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Abstract

Background: Nowcasting approaches enhance the utility of reportable disease data for trend monitoring by correcting for
delays, but implementation details affect accuracy.

Objective: To support real-time COVID-19 situational awareness, the New York City Department of Health and Mental Hygiene
used nowcasting to account for testing and reporting delays. We conducted an evaluation to determine which implementation
details would yield the most accurate estimated case counts.

Methods: A time-correlated Bayesian approach called Nowcasting by Bayesian Smoothing (NobBS) was applied in real time
to line lists of reportable disease surveillance data, accounting for the delay from diagnosis to reporting and the shape of the
epidemic curve. We retrospectively evaluated nowcasting performance for confirmed case counts among residents diagnosed
during the period from March to May 2020, a period when the median reporting delay was 2 days.

Results: Nowcasts with a 2-week moving window and a negative binomial distribution had lower mean absolute error, lower
relative root mean square error, and higher 95% prediction interval coverage than nowcasts conducted with a 3-week moving
window or with a Poisson distribution. Nowcasts conducted toward the end of the week outperformed nowcasts performed earlier
in the week, given fewer patients diagnosed on weekends and lack of day-of-week adjustments. When estimating case counts for
weekdays only, metrics were similar across days when the nowcasts were conducted, with Mondays having the lowest mean
absolute error of 183 cases in the context of an average daily weekday case count of 2914.

Conclusions: Nowcasting using NobBS can effectively support COVID-19 trend monitoring. Accounting for overdispersion,
shortening the moving window, and suppressing diagnoses on weekends—when fewer patients submitted specimens for
testing—improved the accuracy of estimated case counts. Nowcasting ensured that recent decreases in observed case counts were
not overinterpreted as true declines and supported officials in anticipating the magnitude and timing of hospitalizations and deaths
and allocating resources geographically.

(JMIR Public Health Surveill 2021;7(1):e25538) doi: 10.2196/25538
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Introduction

Timeliness is a key attribute of surveillance systems for
reportable infectious diseases [1,2]. Timely surveillance data
for COVID-19 are used by governments and communities to
allocate resources and to decide when to tighten or loosen
physical distancing and other prevention measures [3,4].
However, public health authorities track reportable diseases at
a lag, given delays from infection to symptom onset, care
seeking, specimen collection, laboratory testing, and reporting
[5]. Monitoring prediagnostic data sources (eg, emergency
department syndromic surveillance [6], internet searches and
social media [7], participatory surveillance of self-reported
symptoms [8], smart thermometers [9], etc) can improve
timeliness at the expense of specificity, such as an inability to
distinguish increases in respiratory illness attributable to
influenza from COVID-19. Another approach that preserves
specificity when monitoring COVID-19 disease trends is to
leverage partially reported disease data, formally accounting
for data lags.

The terms nowcasting, or predicting the present, and
hindcasting, or predicting through the day prior to the present,
describe a wide range of statistical adjustments used to fill in
cases that are not yet reported, offering health officials a more
up-to-date picture for situational awareness [10]. For example,
researchers have assessed the potential to nowcast COVID-19
cases and deaths using Google Trends data available in near-real
time [11], and have applied a range of modeling approaches
that leverage reporting delays to estimate the number of
not-yet-reported cases and deaths [12,13]. Using mathematical
models to exploit COVID-19 transmission dynamics, nowcasting
also has been extended to COVID-19 forecasting systems
[14,15]. In a majority of these approaches, the nowcasting
mechanism relies on accurately estimating the distribution of
reporting delays; however, infectious disease transmission
contains an important temporal component, in that incidence is
correlated from one time point to the next, which has also been
shown to improve nowcasting performance, including in
COVID-19 applications [10,16].

We describe the use and evaluation of a time-correlated
Bayesian nowcasting approach at the New York City (NYC)
Department of Health and Mental Hygiene (DOHMH) during
the first epidemic wave of COVID-19 to support real-time
situational awareness and resource allocation. During the period
from March to May 2020, approximately 203,000
laboratory-confirmed COVID-19 cases were reported to NYC
DOHMH, peaking during the week of March 29, with
approximately 5100 cases diagnosed per day [17]. Testing rates
increased during this period as testing criteria at public health
laboratories were relaxed, commercial and hospital laboratories
developed testing capacity, and additional testing sites were
opened and promoted [17].

Methods

Reportable Disease Surveillance Data

Persons Tested
Clinical and commercial laboratories are required to report all
results, including positive, negative, and indeterminate results,
for SARS-CoV-2 tests for New York State residents to the New
York State Electronic Clinical Laboratory Reporting System
(ECLRS) [18,19]. For NYC residents, ECLRS transmits reports
to NYC DOHMH. These laboratory reports include specimen
collection date and patient demographic information, including
residential address.

For nowcasting persons newly tested, NYC DOHMH
deduplicated laboratory reports, retaining the first report
received (ie, report date) in ECLRS per person of a
SARS-CoV-2 polymerase chain reaction (PCR) test. We retained
the first specimen collection date for that associated test report
date and the patient’s ZIP Code of residence at time of report.

