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Abstract

Background: When using machine learning in the real world, the missing value problem is the first problem encountered.
Methods to impute this missing value include statistical methods such as mean, expectation-maximization, and multiple imputations
by chained equations (MICE) as well as machine learning methods such as multilayer perceptron, k-nearest neighbor, and decision
tree.

Objective: The objective of this study was to impute numeric medical data such as physical data and laboratory data. We aimed
to effectively impute data using a progressive method called self-training in the medical field where training data are scarce.

Methods: In this paper, we propose a self-training method that gradually increases the available data. Models trained with
complete data predict the missing values in incomplete data. Among the incomplete data, the data in which the missing value is
validly predicted are incorporated into the complete data. Using the predicted value as the actual value is called pseudolabeling.
This process is repeated until the condition is satisfied. The most important part of this process is how to evaluate the accuracy
of pseudolabels. They can be evaluated by observing the effect of the pseudolabeled data on the performance of the model.

Results: In self-training using random forest (RF), mean squared error was up to 12% lower than pure RF, and the Pearson
correlation coefficient was 0.1% higher. This difference was confirmed statistically. In the Friedman test performed on MICE
and RF, self-training showed a P value between .003 and .02. A Wilcoxon signed-rank test performed on the mean imputation
showed the lowest possible P value, 3.05e-5, in all situations.

Conclusions: Self-training showed significant results in comparing the predicted values and actual values, but it needs to be
verified in an actual machine learning system. And self-training has the potential to improve performance according to the
pseudolabel evaluation method, which will be the main subject of our future research.

(JMIR Public Health Surveill 2021;7(10):e30824) doi: 10.2196/30824
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Introduction

Background
When trying to use data in machine learning or statistical
analysis, the missing value problem is one of the most common
challenges. A missing value is caused by situations such as a
malfunction of the inspection machine, incorrect inspection, or
human error. It can also happen when converting data for
analysis purposes. Missing values reduce the number of data
points available and adversely affect the analysis results. In the
medical field, inaccurate analysis is fatal as it can lead to a
misdiagnosis. The best way to deal with this problem is to fill
in missing values with the actual values. However, filling up
medical data with the real values may require expensive retesting
or assistance from a professional medical practitioner, which is
extremely cumbersome and costly. Also, it may be impossible
to fill in missing values due to patient privacy issues. For this
reason, many studies on the imputation of missing values have
been conducted.

The most naive way to fill in the missing value is to fill it with
an appropriate value such as zero or the average. Mean
imputation is one of the most frequently used methods because
it is simple. In other cases, the median and mode can be used
as substitutes instead of using the mean. These methods have
the disadvantages of increasing errors and introducing bias in
datasets with a high number of missing data points. In addition
to these simple methods, attempts have been made to resolve
the missing value problem statistically, represented by
expectation-maximization (EM) [1] and multiple imputations
by chained equations (MICE) [2]. EM finds the local minimum
and does not guarantee that the value found is the global
maximum. Additionally, since it is a single imputation replacing
only one value, the accuracy may be degraded when the missing
rate of the data is large. The multiple imputation (MI) [3]
method compensates for this shortcoming of single imputation.
In MI, several imputed values are statistically analyzed and
used. MI works under missing at random (MAR) [4] conditions.
MICE is one of the MI algorithms. MICE performs statistical
modeling by creating several imputation sets of missing values
through simulation and derives values by averaging the
generated imputation sets. Like any other MI algorithm, MICE
operates under the assumption of MAR, and execution under
the assumption that it is not MAR can lead to biased results.

As research on machine learning becomes more active, machine
learning algorithms such as multilayer perceptron (MLP) [5,6],
k-nearest neighbor (KNN) [7,8], and decision tree (DT) [9-11]
have been used for imputation as alternatives to statistical
methods. Recently, generative models such as generative
adversarial networks [12,13] have been applied to missing value
problems as they have shown significant performance in several
fields. Jerez et al [14] compared statistical programs and
machine learning methods to replace missing values in breast
cancer datasets. In their study, mean, hot deck [15,16], SAS
[17], Amelia [18], and MICE were used as the statistical
methods, and MLP, KNN, and self-organizing map [19] were
used as the machine learning methods.

