 1. Quantiles of the number of transmission events for the Royal Albert Hall concert, by event date, assuming that all participants were wearing
masks, so that the exhalation of particles is reduced by 70% and inhalation by 50%.

March 20, 2021January 20, 2021August 20, 2020Statistics

NullEventNullEventNullEvent

002100Median

0.630.672.492.380.070.06Mean

0000001st percentile

0000002.5th percentile

337101197.5th percentile

368191199th percentile
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Methods

Modelling the Risk of a Large Public Event

Step 1: Estimating the Number of Infectious Participants
Step 1a in our risk modelling procedure was determining the
projected incidence, by predicting the number of infectious
cases attending a given future event. COVID-19 forecasting is
undeniably an involved task, as reflected by its impressive
corresponding body of literature (eg, agent-based models or
susceptible-exposed-infectious-removed models [39-49]).
Predicting the number of new cases per day typically depends
on the choice of a specific parameterization (eg, an exponential
growth for computing the reproductive number R [50,51]),
whose validity is severely hindered by continuous updates to
public policies. To alleviate these concerns, we used a
nonparametric k-nearest neighbor (kNN) approach. Using all
trajectories of the disease incidence across countries and time
since the beginning of the pandemic, we computed the k=100
closest trajectories (in terms of the l2 loss) on time windows of
2 weeks. The historical trajectories of these kNNs were then
used as a “dictionary of observed behaviors” to predict the daily
incidence rate in the days leading to the event. We defer to
Multimedia Appendix 2 for a more in-depth discussion of this

estimation procedure, a description of the parameter selection
process, and an evaluation of its performance compared with
standard epidemic prediction methods. To briefly summarize,
our kNN approach provides a nonparametric, model-agnostic
approach to epidemic prediction that is more robust for
nonstationarity in public policies than model-based approaches.
We show in Multimedia Appendix 2 that these parameters
(k=100 neighbors, fitted on trajectories of 14 days) are optimal
in allowing an accurate estimation of the trajectory while
providing adequate coverage and uncertainty quantification. In
fact, we show that, while standard methods fail to provide
reliable uncertainty estimates, our kNN methods provide a
coverage greater than 95%. Despite coming at the price of wider
prediction intervals, our pipeline privileges methods that allow
us to correctly estimate the uncertainty in its outputs—thereby
more accurately reflecting the state of our knowledge (or lack
thereof). Figure 2 presents a comparison of the projected
incidences for our 3 dates of interest (August 20, 2020; January
20, 2021; March 20, 2021) for the RAH concert using 2 weeks
of fitting and predicting 4 weeks in advance. Note the good
coverage provided by our method (the convex hull of the 95%
prediction intervals for the projected incidences contains the
actual observations). These plots also highlight the importance
and variability of the incidence, which varied by orders of
magnitude between August 2020 and January 2021.

Figure 2. Projected incidence (average and 95% prediction interval) using a 100-nearest neighbor approach, which provides good coverage (observed
trajectory lies within the 95% prediction interval). The black line denotes observed incidence rates, while the red denotes the predicted rates, based on
an initial period of observation of 14 days; the prediction interval for the predicted incidence over the next 4 weeks is highlighted in dark grey.

Step 1b was determining the under-ascertainment bias. The
estimated number of new cases based on official incidence data
will then need to be corrected for under-ascertainment. The
latter refers to the downward bias of the reported prevalence in
the population, due for instance, to limited testing capacity, low
test sensitivity, or people being unwilling or unable to take a
test. To this end, we compared the ratio of the number of deaths
over reported cases (translated by 3 weeks) to an expected,
age-stratified infection-fatality ratio [52] (see Multimedia
Appendix 2 for more details). To highlight the potential
importance of this correction step, the ascertainment rate for

the United Kingdom was evaluated as over 90% for August
2020 but below 40% for December 2020.