ZIP Codes are collections of points constituting a mail delivery
route. The United States Census Bureau developed ZIP Code
Tabulation Areas (ZCTAs), which are aggregates of census
blocks, to provide an areal representation of ZIP Codes. NYC
DOHMH created a custom geography referred to as a modified
ZCTA (modZCTA) by merging ZCTAs with populations of
less than 3000 to an adjacent ZCTA with a larger population
and merging interior ZCTAs with smaller populations to the
surrounding ZCTA [20,21]. There are 177 modZCTAs within
NYC.

Confirmed Cases
At NYC DOHMH, electronic laboratory reports are
automatically standardized, and positive results indicating a
confirmed case (ie, detection of SARS-CoV-2 RNA in a clinical
specimen using a molecular amplification detection test) [22]
are transmitted to the NYC DOHMH’s communicable disease
surveillance database known as Maven (Conduent Public Health
Solutions). For confirmed cases, the diagnosis date was defined
as the specimen collection date of the first positive test. The
report date was defined as the date the case was created in the
disease surveillance database, which typically corresponded to
the date the first positive test was reported to ECLRS.

Hospitalization status was ascertained by routinely matching
patient identifiers for confirmed COVID-19 cases with
hospitalized patients in supplemental data systems, including
regional health information organizations, the New York State
Hospital Emergency Response Data System, and NYC public
hospitals [17]. For each hospitalized patient with a confirmed
COVID-19 diagnosis, the hospital name for the most recent
hospitalization in NYC was standardized to the name of a fully
operational medical center. Patients with hospital discharge
dates greater than 14 days prior to the collection date of their
first positive PCR result were not considered hospitalized for
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COVID-19. The date of hospitalization ascertainment was not
retained.

Real-Time Nowcasting
NYC DOHMH nowcasted three outcomes (ie, confirmed cases,
ever-hospitalized cases, and persons tested) among NYC
residents at weekly increments; outcomes were nowcasted in
real time through May 2020 on Mondays using reports received
through the prior day on Sunday. Starting on March 24, 2020,
nowcasts were conducted for all confirmed COVID-19 cases
and restricted to the subset of confirmed COVID-19 cases
among patients ever hospitalized. Starting on May 2, 2020, as
testing became more widely available [23], nowcasts were
conducted for persons newly tested by PCR for SARS-CoV-2.
Each outcome was nowcasted citywide and also stratified by
modZCTA of patient residence, to support targeting of
community-based resources. Hospitalized cases were also
nowcasted stratifying by health care facility, to support
allocating resources to hospitals.

To account for reporting delays and the shape of the
outcome-specific epidemic curve, we applied the R package
Nowcasting by Bayesian Smoothing (NobBS), version 0.1.0
[10,24] (The R Foundation), to data for specimens collected or
diagnoses during the 3 weeks prior to the nowcast through the
date prior to the nowcast. Briefly, this approach corrects for
underestimation of cases in real time caused by delays in
reporting, learning the historical distribution of delays and
relationship between cases in sequential time points to estimate
the number of cases not yet reported. In performing stratified
nowcasts, NobBS estimated the delay distribution citywide and
the epidemic curve uniquely by stratum. Reports visualizing
nowcast results were distributed weekly to DOHMH leadership
for situational awareness.

We assumed an underlying Poisson distribution for case
occurrence because this was the default setting in NobBS. The
3-week moving window was selected under the assumption that
this length would adequately balance recency with stability.
Although the optimal moving-window length was unknown in
real time, given competing priorities during a pandemic, busy
DOHMH officials would not have had adequate time to consider
multiple nowcast versions with different window lengths as
sensitivity analyses. The potential of the choice of
moving-window length to considerably change nowcast
estimates motivated a retrospective performance evaluation.

Retrospective Nowcasting Evaluation
For the outcome of confirmed COVID-19 cases, we
characterized the delay distribution between diagnosis and
report, overall during the study period and by month of report,

by median number of days, IQR, and 90th percentile. We
assessed the sensitivity of nowcasting results for patients
diagnosed citywide during the period from March 22 to May
31, 2020—excluding cases diagnosed from March 1 to 21, given
limited testing—to several choices: (1) day of week when the
nowcast was performed, given outpatients with milder illness
sought care and were diagnosed less frequently on weekends,

when health care provider offices were typically closed or had
more limited hours; (2) window length, given time-varying
SARS-CoV-2 testing availability and uptake in NYC; and (3)
assumed underlying distribution (ie, Poisson or negative
binomial) for case occurrence. We generated Poisson regression
models for the daily count by diagnosis date, separately for the
entire study period and for every overlapping and
nonoverlapping 2- and 3-week period, with and without
weekends, used in the nowcasting evaluation. We checked the
dispersion ratio for these Poisson regression models; dispersion
ratios that were greater than 1 and statistically significant would
indicate overdispersion and support instead using a negative
binomial distribution. In addition, for nowcasting the number
of cases stratified by modZCTA, we compared results using (1)
the strata option in NobBS, which estimated the delay
distribution citywide and epidemic curve separately for each
modZCTA, versus estimating both the delay distribution and
epidemic curve separately for each modZCTA and (2) 10,000
versus 3000 adaptations when optimizing the nowcasting
algorithm [10].