Objective
The objective of this study was to impute numeric data such as
physical data and laboratory data. Laboratory data and
physiological data are valuable data that directly represent the
patient's health condition, and these continuous values are
usually harder to predict than discrete ones, making them worth
studying. On the other hand, discrete data, such as the diagnosis
reached by the physician, may not be appropriate to impute as
an external factor. Since the patient does not undergo all of the
tests, just the necessary tests, there is always a missing value
in the electronic medical record (EMR) data. Unlike the
universal tests performed on many patients, some tests are
performed on only some patients. Features corresponding to
these special tests are suitable for imputation because there are
many missing parts and they have a high potential advantage.

EMR data have characteristics that distinguish it from other
data, and our objectives are subdivided according to these
characteristics [20-23]. The most distinctive feature of EMR is
that there is a difference in the missing rate between features,
and this difference in missing rates is an important consideration
for imputation. Therefore, our first detailed objective was to
impute rare features using general features.

Another characteristic of EMR is that there are far more
incomplete (or unlabeled) data than complete (or labeled) data.
In fact, although most of the data have this property, medical
data are much more lethal because the process of obtaining
labels is expensive and cumbersome. Existing methods can be
vulnerable in these circumstances, and the second aim of our
progressive method was to ameliorate these vulnerabilities.

To overcome this vulnerability, we adopted self-training, a
progressive method, in which self-training performs 2 processes
repeatedly: self-learning and pseudolabeling. Self-training
repeats the 2 processes using a complete dataset called a teacher
and an incomplete dataset called a student. First, the teacher
model learns the teacher dataset, and then the teacher model
predicts the missing values of the student data. This step is
called pseudolabeling. Second, the valid pseudolabeled student
data are converted to teacher data. In the next iteration, the same
process is repeated with this new teacher, which is called
self-learning.

The most important part of the self-training process is how to
evaluate the validity of the pseudolabel. However, the actual
value is unknown, which is why we cannot directly evaluate its
validity; thus, a new evaluation method is necessary. In the
classification problem, probability is used as an indicator, and
a simple example can be found through binary classification.
Suppose that a model trained with labeled data predicts that the
test set has a 96% probability of being negative and a 4%
probability of being positive. This result can be interpreted as
meaning the model is confident that the predicted class is
negative. Conversely, if the model predicted the test set has a
55% probability of being negative and a 45% probability of
being positive, the interpretation is unclear. In the former case,
it can be said that the test set belongs to the negative class, but
in the latter case, it is difficult to determine whether it is positive
or negative. In the case of self-training, the test set in the first
case is labeled as a negative class and transferred to the teacher.
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Unfortunately, there is no such intuitive judgment factor in the
regression problem. Therefore, most studies related to
self-training are conducted mainly using classifications like
image net challenges [24]. Our final objective was to apply this
self-training to the regression problem.

Methods

In this section, we present an approach to semisupervised
learning for continuous EMR imputation. Our approach is based

on a self-training paradigm, and we named it SQMI-R. Figure
1 shows a full overview of the proposed method. The numbers
in Figure 1 represent the sequence of the process, and each
sequence is explained in the following subsections. The
Self-Training Regression Imputation section describes number
1 to number 6 of the process, and the Sampling Strategy section
considers number 4 in more detail. The Evaluation Metrics
section analyzes step number 6 in more detail, and the Multiple
Imputation section describes steps 6 through 9.

Figure 1. Architecture of the self-training process. MSE: mean squared error.

Self-Training Regression Imputation
SQMI-R uses 3 models to impute continuous values: I, K, and
K’. First, we pseudolabel the missing values of the student
dataset with the imputation model I trained with the teacher
dataset. Then, 2 test models K and K’, called the tester, train 2
nearly similar datasets. K learns only from the teacher, and K’
learns data from both the teacher and samples of the
pseudolabeled student. In general, in the case of adding data to
an existing machine learning system, it can be said that if the
added data are valid, the performance of the model improves;
otherwise, the performance decreases. We used the properties
shown in Figure 2 to validate the imputed samples.