Step 1c was determining the number of infectious participants
at the event. Having predicted the background daily incidence
rate, we turned to the estimation of the number of infectious
participants who will attend the event despite the screening
protocols. For an infectious individual to attend the event in
spite of the CAPACITY study’s screening protocol, they must
(1) have no COVID-19–like symptoms or fail to report them
on the morning of the event, (2) receive a (false) negative result
during antigen testing D at 2 days prior to the event, and (3) be
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contagious (rather than simply infected) at the time of the event.
We evaluate the joint probability of these events as follows and,
for the sake of clarity, refer the reader to Multimedia Appendix
2 for an in-depth explanation of our estimation procedure.

Regarding symptom-check failure, one of the main challenges
associated with the COVID- 19 crisis is the number of
asymptomatic cases—that is, infected individuals who do not
express symptoms and are thus unaware of their potential
infectiousness. This group includes individuals that are either
presymptomatic or completely asymptomatic during the course

of their illness—the latter are estimated to represent roughly
25% of all cases [53]. For symptomatic patients, the probability
of having symptoms on the day of the event is also a function
of time since infection. To account for this temporal dependency,
we used estimates of the incubation period (defined as the
number of days between infection and symptom onset) from
McAloon et al [54] and data on symptom duration from van
Kampen et al [55] to estimate the probability for a ticket holder
infected k days before the event to exhibit symptoms on the day
of the event. A density plot of this probability is displayed in
red in Figure 3A.

Figure 3. (A) Density of the COVID-19 incubation time and percentage culture positive and (B) probability that an individual is infectious (light grey),
that the screening protocol will miss them (black), and that they will be missed and so attend the event (red) as a function of days since infection. The
shaded regions denote the uncertainty of this estimate due to the uncertainty on the sensitivity of the test.

Regarding antigen test failure, the sensitivity of COVID-19
tests depends heavily on the time since infection—whether these
are the gold-standard polymerase chain reaction (PCR) or lateral
flow antigen assays [56]. Moreover, studies have shown that
lateral flow antigen tests have much lower sensitivity on
asymptomatic individuals than symptomatic: In particular,
according to a recent Centers for Disease Control and Prevention
report [57], rapid antigen testing has 80% sensitivity on
symptomatic individuals, but only 40% sensitivity on
asymptomatic individuals. Coupling the sensitivity estimates
[56,57] with the distribution of the incubation period and
estimated percentage of asymptomatic cases [53,54], for each
individual infected at day k taking an antigen test D days before
the event, the probability of getting through the filtering protocol
is thus given by the formula:

where s(symptomatic)
t–k–D and s(symptomatic) are the sensitivities of

the test taken D days before the event for a symptomatic
participant infected t–k days before the event and an

asymptomatic individual, respectively. The parameter p(symptom)
t–k

denotes the probability for a symptomatic individual to exhibit

symptoms t–k days after infection, whereas p(symptom) is the
probability of being asymptomatic. Finally, the variable psc

denotes the probability of the symptom check failing—namely,
that the participant does not want to report their symptoms (see

Multimedia Appendix 2 for more details). The curve in black
on Figure 3B shows the probability of the failure of the
screening protocol as a function of days after infection. The
shaded areas denote the uncertainty around this estimate due to
the variability of the incubation time.

The infectiousness of the participants—that is, the propensity
of an infected ticket holder to contaminate others—is a function
of time since infection. In order to estimate this relationship,
we build upon the existing literature studying the link between
reverse-transcription PCR thresholds and cultivable virus
[58,59]. The percentage of culturable viral material in the sample
can indeed be used as a proxy for infectiousness. Using the
estimated percentages of viable samples [58,59] as a function
of time since symptom onset, compounded with distribution of
the incubation period duration [54], we computed an estimate
of the infectiousness as a function of time since infection (black
curve in Figure 3A). A more complete description of this
estimation procedure is presented in Multimedia Appendix 2.
The results are presented in Figure 3B. The red line in Figure
3B shows the resulting probability for an infectious ticket holder
to pass through the screening protocol and be allowed into the
event. Note that ticket holders that have been infected 5 days
before the event are the most likely to be infectious and let in
the venue on the day of the event.

