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Abstract

Background: The implementation of novel techniques as a complement to traditional disease surveillance systems represents
an additional opportunity for rapid analysis.

Objective: The objective of this work is to describe a web-based participatory surveillance strategy among health care workers
(HCWs) in two Swiss hospitals during the first wave of COVID-19.

Methods: A prospective cohort of HCWs was recruited in March 2020 at the Cantonal Hospital of St. Gallen and the Eastern
Switzerland Children’s Hospital. For data analysis, we used a combination of the following techniques: locally estimated scatterplot
smoothing (LOESS) regression, Spearman correlation, anomaly detection, and random forest.

Results: From March 23 to August 23, 2020, a total of 127,684 SMS text messages were sent, generating 90,414 valid reports
among 1004 participants, achieving a weekly average of 4.5 (SD 1.9) reports per user. The symptom showing the strongest
correlation with a positive polymerase chain reaction test result was loss of taste. Symptoms like red eyes or a runny nose were
negatively associated with a positive test. The area under the receiver operating characteristic curve showed favorable performance
of the classification tree, with an accuracy of 88% for the training data and 89% for the test data. Nevertheless, while the prediction
matrix showed good specificity (80.0%), sensitivity was low (10.6%).

Conclusions: Loss of taste was the symptom that was most aligned with COVID-19 activity at the population level. At the
individual level—using machine learning–based random forest classification—reporting loss of taste and limb/muscle pain as
well as the absence of runny nose and red eyes were the best predictors of COVID-19.

(JMIR Public Health Surveill 2021;7(11):e33576) doi: 10.2196/33576
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Introduction

The COVID-19 pandemic is one of the greatest health challenges
that societies around the globe have ever experienced. A range
of instruments and ways to measure factors related to COVID-19
and the pandemic have been described [1-7]. COVID-19
presents a challenge for public health in general, while health
care workers (HCWs) are at particular risk of acquiring
COVID-19 [8]. Several studies using online forms have found
they can be useful for tracking disease activity in different
locations, including workplaces [9,10]. However, these
technological platforms require timely, persistent, and ongoing
engagement to generate valid and representative surveillance
data [1]. In the context of collaboration and the collection of
collective health information, digital epidemiology and
participatory surveillance techniques have been demonstrated
to be tools with great potential for helping to detect health threats
[11-16]. Many strategies that involve daily reporting of
symptoms through the voluntary participation of individuals
have reported successful results [17,18]. Participatory
surveillance by patients has been shown to have a
complementary role in detecting syndromic clusters for several
epidemiological challenges, such as COVID-19, seasonal
influenza, or high-risk mass gatherings [17-22]. The
implementation of novel techniques represents an additional
opportunity for the rapid analysis of big data based on machine
learning, thereby acting as a complement to traditional disease
surveillance systems.

The objective of this work is to describe a web-based
participatory surveillance strategy among HCWs in two Swiss
hospitals during the first wave of the COVID-19 pandemic.

Methods

Study Design
A prospective cohort of HCWs was recruited in March 2020 at
the Cantonal Hospital of St. Gallen and the Eastern Switzerland

Children’s Hospital, Switzerland. Individuals aged 16 years and
older were eligible. HCWs were enrolled in the study after
accepting the electronic informed consent form. The
anonymization of participants was carried out by using a
management ID system with three levels; we anonymized the
participants (user ID), surveys (survey ID), and their samples
(order ID). No compensation was provided and participation
was voluntary. A copy of the informed consent with all details
about privacy and confidentiality is provided in Multimedia
Appendix 1. The study was approved by the local ethics
committee (Ethikkommission Ostschweiz; #2020-00502). All
participants received a link via email to fill in a baseline
questionnaire collecting data on pre-existing conditions at the
start of the study. To improve the data quality and reduce
reporting bias, mobile number validation was required;
participants could only move forward if they input a token sent
to their mobile phone. After completing the baseline form,
participants became eligible to receive the daily SMS text
message with an individualized link redirecting them to a secure
web platform where they could fill in their symptom diary. To
encourage participant engagement through the entire period, an
SMS text message reminder was sent to those that did not fill
in the symptom diary the day before. In the symptom diary,
participants were asked about the type and severity of
COVID-19 symptoms according to Table 1. Those that met
SARS-CoV-2 testing criteria (ie, fever/feverishness, cough,
shortness of breath, sore throat, or anosmia/ageusia) according
to the Swiss Federal Office of Public Health (FOPH) were asked
to schedule an appointment for a nasopharyngeal swab [23].