This process is based on the assumption that valid data improve
the performance of the model. Based on these assumptions, the
imputed samples are added to the existing data and verified
based on performance improvements. The added amount of data
is too small compared to the existing data and has a minimal
performance impact. Both test models should be able to detect
even these small effects, and we used KNN as a tester to satisfy

this requirement. KNN is useful for detecting small differences
in the data as it always produces the same results for the same
data. The special behavior of the KNN algorithm makes it
possible to always derive the same value. KNN estimates labels
from the average of the surrounding k data without a learning
process, which always produces the same results for the same
data. Algorithms such as MLP and RF require a learning
process, and randomness intervenes, resulting in different results
for the same data. In this case, it is difficult to define whether
the difference in results is due to differences in the data or
randomness of the learning. Although KNN is not performing
as well as these machine learning models, the purpose of the
test model is to compare and verify the data, not accurately
predict it. Moreover, KNN has few parameters to process and
is intuitive to use. The loss function   also has to be chosen
carefully for each purpose. Since there was no specific purpose
in this study, mean squared errors (MSEs) that could be used
for all continuous value problems were adopted. If the purpose
is to learn a classifier, the process can be performed by using
cross-entropy as a loss function or by maximizing metrics such
as area under the curve or F1 scores.

JMIR Public Health Surveill 2021 | vol. 7 | iss. 10 | e30824 | p. 3https://publichealth.jmir.org/2021/10/e30824
(page number not for citation purposes)

Gwon et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Validation of the imputed samples.

Sampling Strategy
The most reliable way to examine pseudolabeled data is to
examine them one by one. Nevertheless, the reason for testing
multiple samples instead of testing them one by one is related
to the characteristics of the KNN. KNN is calculated based on
the k-nearest data. Consider the case of testing only one sample
x. There may be cases where this x is far from all of the test
data. In this case, adding x to K’ does not affect the test result.

When these cases increase, useless calculations increase, and
self-training does not work smoothly. If enough samples are
used at once, the validity of the pseudolabel will affect the
performance of the model, and accordingly, the validity of the
sample can be verified. In this experiment, we adopted 50
samples. After several tests, we selected the 50 that seemed to
be the most appropriate in terms of the trade-off between the
performance and time. The number of samples is an important
parameter. In general, as the number of samples increases, the
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speed will increase, whereas the performance decreases.
Contrarily, if the number of samples decreases while the
performance improves, the time efficiency gets worse. Thus,
the number of samples should be chosen appropriately in the
trade-off of the relationship between the time and the
performance.

If the number of samples obtained from a single sampling has
been determined, how many samplings should be performed
during one iteration should be determined. In our strategy, if
the number of students is S and the number of samples drawn
at one time is N, sampling is done S/N times during one
iteration. Such a sampling strategy can, on average, examine
all data once during one iteration.

Evaluation Metrics
It is necessary to think about the evaluation metrics when testing
the sample. We imputed multiple features, and the effectiveness
of the pseudolabel was evaluated by the MSE of the actual and
predicted values. This MSE is affected by the distribution of
the features. A feature with low density (ie, a wide distribution
of data) has a structurally higher MSE in prediction than a
feature with a high density and a narrow distribution. Models
K and K’ test samples using the average MSE of all features.

If the density of the data determines the MSE, self-training will
work differently than we expected. In other words, self-training
will only work around features with widely distributed data to
reduce the overall error. This is because reducing errors from
data with a low density is more advantageous in reducing the
total errors than reducing the errors from data with a high
density. Due to the high data density, neglected features may
be less improved or worsened during the self-training process.

We can confirm this with practical medical records. The
collection of data and data preparation received Asan Medical
Center and Ulsan University Hospital institutional review board
approval with waived informed consent (AMCCV 2016-26
ver2.1) [25]. Figure 3 shows a boxplot of 2 features — chloride
and PT(INR). Note that all features are min-max scaled in Figure
3. The data from PT(INR) are distributed over a small area.
Consider the case of predicting a value in the box of PT(INR).
Since the box itself is small, the prediction error is small, and
the result looks accurate. On the contrary, chloride is distributed
over a large area, and even if the predicted value is in the box,
the error will be relatively large. In this case, chloride has a
greater impact on the overall error. As a result, the self-training
process works toward improving chloride even further, even if
it worsens PT(INR).