Step 1d was determining the number of participants at risk.
Finally, the last quantity that we needed to infer before getting
into the specifics of the transmission mechanisms was the
number of participants at risk of being infected who present at
the event. This requires a knowledge of the participants’
COVID-19 susceptibility status (ie, has the participant already
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had COVID-19 in the previous year, or has the participant been
vaccinated?) While previous history could be imputed through
additional questions (eg, previous positive test for COVID-19
and symptoms combined in a model such as in [60]), for the
sake of simplicity, we only considered the vaccination status
of the participants—thus leaving out the proportion of the
population that had COVID-19 but was not yet vaccinated. This
induces a risk estimate that is biased upward and is thus more
conservative. We imputed missing data (cases where the
participants have not filled in their vaccination status) using
linear regression, expressing vaccination rate as a function of
time. This assumes that vaccinations are operating at capacity
(see Multimedia Appendix 2 for a longer discussion on the
reasons for this approximation and further ways of improving
this model). Having imputed the rate of new vaccinations
πs,s=1…t days leading to the event, we turned to the estimation
of the number of individuals that are likely to be susceptible.
Recent reports indicate that vaccine-acquired immunity is a
function of both time since vaccination and number of doses
[61]. To compute the effective number of participants at risk in
the event, we used a compound Poisson distribution: On each
day s in the weeks leading to the event, the number X of new
participants vaccinated (having either their first or second dose)

is expressed as a Poisson(π(dose j)), where j ∈ {1,2}. Each of

these newly vaccinated individuals then has a probability ρ(dose

j) of being immune, depending on the date and dose j that they
have received. The resulting number of immune people Z
attending the event can thus be modelled as:

We discuss in Multimedia Appendix 2 how this estimation can
easily be modified as the vaccination rates increase and the
Poisson approximation becomes no longer valid.

Royal Albert Hall Example
For the RAH example, we present a comparison of each quantity
for 3 different dates (see Table 2). Of note is that the screening
safety protocol is effective in more than 60% of cases, that when
combined with the expected infectiousness of participants and
self-reporting of COVID-19–like symptoms, implies that 95%
of infected cases are removed. We also note that prevalence is
very important in determining the number of infectious cases
at the event—thereby highlighting the importance of a
context-aware risk calculator. The combined effect of the
screening protocol and the natural time-dependent infectiousness
of infected ticket holders means that the number of infectious
participants at the event is likely to be very low (~ of the order
of tens in times of extremely high prevalence).

Table 2. Comparison of the efficiency of the screening protocol and the number of infectious participants at the event by date.

March 20, 2021aJanuary 20, 2021August 20, 2020Measurement

188128620Projected incidence (in 1,000,000)

50.2299.33.6Number of infected participants

2.007.960.22Number of infectious participants at the event

969794Percentage of caught cases, %

3860.44700.74996.4Number of susceptible participants

aVaccination rates started to account for a substantial proportion of the British public, so that the sum of the number of susceptible participants and the
number of infected participants does not equate 5000.

Step 2: Modelling Transmission Dynamics
Having estimated the number of infectious participants at the
event, the second major component of our model consists of
estimating the number of transmission events during the event
itself.

Identification of Transmission Mechanisms
More than a year after the start of the epidemic, the precise
mechanisms by which COVID-19 is transmitted are still unclear.
Aside from direct physical contact, experts continue to debate
the significance of the following 2 main routes of infection:
droplet transmission and airborne transmission.

In the scenario of droplet transmission, transmission happens
through the inhalation of droplets (particles of 5-10 µm in
diameter [62]) and typically occurs when a person is in close
proximity (within 1 meter) of someone who has respiratory
symptoms (eg, coughing or sneezing).

Increasing concerns around airborne transmission have been
raised by a number of experts over the past few months [63,64].

Airborne transmission refers to the presence of the virus within
droplet nuclei remaining in the air for long periods of time and
with the potential to travel long distances [63] and penetrate
more deeply in respiratory tracts. Airborne transmission has
been estimated to be nearly 19 times more likely indoors than
outdoors [65]. In the context of large public events, this
transmission route thus has more diffusive power and hence
could explain several super-spreader events (SSEs) [6], making
it a major cause for concern [2,63,66-72].