For validation purposes, the positivity rate of the online survey
was compared to the positivity rate of HCWs undergoing
SARS-CoV-2 polymerase chain reaction (PCR) testing at the
study institutions (independent of study participation). We tested
both isolated symptoms and various combinations, including
the FOPH testing criteria.
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Table 1. List of symptoms and consequences.

TypeSurvey question topic

SymptomSore throat

SymptomCough

SymptomShortness of breath

SymptomRunny nose

SymptomHeadache

SymptomDiarrhea

SymptomAnorexia/nausea

SymptomFever

SymptomChills

SymptomLimb/muscle pain

SymptomLoss of taste

SymptomItchy red eyes

SymptomFeeling weak

SymptomFever-related muscle pain

ConsequenceTook medicines

ConsequenceSought health care

ConsequenceMissed work

ConsequenceHospitalized

Data Analysis
For the analysis of time trends of symptoms, we used a locally
weighted running line smoother (locally estimated scatterplot
smoothing [LOESS]) [24], which is a nonparametric smoother
with Gaussian noise added in the sine wave. This algorithm
estimates the latent function in a pointwise fashion. This method
is a supervised machine learning approach and was carried out
to generate a moving average for scatterplot smoothing among
the data points. Its function can be expressed as the following:

ω (χ)=(1–|d|3)3

where d is the distance of the data point from the point on the
fitter curve, scaled to lie in the range from 0-1. We then used a
moving average with 7 days as the window size, aligned on the
right.

The Spearman rank correlation coefficient was used to verify
the statistical dependence between symptoms and test positivity,
using a monotonic function described by the following formula
[25]:

It is critical to identify significant temporal deviations
throughout the period including the impact of seasonality in
such high frequency data inputs. Therefore, we applied the
Seasonal-Hybrid Extreme Studentized Deviate (S-H-ESD)
algorithm [26], which uses a modified Seasonal-Trend
decomposition procedure based on LOESS [27]. This technique
allows for the identification of change points over time,
recognizing when the signal frequency (FOPH classification)

was positive (increasing) or negative (decreasing). The missing
value was handled by spline interpolation, the maximal anomaly
ratio was 0.1, and a piecewise median time window of 2 weeks
was chosen.

Finally, to classify participants according to the probability of
having symptoms compatible with COVID-19, we used the
random forest algorithm. This is an ensemble learning method
based on decision trees, which increases the accuracy of
classification for both training and test data [28]. Specifically,
this algorithm is a predictor consisting of an assembly of
randomized base regression trees {rn(x,Θm,Dn),m ≥ 1}, where
Θ1,Θ2,... are independent and identically distributed (IID)
outputs of a randomizing variable Θ. These random trees are
pooled to form the following aggregated regression estimate
[29]:

where denotes expectation with respect to the random
parameter, conditionally on X and the data set Dn.

To explain how the random forest technique was used in this
study, a summary of its parameters along with a prediction
matrix for the model was generated. In addition, a receiver
operating characteristic (ROC) curve was created to evaluate
the binary classification of the model. We split the data, using
70% of entries for model training and 30% of entries for the
test set. To determine which variables were more or less
important for predicting the outcome, we used a boxplot chart.

Algorithms and techniques were programmed and deployed in
R language, using the Exploratory [30] framework. The data
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collection system was developed using JotForm [31] as well as
a proprietary solution and was hosted at Amazon Web Services,
using EC2 and S3 instances. The SMS text messaging system
used Twilio’s [32] application programming interface to send
out the messages.

Results

From March 23, 2020, to August 23, 2020, a total of 127,684
SMS text messages were sent, generating 90,414 valid reports
among 1004 participants, achieving a weekly average of 4.5
(SD 1.9) reports per user. Female gender (n=755, 75.2%) was
more prevalent than male (n=249, 24.8%) among participants,
reflecting the general HCW population in these hospitals. The
median age was 39 years, with a mean of 40.2 (SD 11.3) years.
Figure 1 shows the temporal distribution of symptoms of
respiratory infection over the study period, using LOESS
regression. In total, 1.49% (n=15) of participants reported a

positive PCR result during the study period. The first peak of
the bimodal curves clearly parallels the reference curve of
individuals in the hospital who tested positive, representing the
first COVID-19 wave in the region. The second peak appears
between July 2020 and August 2020, with a much lower signal
in the reference curve of individuals who tested positive.

Regarding anomaly detection over time, Figure 2 shows whether
a signal of symptoms was expected (based in the past trends)
or if it represented a positive or negative anomaly, meaning a
significant increase or decrease in the frequency of recorded
symptoms. Table 2 indicates the change points that were
statistically significant, including the difference observed when
compared with the expected amount. The positive anomalies
happened in three different periods; two of them occurred during
the highest activity of the first wave and the third occurred
between July and August, representing a possible second wave.
However, as mentioned above, no second (or third) wave was
seen in the reference curve.