Figure 3. (A) Chloride has a low density, and (B) PT(INR) has a high density. PT(INR): prothrombin time(international normalized ratio).

Medical data have large differences in the data distributions
between features, and self-training is vulnerable to such
characteristics. The evaluation of the effectiveness of the
pseudolabel is based on the average MSE of the features.
However, evenly reducing the MSE of all features is a way to
make a better dataset. Therefore, it is necessary to correct the
effect of the distribution. In this study, we presented a correction
method using quantiles. The distribution of the data is estimated
using the interquartile range (IQR). IQR is the difference
between the third and first quartiles. If the data density is high,
the difference between the third and first quartiles will be small.
If the density is small, the difference between the third and first
quartiles will be large. Let the third quartile of i-th feature be

qi
3 and the first quartile be qi

3, then the IQR of the i-th feature
can be defined as follows:

IQRi is divided by MSE, which is inversely proportional to the
distribution of the data. We named it Q-MSE, and the definition
is as follows:

In the case of using Q-MSE, if the Q-MSE of K’ is smaller than
the Q-MSE of K, it is assumed that the imputed value is valid.
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Multiple Imputation
The method of evaluating multiple samples at once has a
vulnerability. Assume that data X1 are effectively
pseudolabeled. However, if X1 was sampled with invalid data,
it will degrade the performance of K’ in the test. If this happens,
even though X1 should be a teacher, it will remain in the student
due to bad luck. This time, we can think of a case in which
invalid data X2 are sampled with valid data. X2 and valid
samples will improve the performance of the model. In this
case, X2 is not valid, but it becomes a teacher. Since X2 is
invalid data, if it becomes a teacher, the performance of the
algorithm degrades. We present ways to prevent this
irrationality.

In the proposed method, students get a new imputed value at
each iteration, and if the test passes, this imputed value is stored.
In the next iteration, it gets a new value and is tested again. If
the test passes again, the stored value is updated by averaging

the current value and the stored value. To manage this stored
value, we count the number of passes. If the test passes, we add
1 to the count of the data. If it fails the test, the count decreases
by 1. Data that count as greater than the threshold become
teachers by replacing the missing value with this stored value.
Data with a zero count return the stored value to zero. Groups
containing X1 already have valid data, which is likely to
improve the performance of the model. Thus, X1 has a relatively
high probability of passing the test while it belongs to several
samples, and it will go to the teacher by filling the count with
a threshold with a relatively high probability. Invalid data have
a high probability of dropping from the test, deducting 1 point
from the counter. In this way, it is possible to avoid making
choices by chance. In addition, the values verified from various
test data are integrated to make the performance stable.
According to this strategy, step 4 from the Self-Training
Regression Imputation section is divided into the detailed steps
seen in Figure 4.

Figure 4. Detailed steps within step 4.

Setting the threshold of counts is a trade-off between
performance and the time required. If you set the threshold
higher, you will have to perform more tests and filter more
verified data. However, this requires too many iterations to
make it into the labeled data. In some cases, the performance
can become worse by reducing the number of incorporated data.
On the other hand, lowering the threshold shortens the time and
increases the amount of data transferred to the labeled set, but
it does not guarantee the quality of the data. The lower the
threshold, the greater the influence of luck. As a result of

conducting several tests, we found that approximately 4 counts
could obtain appropriately verified pseudolabeled data with
optimized periods of time. Thus, in this experiment, we use 4
for the threshold of the counts.

Algorithm 1 in Figure 5 shows the pseudocode of the SQMI-R.
Model(data) means that the model is trained with data. For
example, Tester(data) means that a Tester model was trained
using data. I.predict(data) means impute by predicting the
missing value of the data with the imputing model I. Data[index]
represents values corresponding to the index of the data.
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Figure 5. Pseudocode of the SQMI-R.