While droplet emission is undeniably a source of concern and
a major source of transmission, simple safety precautions such
as mask wearing have been shown to efficiently control this
transmission source [73,74]: It is estimated that face masks can
block 80% of exhaled droplets and reduce inhaled droplets by
up to 50% and so, on average, reduce the transmission
probability by 70% [73]. Conversely, the evidence concerning
the efficiency of standard protective equipment in filtering
aerosol droplets varies widely across studies probably due to
“variation in experimental design and particle sizes analyzed”
[73]. Airborne transmission in indoor settings can thus represent
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one of the main risk factors in live events, which we focus on
modelling using the aerosol model proposed by Jimenez and
collaborators [21,69,75]. This aerosol transmission model is
currently one of the only COVID-19 transmission models that
provide enough granularity to quantify the risk associated with
an event. This recognized model has been used several times
in the literature over the course of the pandemic [76], including
to allow in-class teaching at the University of Illinois at Chicago
[70]. Based on the Wells-Riley model [77-79], this estimator
calibrates the quanta to known transmission events and considers
important factors to compute a risk estimate, including
event-specific (eg, number of people, local prevalence) and
venue-specific (ventilation rate, size of the venue, UV exposure)
variables. This Wells-Riley–based model relies on the evaluation
of 3 quantities: (1) the quanta exhalation rate, which is
contingent on the activity performed and the number of
infectious participants; (2) quanta concentration, which is a
function of the volume of the space, the room ventilation rate,
and the quanta exhalation rate; and (3) quanta inhalation rate,
which is a function of the quanta concentration and breathing
rate associated with the activity performed. The probability for
each susceptible individual to be infected can then be written

as pinfection=1 – e–qinhalation. See Multimedia Appendix 3 for more
details.

Modelling the Uncertainty of the Model
To estimate the uncertainty associated with this model, we used
Monte-Carlo simulations. We simulated random input
parameters (number of infectious and susceptible individuals)
using the distributions and uncertainty estimates discussed in
the previous section. In order to model the uncertainty associated
with the aerosol transmission model, we added a sampling step
at the end of the Jimenez and Peng pipeline. This allowed us to
account for individual variations in infectious participants’
ability to spread the disease and to remain consistent with the
extensive literature on the heavy-tailed Pareto nature of
COVID-19 transmission and superspreading [24-27]. For each
infected participant, we sampled the number of quanta that they
exhale using a Pareto distribution with shape θ = 1.16 and rate

η = θ/(θ – 1)qexhalation. This produces a distribution centered

around qexhalation but skewed to the right and
heavy-tailed—thereby modelling the heterogeneity in infected
participants’ability to spread. This choice of parameters allowed
us to abide by the Pareto principle, according to which 80% of
transmissions are due to 20% of those infected. In accordance
with the uniform mixing assumption of the aerosol transmission
models, susceptible participants then all inhale a quanta
concentration that is a function of the sum of the exhaled quanta:
All have an identical probability of becoming infected. In
mathematical terms, infections are thus simulated using a
binomial distribution such that ninfected ~ Binomial(nsusceptible, 1

– e–qinhaled). We discuss the limitations of this approach and its
assumptions in the discussion section of this paper.

The code for the model can be found online on the authors’
Github [80].

Results

Step 3: Comparison With the Null Model
To quantify the effect of the event, it is necessary to put it in
context of the background rate of infections: Even if the
participants had not been to the event, they could have been
infected elsewhere. In this null model, the number of infections
is binomially distributed, such that the number infections Y is
Y ∼ Binom(nsusceptible, π).

We present the results for the RAH example in Table 2. This
table shows in grey the values of the different quantiles of this
distribution. We note the skewed distribution that we obtain is
expected given the modelling of the uncertainty around
inhalation rate. If the event did not occur, then on each
respective date, there would be an expected community
transmission of 0.07 (95% prediction interval: 0-1), 2.5 (95%
prediction interval: 0-7), and 0.63 (95% prediction interval: 0-3)
events on August 20, 2020, January 20, 2021, and March 20,
2021, respectively. However, with the event taking place on
these dates and calculating the expected number of infectious
individuals, susceptible individuals, and transmission dynamics
within the venue, the distribution of the number of transmission
events would in general widen to 0.06 (0-1), 2.38 (0-19), and
0.67 (0-6) in that same order. In this case, it is important to note
the similarity in mean transmission between the “event” and
“no event” scenarios and their substantial deviation in the tails.
This highlights the importance of modelling the distribution of
the risk and highlighting its substantial heavy tails, rather than
providing point estimates.