Figure 1. Temporal distribution and LOESS regression of symptoms related to acute respiratory infection in health care workers at two hospitals in
Switzerland. FOPH: cases documented by the Federal Office of Public Health; LOESS: locally estimated scatterplot smoothing.
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Figure 2. Temporal distribution of the FOPH proportion of positives, indicating which types of anomalies occurred in health care workers in two
hospitals in Switzerland. FOPH: Federal Office of Public Health.

Table 2. Significant (P<.05) timepoints for anomaly detection in health care workers, Switzerland.

Anomaly typeDifference from expectedExpectedFederal Office of Public Health proportion of positivesDate

Negative–.6753246751.32467532505/04/2020

Positive.8398268411.8398268408/04/2020

Positive.67748917711.67748917720/04/2020

Negative.919913420.9199134230/04/2020

Negative.1623376620.16233766212/05/2020

Negative–.2965367971.70346320309/07/2020

Positive.919913420.9199134215/07/2020

Negative.2164502160.21645021602/08/2020

A correlation matrix between symptoms and a positive PCR
test result for SARS-CoV-2 is shown in Figure 3, while in Figure
4, the significance matrix shows the positive and negative
correlations, as well as the nonsignificant ones. The symptom

with the strongest correlation with a positive PCR result was
loss of taste. Conversely, symptoms such as red eyes or runny
nose were negatively associated with a positive test (Table 3).
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Figure 3. Correlation matrix using the Spearman method for symptoms and positive results in health care workers in two hospitals in Switzerland
during the study period. FOPH: Federal Office of Public Health.

Figure 4. Significance matrix showcasing the positive and negative correlations between variables in health care workers in two hospitals in Switzerland
during the study period. A larger dot represents a higher correlation.
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Table 3. Correlation between symptoms and positive cases in health care workers in Switzerland for the period of the study.

P valuePairsCorrelationSymptoms

<.001Positive0.5274Loss of taste

<.001Positive0.2189Federal Office of Public Health definition

<.001Positive0.1698Anorexia/nausea

<.001Positive0.1103Limb/muscle pain

<.001Positive0.1032Cough

.002Positive0.0731Chills

.37Positive0.0279Headache

.01Negative–0.1560Red itchy eyes

.001Negative–0.1508Runny nose

.10Negative–0.1025Fever

.001Negative–0.0770Diarrhea

Finally, Table 4 shows the summary results from a random
forest algorithm that was used to classify participants into
SARS-CoV-2 positive and negative cases based on their
indicated symptoms. The area under the ROC curve shows
reasonable performance of the classification tree, with an
accuracy of 88% for the training data and 89% for the test data
(Figure 5). Nevertheless, while the prediction matrix showed
good specificity (80.0%), sensitivity was low (10.6%; Table 5).

Figure 6 shows the importance of symptoms and their capacity
to predict the expected outcome based on the random forest
algorithm, considering a P value of <.05. Loss of taste and
limb/muscle pain were the most important variables for
prediction of a positive result, while runny nose and red eyes
were negatively correlated with the same outcome. Fever was
a very weak predictor of a positive result.

Table 4. Summary of the parameters of the random forest model.

RecallPrecisionMisclassification rateAccuracy rateF1 scoreArea under the curveData set

.5555.87719.11604.8839.68027.90375Training

.5206.91304.10561.89438.66331.87576Test

Figure 5. Receiver operating characteristic curve for the random forest model.
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Table 5. Prediction matrix for the random forest model.

Data type (predicted)Data set and type (actual)

FALSE, %TRUE, %

Test

9.5710.4TRUE

79.04.99FALSE

Training

9.8812.35TRUE

76.051.73FALSE

Figure 6. Boxplot of the importance of symptoms and their capacity to predict the expected outcome based on the random forest algorithm (P<.05).
Loss of taste, limb/muscle pain, FOPH (Federal Office of Public Health), sore throat, cough, and shortness of breath were positively associated with
the outcome. Runny nose and red itchy eyes were negatively associated with the outcome. Fever was neither positively nor negatively associated with
the outcome.

Discussion

This study demonstrates the use of digital surveillance to
monitor COVID-19 activity among HCWs. Loss of taste was
the symptom that was most aligned with COVID-19 activity at
the population level. At the individual level, using machine
learning–based random forest classification, reporting loss of
taste and limb/muscle pain as well as absence of runny nose
and red eyes were the best predictors of COVID-19. The main
strengths of the study are its high response rate and the
comparison to a reference curve, which was based on
documented PCR results in the same population.