Results

Dataset
We validated our method with data from CardioNet [25], a
real-world EMR. The demographic information from CardioNet
appears in Table 1, and we selected 10,000 of the data points
as the teacher data and 50,000 of the data points as student data.
A teacher dataset with 10,000 data points represents complete

data without missing values, and the 50,000 students contain
missing values. The actual values in the student dataset are
unknown and cannot be evaluated for imputation. For
evaluation, we used some of the known values from the students
as fake missing. A total of 93 features such as physical
information, laboratory tests, and the results of echocardiography
were used, and 77 of these were used as inputs to impute the
missing values of the remaining 16 targets: chloride, alkaline
phosphatase, protein, total CO2, glucose, uric acid, blood urea
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nitrogen, electronic absolute neutrophil count, phosphorus,
prothrombin time (PT-INR, PT-%, PT-sec), systolic blood
pressure, diastolic blood pressure, pulse rate, respiratory rate.
The missing rate of the features varied from 0.06% to 85.9%.
Table 2 shows the missing rate for each feature. The patterns

of missing data include MAR, missing completely at random,
and missing not at random [4]. The decision to perform a
medical test is usually determined by other observed
information. Therefore, the missing laboratory data are related
to the observed values, and the pattern is MAR.

Table 1. Demographic information from the CardioNet electronic medical record.

Asan Medical Center (N=572,811)Variables

Gender, n

257,160Female

315,651Male

56.32 (14.72)Age (years), mean (SD)

123.06 (12.61)Systolic blood pressurea (mm Hg), mean (SD)

74.29 (7.94)Diastolic blood pressurea (mm Hg), mean (SD)

24.11 (3.50)BMIb (kg/m2), mean (SD)

CV/CSc,d encounter, n

250,1600

68,0371

78,4062

174,560≥3

428,004 (74.71)Echocardiography, n (%)

265,817 (46.40)Pulmonary function, n (%)

156,615 (27.34)Thallium SPECTe, n (%)

68,203 (11.90)Treadmill, n (%)

79,064 (13.80)CTf, n (%)

46,636 (8.14)Holter monitoring, n (%)

8871 (1.54)6-minute walk test, n (%)

1990 (0.34)Cardiac rehabilitation, n (%)

1720 (0.30)Pediatric echocardiography, n (%)

aN=461,693.
bN=457,621.
cCV/CS: Cardiology or Cardiothoracic Surgery Department.
d571,163 total visits.
eSPECT: single photon emission computed tomography.
fCT: computed tomography.
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Table 2. Missing rate and ratio of errors (obtained by dividing the result of 20 iterations by that of 0 iterations).

Q-MSENormal-MSEaMissing rate, %Feature

0.8670.86617.60Chloride

0.9100.9171.00APb

0.8370.8390.06Protein

0.9020.90628.75Total CO2

0.8440.84471.38Glucose

0.8650.87253.11Uric acid

0.7090.71359.60BUNc

0.9931.00774.80E_ANCd

0.9680.9620.10PT(INR)e

0.9820.98817.71PT (%)

0.8840.8860.19Phosphorus

0.9540.95027.98PT (sec)

0.9750.98371.38SBPf

0.9770.97777.68DBPg

0.9930.99459.00PRh

0.9931.00585.86RRi

aMSE: mean squared error.
bAP: alkaline phosphatase.
cBUN: blood urea nitrogen.
dE_ANC: electronic absolute neutrophil count.
ePT(INR): prothrombin time(international normalized ratio).
fSBP: systolic blood pressure.
gDBP: diastolic blood pressure.
hPR: pulse rate.
iRR: respiratory rate.

Experiments on the Effects of the Metric
We experimented on the 2 aforementioned metrics
(normal-MSE, Q-MSE) to confirm the change of self-training
according to the metric. All experiments were conducted based
on a situation where the missing rate was 20% and the number
of iterations was 20. Table 2 is the result of dividing the result
of 20 iterations by that of 0 iterations when each metric is
applied. This ratio indicates how the error decreases when the
process ends as compared to the starting point. The smaller ratio
values indicate better performance, with a value of 1 indicating
that the process has no effect and values greater than 1 indicating
that the process is adversely affected. This ratio can be
influenced by the degree of ease of prediction, data distribution,
and missing rate. We assumed that performance could be
affected by IQR, and Q-MSE was suggested to compensate.
The results are shown in Table 2. Q-MSE increased the error
rate in 3 features compared with normal-MSE but decreased it
in 11 features. In this experiment, we can confirm that the
assumptions we have set are correct and that the method we
have presented is also effective. Furthermore, the results of this
experiment suggest that properly setting the evaluation metric

of the pseudolabel can improve the performance of the
imputation.