It is likely, although not inevitable, that the event will have an
impact on the transmission and increase it irrespective of the
level of the prevalence. However, for low levels of prevalence
and higher vaccination rates, this substantially decreases. Having
computed the number of expected transmission events, we can
then compute several complementary metrics of interest
including, for example, the secondary attack rate (SAR)—that
is, the number of COVID-19 cases in the participants’
community in both the null and event models. SAR can be
calculated from the predicted reproductive rate (R) in the regions
where the ticket holders dwell. In the United Kingdom, R rates
are updated on a weekly basis at regional levels (eg, East
Midlands, London) and available from the Office for National
Statistics or can be derived from the kNN modelling previously
described. An opportunity for further research would be to
estimate SAR within households by gathering contextual data
from ticket holders. Equally, estimates of hospitalizations and
deaths might be possible based on individual characteristics and
comorbidities; however, this is beyond the scope of the current
article.

Evaluating the Effectiveness of the Screening Protocol
This risk modelling pipeline also allows comparison of different
protocols and situations. For example, this pipeline highlights
(1) the importance of event duration (the longer the dwell time
at the event, the more at risk the participants) and (2) the
importance of wearing masks. Table 3 quantifies the outcomes
of holding the event on our 3 dates, assuming that either 0%,
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50%, or 100% of participants are wearing masks or varying
parameters such as the density or length of the concert. Figure
4 completes that analysis by providing a visual representation
of the effect of these parameters on the distribution of the
number of infections. The distributional nature of these results

is essential in highlighting nuances between scenarios: While
holding an event at half capacity or for half the duration
produces average transmission risks that are roughly similar,
holding the event at half capacity seems to more substantially
reduce the effect of the event in the tails of the distribution.

Table 3. Effect of different input parameters on the quantiles of the number of infections for an event at the Royal Albert Hall across all 3 dates.

March 20, 2021, median,
mean (99% CI)

January 20, 2021, median,
mean (99% CI)

August 20, 2020, median,
mean (99% CI)

Event

1, 2.4 (0-21)5, 9.9 (0-76)0, 0.3 (0-4)No mask wearing, 3 hours, n=5000

1, 1.3 (0-13)3, 5.5 (0-40)0, 0.2 (0-3)50% mask wearing, 3 hours, n=5000

0, 0.7 (0-6)1, 2.4 (0-19)0, 0.1 (0-1)100% mask wearing, 3 hours, n=5000

0, 0.4 (0-3)0, 1.4 (0-10)0, 0.04 (0-1)100% mask wearing, 1.5 hours, n=5000

0, 0.2 (0-3)0, 0.9 (0-8)0, 0.2 (0-1)100% mask wearing, 3 hours, n=2500

Figure 4. Boxplots showing the distribution of the number of infections across different scenarios, for our Royal Albert Hall event held on March 20,
2021: Where variables are not mentioned, the number of attendees is 5000, the duration is 3 hours, and the proportion of attendees wearing masks is
100%.

In addition to the aggregated risk that a live event presents,
individual risk of transmission can be estimated and can be
communicated to ticket holders so that they can gauge whether
the risk of attending the event outweighs their desire to attend.
For the first person to purchase a ticket, risk of transmission
will be calculated based on their own immunity status (eg,
vaccination, regional prevalence) and a synthetic population
based on national prevalence at that time. As more bookings
are assigned to ticket holders, the reliance on the synthetic
population decreases as understanding of the number of
susceptible and potentially infectious individuals attending the
event increases. Therefore, the confidence in the risk score
increases as the event draws closer and as the proportion of
tickets sold increases. This can be reflected in the updated risk
scores provided to ticket holders as the event approaches. The
individual risk scores can be modified based on alternative
scenarios imputed into the risk algorithm. For example, for an
individual not yet vaccinated, their risk could be also presented
as if they had been vaccinated, offering an opportunity for the
individual to appreciate how vaccination could have modified
their risk. Such an approach could form the basis for behavior

change interventional studies for promoting health literacy and
tackling vaccine hesitancy (see Multimedia Appendix 1). By
working in partnership with the live events organizer, individuals
that chose to opt out can be reimbursed without delay and the
ticket re-sold.