Syndromic surveillance through participatory surveillance has
been shown to be a feasible strategy to monitor COVID-19

activity [33], and is considered an important measure to inform
the public health response to this pandemic [34]. Considering
that engagement is a key element of a successful platform, our
study—with an average response of 4.5 answers per week—has
an excellent basis to produce valid and representative results.
This high rate of engagement and participation is extraordinary
when compared to other platforms [13,17,18,33], especially
over a period of 5 months [35]. The easy-to-use survey, the
defined population of HCWs from two different hospitals, and
the regular interaction with study participants are potential
reasons for this high response rate. It remains to be seen if these
engagement indexes can be maintained when the study is scaled
up to larger communities.

The temporal distribution of symptoms followed the trends
represented in the first wave of COVID-19 in Switzerland
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[36,37]. However, the signals detected in July were not due to
COVID-19, as shown by the reference curve. Interestingly,
several HCWs tested positive for rhinovirus during this time
period, suggesting that this was the reason for this wave. Of
note, loss of taste, the most specific symptom of COVID-19,
did not increase during this second wave.

Several other studies have shown that loss of taste is a good
proxy for COVID-19 [38-41]. Although the specificity of this
symptom is excellent, only about 20% of patients report loss of
taste [42]. We conclude that the detection of loss of taste is very
helpful to interpret findings at the population level, but less so
at the individual patient level because of its low prevalence.
The second most important positively associated symptom in
our analysis was limb/muscle pain, which has also been noted
by others [43]. Remarkably, runny nose and red eyes were very
important negative predictors of COVID-19; this finding is
particularly useful for when surveillance is performed during
allergy season. However, both the sensitivity and specificity of
a symptom depend on the background activity of other infections
and allergies and might therefore be subject to change. The
validity of a symptom may also change due to genetic
adaptations in the dominant SARS-CoV-2 strain. During the
study period, none of the new variants of SARS-CoV-2 (eg,
B.1.1.7/Alpha) were circulating in Switzerland. Therefore, the
symptoms described here cannot necessarily be extrapolated to
a different circulating SARS-CoV-2 variant. However,
syndromic surveillance through participatory surveillance may
allow for the detection or validation of a different clinical
presentation emerging from a new circulating strain. Indeed, a
recent study describes small differences in COVID-19 symptoms
in the general population in the United Kingdom depending on
the variant [44].

Our study has a number of limitations. First, it was performed
outside influenza season. Because influenza more often presents

with constitutional symptoms than other respiratory viruses,
distinguishing influenza from COVID-19 by analysis of
symptoms is difficult. Second, we relied on participants
self-reporting their symptoms, a method that is prone to bias.
Third, generalizability of our data is limited because only
one-fifth of the HCWs from our hospitals participated in the
study; in addition, the spatial component could not be explored
due to these same reasons. At the same time, this would be a
very important parameter for evaluating whether SARS-CoV-2
is being regionally distributed, which would be useful to form
a complete picture for disease surveillance purposes. The
application of classification techniques based on machine
learning, such as random forest classification, has its own
limitations, as a large number of trees can make the algorithm
too slow and ineffective for real-time predictions. In general,
these algorithms are fast to train, but quite slow to create
predictions once they are trained. A more accurate prediction
requires more trees, which results in a slower model.

Nevertheless, we deem the presented surveillance tool highly
useful in monitoring and predicting COVID-19 activity among
our HCWs. Currently, we have expanded our HCW cohort to
include over 5000 participants from over 20 institutions [45].
The analysis of data from different institutions will allow us to
detect the clustering of cases in certain institutions, which might
trigger targeted intervention measures in affected health care
institutions. Additionally, these data allow for the detection of
symptomatic HCWs who were either not tested or had a
false-negative PCR result, and also for the discrimination of
symptoms caused by SARS-CoV-2 from symptoms caused by
other viruses, such as influenza. Further questions, which we
aim to answer with the surveillance data generated in this larger
cohort, include how long HCWs with documented SARS-CoV-2
infection (or vaccination) are protected against reinfection or
how the emergence of viral variants might change the
symptomatology of COVID-19.
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Abbreviations
FOPH: Federal Office of Public Health
HCW: health care worker
LOESS: locally estimated scatterplot smoothing
PCR: polymerase chain reaction
ROC: receiver operating characteristic
S-H-ESD: Seasonal-Hybrid Extreme Studentized Deviate
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