Comparison With Existing Methods
The second experiment compared the performance of the
existing imputation method and SQMI-R by the missing rate.
The self-training iteration was fixed to 20 times, and the metric
was normal-MSE. After setting various missing rate situations,
we evaluated the performance of the methods in each situation.
Then, some of the actual values of the student data missing in
the experiments were filled in. Finally, the results of the
imputation were evaluated by MSE and the Pearson correlation
coefficient.

All experiments were conducted in Python-3.6.9 environments,
and each algorithm was implemented through the Python library.
We utilized sklearn-0.23.2 to implement the machine learning
models, RF and KNN, and MLP was implemented in keras-2.24.
The statistical methods, EM and MICE, were implemented
through impyute-0.0.8. All statistical analyses were performed
via scipy-1.5.2.
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Mean Squared Error
Figure 6 presents the MSE performance of the methods
according to the missing rate. As expected, the error increased
as the missing rates increased. In the graph, the SQMI-R is the
most robust for the increase in the missing rate. Accordingly,
the higher the missing rate, the more efficient the SQMI-R.

Figure 7 presents the number of features best predicted by the
method. Looking at Figure 7, SQMI-R performed better than
other methods for most features in all stages. It showed the
lowest error in at least 9 and at most 11 features depending on
the missing rate. After SQMI-R, MICE had most of the features,
followed by RF and MLP.

Figure 6. Total errors from the methods in each missing rate stage. EM: expectation-maximization; KNN: k-nearest neighbor; MICE: multiple imputations
by chained equations; MLP: multilayer perceptron; MSE: mean squared; RF: random forest.

Figure 7. The number of features that the method predicted best in each missing rate stage: (A) 5%, (B) 10%, (C) 20%, (D) 30%, (E) 40%, (F) 50%.
MICE: multiple imputations by chained equations; MLP: multilayer perceptron; RF: random forest.

To more accurately evaluate the differences between the
methods, we performed the Friedman test [26] on the most
powerful 3 algorithms: RF, MICE, SQMI-R. The Friedman test
is a nonparametric test that verifies the significance of
differences between N algorithms. The Friedman test is used
to detect differences between algorithms in multiple test
attempts. Columns (repeated tests attempts) rank rows
(algorithms) and analyze these ranks to detect differences

between algorithms. If there is a superior algorithm, it will rank
high in most columns. The Friedman test requires results for
iterative experiments such as cross-validation. However, in this
study, both student data and teacher data are defined, making
this iterative experiment difficult. Therefore, instead of using
the results from iterative experiments, the rankings of multiple
features were compared. There is no difference between the
algorithms under the null hypothesis. Table 3 presents the results
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of the Friedman test at each step. The P values from the
Friedman tests were <.05 in all missing rate situations, and the
null hypothesis was rejected, which means that there is a
significant effect on the method in all steps. This result

demonstrates that SQMI-R is statistically superior to other
powerful algorithms, referring to other results that will be
presented later.

Table 3. Friedman test P values for self-training, multiple imputations by chained equations (MICE), and random forest.

P valueMissing rate

.0035%

.00510%

.00320%

.0230%

.00740%

.0250%

Additionally, we conducted Wilcoxon signed-rank tests [27] to
verify that there are significant differences between mean
imputation and the 6 methods. The Wilcoxon signed rank test
is a nonparametric test method that determines whether the
medians of paired data are the same. The test calculates the
difference between paired data and then the signed rank of the
difference to obtain the test statistic. In the null hypothesis, the
difference between 2 paired data forms a symmetrical
distribution around zero. In this study, we used the imputation
results for multivariate target features to determine significant
differences between each method and mean imputation. Table
4 presents the results of the Wilcoxon signed-rank test at each
step. For MLP, the P value was larger than .05 at most stages,
which means that this method is not significantly different from
the mean imputation. Whether KNN and MICE reject the null