Discussion

The modelling we propose is based on prevalence estimates
and screening protocols to calculate the number of infectious
and susceptible individuals attending the event as well as
transmission dynamics at the venue to predict the number of
new infections. Our paper demonstrates the value of estimating
attack rates from live events so that they can be appropriately
managed. We also demonstrate how individual ticket holders
can receive personalized risk scores for contracting COVID-19
at the event, which would, for the first time, enable genuine
informed consent to be obtained. Although this methodology
provides clear benefit to event organizers, local public health
authorities, and individual ticket holders, our approach is based
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on several assumptions that group in 2 categories: modelling
assumptions and parameter sensitivity.

Modelling Assumptions
As they combine data and tools from different sources, the
computations in our pipeline rely on assumptions at 3 main
levels: predicting COVID-19 prevalence, assessing the
efficiency of the screening protocol, and transmission at the
event.

Predicting COVID-19 Prevalence
To predict future COVID-19 incidence, we chose a kNN
approach as it yields a more robust prediction and better
uncertainty quantification than most existing parametric
methods. One of the downsides of this approach is that it might
not generalize very well to entirely novel behaviors or viral
variants—in which case well-parameterized methods may
outperform our approach as knowledge of transmission,
vaccination, and other relevant model parameters continues to
improve. While prevalence predictions are important for event
planners and attendees alike, on the day of the event, the more
important metric is whether official case rates reflect actual
cases (ie, the ascertainment rate). Historically, this rate has been
low due to limited testing facilities, and our method to determine
ascertainment using cases, deaths, and infection-fatality rates
reflects this, but also indicates that ascertainment may exceed
100% in times of widespread testing and low prevalence. It was
beyond the scope of this paper to further investigate
ascertainment, but we expect that future research will clarify
the impact of different test types, their false negative and
positive rates, and their frequency of use in determining the
ascertainment rate.

Assessing the Efficiency of the Screening Protocol
Our modelling framework assumes that events will screen
participants with COVID-19 tests, such as virtually witnessed
lateral flow antigen tests. Assessing the efficiency of this
screening step requires the estimation of (1) the sensitivity of
the test, (2) the probability of having symptoms, and (3) the
probability of being infectious—all of these quantities being a
function of days since infection. Our estimation of each of these
quantities is based on published data—with the exception of
the probability of symptom check failure (ie, the probability
that a participant lies about their symptoms to get in). By default,
we select this probability to be 50%, a choice that will be
improved upon as the CAPACITY and other similar studies
gather behavioral data. However, as shown in Multimedia
Appendix 4, this factor has a relatively minor impact on the
outcome of the model compared with the uncertainty of the
other inputs. Of potentially greater concern is our assumption
that the probability of testing negative 2 days before the event
is independent (conditionally on time since infection) of a
participant’s infectiousness during the event. A potential avenue
for improvement could consist of determining both test
sensitivity and infectiousness as a function of viral load and
estimating the joint probability of the viral load 2 days apart.
However, the data required for this approach are—to the best
of our knowledge—still lacking and given the variability of the
viral load or PCR cycle threshold behavior, this conditional

independence assumption seemed a reasonable first-order
approximation.

Transmission at the Event
The airborne transmission model that we use relies on a
homogeneous (well-mixed) air hypothesis for an indoor
environment. While several other models have been proposed
(either breaking the room into compartments or using a distance
index) to counter this hypothesis, we highlight (following the
discussion by Jimenez and Peng [75]) that this is a first-order
approximation: Some participants will have more risk and others
less, so that at low quanta concentration, this effect will be
averaged out. At very high concentration, the model will likely
underestimate the number of infections, but given the efficiency
of the screening protocol and density limitations, we do not
expect this scenario to be common. Moreover, while this model
was originally developed for indoor transmission, its application
to an outdoor setting—where the ventilation rate can be
considered infinite and transmission is more likely to occur
through droplets rather than aerosolized particles—can
nonetheless provide a conservative estimate of the risk. We are
however currently working on developing a better model for
outdoor transmission, relying on a modelling of droplet
transmission in crowd bottlenecks. We leave the detail of this
separate transmission model to future work. Finally, we note
that our model is not tied to any specific transmission
mechanism, and as our knowledge of COVID-19 transmission
improves, we can refine and supplant the transmission dynamics
with a superior alternative or another model that is deemed more
suitable.

Parameter Sensitivity
While we try to limit the number of input parameters in our
pipeline, the sensitivity of the estimates to these inputs (namely,
the mask efficiency and population of interest) has to be studied.
We refer the reader to Multimedia Appendix 4 for a quantitative
sensitivity analysis and highlight our conclusions here. In terms
of the model parameters, the greatest unknown consists in
determining the efficiency of masks and protective
equipment—the latter having been shown to vary depending
on the mask type and activity. However, we hope to make use
of the growing body of literature on the topic to update and
refine this important factor. Second, our prediction framework
assumes that participants at the event have the same probability
of infection and vaccination as their regional average. However,
this might not be the case as participation in the event may be
an incentive to get vaccinated or conversely might select for
less cautious subpopulations. The importance of this sampling
frame assumption nonetheless decreases as participants’
vaccination status and behavioral data from the CAPACITY
study will result in more precise estimates.

Model Validation
Finally, one of the main current hurdles for developing risk
estimators lies in the absence of quality data to validate and
benchmark different transmission models—thereby making the
task of validating our transmission pipeline a rather daunting
task. Indeed, while we can (and have, see Multimedia Appendix
2) check the accuracy of the vaccination and prevalence

JMIR Public Health Surveill 2021 | vol. 7 | iss. 12 | e30648 | p. 9https://publichealth.jmir.org/2021/12/e30648
(page number not for citation purposes)

Donnat et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


estimation step, the validation of the transmission model itself
is inherently difficult: There are no, or very few, available
datasets on COVID-19 spread following live events or rigorous
accounts of SSEs, nor are there any statistics on how likely
SSEs are. As such, the majority of SSEs that are documented
currently (1) are generally not detailed enough to untangle the
huge variability in context (eg, outdoors vs indoors, activity
performed, background prevalence) and (2) suffer from selection
bias—and might not be reflective of the general distribution of
live events. To make up for the current lack of testing data, we
resort here to the following 3 strategies: model checking, model
validation on (scarce) existing data, and prospective data
gathering.

For model checking, we begin by validating the behavior of our
model estimates on documented SSEs [81]—that is, we confirm
that the model outputs (1) present similar tail behavior as these
documented SSEs and (2) are predicted as outlier SSE events
by our model.

For model validation on (scarce) existing data, we also consider
2 documented live indoor concert events [82,83] and use the
event parameters as well as the documented transmission
statistics to verify that these numbers fall within the realm of
feasible outcomes.

For prospective data gathering, finally, to overcome the lack of
available data, we propose using the RShiny app [38] as a data

collection platform and encourage users (event organizers and
participants alike) who use the app to record their event in our
dataset by filling in a survey [84]. This paves the way for a
larger-scale and more detailed record of transmission events at
large gatherings, as well as a more precise modelling of
transmission dynamics.

This validation and model assessment step is further described
in Multimedia Appendix 5.

Conclusion
A nuanced, data-driven system is required to assess risk at each
event informed by the characteristics of all ticket holders and
the background risk of transmission concurrent to the event, so
that proportionate and specific action can be taken by event
organizers and public health authorities. We have detailed our
attempt to create such a system and have outlined its predictions
and limitations. Our end-to-end risk model is provided in the
form of an RShiny interface. At times of high prevalence, this
type of system will ensure events likely to increase transmission
can be halted. At times of low prevalence, this will ensure events
can potentially continue to operate. Learning to live with
SARS-CoV-2 will be about implementing systems that support
hyperlocal, data-driven decisions so that far-reaching and highly
damaging sector-specific lockdowns can be avoided as much
as possible.
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