hypothesis depends on the missing rate, which means that in
some cases, there may be no difference from the mean
imputation. SQMI-R, RF, and EM showed the smallest possible
P values at all stages. In Figure 6, EM had a higher error
compared to mean imputation, and a small P value means that
EM is inferior to mean imputation for all features. The single
imputation EM is unstable when the missing rate is large, which
is consistent with the experimental results. Only RF and
SQMI-R are methods superior to mean imputation for all
features in all situations. The comparison between these 2
models is meaningful as RF is used as the impute model in
SQMI-R. At 50%, as seen in Figure 6, SQMI-R improved by
about 12% when compared to RF. These results proved that
self-training could improve the performance of the imputation
model while preserving the statistical significance.

Table 4. P values from the Wilcoxon signed-rank test for mean imputation.

SQMI-RKNNeEMdMICEcRFbMLPaMissing rate

<.001.463<.001.005<.001.865%

<.001.668<.001<.001<.001.1210%

<.001.013<.001.375<.001.0720%

<.001<.001<.001<.001<.001.00130%

<.001<.001<.001.252<.001.0640%

<.001<.001<.001<.001<.001.0650%

aMLP: multilayer perceptron.
bRF: random forest.
cMICE: multiple imputations by chained equations.
dEM: expectation-maximization.
eKNN: k-nearest neighbor.

Pearson Correlation Coefficient
We calculated the Pearson correlation coefficient to evaluate
the imputation data in another way. We experimented with a
situation where the missing rates were 10%, 20%, 30%, 40%,
and 50%, and 32,302 data points were used. We used 7000 of
these as training data, and randomly created missing data for
the rest of the data and used them as test data. Subsequently,
the Pearson correlation coefficient between the 25,302 imputed

test data points and the original data was calculated to represent
the correlation between 2 vectors. The Pearson correlation
coefficient has a value between +1 and –1, where +1 means a
strong positive linear correlation, 0 means no linear correlation,
and –1 means a strong negative linear correlation. In this study,
the Pearson correlation coefficient was used as an indicator to
measure the degree of preservation of the data structures in the
imputed data. It is more important to preserve the data structure
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when replacing the missing values than simply reducing the
integrated error.

As shown in Figure 8, the mean and variance of the Pearson
correlation coefficients was almost similar to the results of
Figure 6. As the missing rate increases, SQMI-R keeps the

Pearson correlation coefficient higher than in the other methods.
At each point on the graph, the vertical line represents the
variance, while the SQMI-R has the lowest variance. This result
implies that SQMI-R is most strongly correlated with the
original data, which has great significance in terms of data
utilization.

Figure 8. Pearson correlation efficient in various missing rate situations. KNN: k-nearest neighbor; MICE: multiple imputations by chained equations;
MLP: multilayer perceptron; RF: random forest.

Discussion

In this study, we proposed multiple self-training regression
imputation methods. The proposed algorithm used 3 models.
We named the complete data set the teacher and the data set
with missing values the student. The missing value of students
was predicted with imputation model I, and these predicted
values were then evaluated with test models K and K’. If this
prediction is determined to be valid, the student becomes a
teacher. The data remaining as a student until the end were
predicted and imputed by the final imputation model. The first
experimental result showed that the metric we presented,
Q-MSE, works better than normal-MSE. In the second
experimental result, it was confirmed that the self-training
imputation was statistically significantly superior to the existing
statistics and machine learning methods.

Self-training is one independent process, but it is also a process
that further enhances existing methods. The relationship between
RF and SQMI-R demonstrates this well. Our method can be
easily combined with other algorithms as well as RF and is
expected to improve these algorithms. The most important thing
in this process is the metric. The purpose or aspect of
self-training can vary greatly depending on the metric, so the
appropriate metric should be used. In this work, we proposed
a metric assuming that all target features are continuous, but
for general use, we need a metric that can be used when
continuous and discrete values are mixed. And our algorithm
requires repeated measurements, which are time-consuming.
This limitation is one of the challenges that we need to optimize.
Furthermore, experiments on whether the proposed imputation
is well applied to practical statistical analysis or machine
learning problems are also needed. Applying our method to real
machine learning problems with complex data will be the main
subject of our future research.
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