Data for the evaluation were frozen as of June 30, 2020,
capturing reports received through 1 month after the end of the
assessment period. We mimicked prospective surveillance at
weekly intervals and daily temporal resolution, retaining the
number of estimated cases for each of the prior 7 days (ie,
1-7-day hindcasts). We used the mean absolute error and the
average daily relative root mean square error across all days
evaluated to compare the point estimate of the number of daily
hindcasted cases over the time series with the true number of
cases reported. For each of these metrics, lower numbers indicate
better performance of the hindcast. We also assessed the 95%
prediction interval coverage (ie, the proportion of days during
the study period when the 95% prediction interval included the
true number of cases) [10], which should ideally be 95%.

This work was reviewed and deemed as public health
surveillance that is nonresearch by the DOHMH Institutional
Review Board. Line-level data, as required for nowcasting using
NobBS, are not publicly available in accordance with patient
confidentiality and privacy laws.

Results

Among confirmed COVID-19 cases residing in NYC and
diagnosed during the period from March to May 2020, the
median delay between specimen collection and report was 2

days (IQR 1-4; 90th percentile 7). By month of report for
diagnoses during the period of March to May 2020, the median
number of days for this delay for reports received in March

2020 was 2 (IQR 1-4; 90th percentile 7), in April was also 2

(IQR 1-4; 90th percentile 7), in May was 2 (IQR 1-3; 90th

percentile 5), and in June, given the study period included cases

diagnosed through May, extended to 7 (IQR 4-19; 90th percentile
62). Hindcasts were performed weekly on Mondays in real time,
with results visualized for DOHMH leadership (eg, see Figure
1).

JMIR Public Health Surveill 2021 | vol. 7 | iss. 1 | e25538 | p. 3http://publichealth.jmir.org/2021/1/e25538/
(page number not for citation purposes)

Greene et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Example hindcast visualization of epidemic curve of reported and estimated but not-yet-reported number of confirmed cases among New
York City residents diagnosed with COVID-19, from March 1 to April 30, 2020. Illustrative hindcast performed using cases reported through April 30,
2020 (ie, a Thursday), a 2-week moving window, and a negative binomial distribution.

However, the retrospective performance evaluation determined
that real-time hindcasts on Mondays using a 3-week window
and an assumed Poisson distribution more often overestimated
than underestimated the number of not-yet-reported cases and
resulted in overly narrow 95% prediction intervals (see Figure
2 and Figure S1 in Multimedia Appendix 1). Subsequent results

focus on two scenarios: the scenario that was used in real time
(ie, a 3-week moving window and Poisson distribution) and the
scenario that would have performed best had it been used in
real time (ie, a 2-week moving window and negative binomial
distribution).

Figure 2. Comparison of 7-day hindcasts conducted on Fridays with a 2-week window and negative binomial distribution, and 7-day hindcasts conducted
on Mondays with a 3-week window and Poisson distribution. Total cases reported as of June 30, 2020, are shown with a black line.

We found that citywide hindcasts with a 2-week moving window
and a negative binomial distribution had a 44% lower mean
absolute error, a 31% lower relative root mean square error, and
0.65 higher 95% prediction interval coverage than hindcasts
conducted with a 3-week moving window or with a Poisson

distribution (see Table 1 as well as Table S1 and Figures S1
and S2 in Multimedia Appendix 1). Poisson regression models
for daily count data for the entire study period and for each 2-
and 3-week period evaluated were overdispersed (median
dispersion ratio 97.5, all P<.05), which explains the better
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performance of the negative binomial distribution. While
dispersion ratios were lower for analyses restricted to weekdays

(median ratio of 32.5 vs 150 for all days), all were greater than
1, indicating overdispersion.

Table 1. Performance measures for hindcasting approaches applied to citywide case counts of New York City residents diagnosed with COVID-19,
from March 22 to May 31, 2020.

Weekdays onlyAll daysApproach and sensitivity analyses

95% predic-
tion interval
coverage

Relative root mean
square error

Mean absolute
error

95% predic-
tion interval
coverage

Relative root mean
square error

Mean absolute
error

Base scenario used in near-real time by

NYC DOHMHa, using 3-week window
with Poisson distribution

0.160.195590.160.20544All days

0.200.123380.140.25556Hindcasting each Monday for the
previous Monday-Sunday

Day-of-week hindcasting was performed
for previous 7-day period, using 2-week
window with negative binomial distribu-
tion

0.840.102580.810.14306All days

0.820.071830.860.20336Monday

0.840.082330.830.16335Tuesday

0.870.112750.810.14307Wednesday

0.840.112570.810.11271Thursday

0.840.112670.750.10255Friday

0.800.112670.730.11260Saturday

0.880.102730.870.16372Sunday

aNYC DOHMH: New York City Department of Health and Mental Hygiene.

Hindcasts conducted toward the end of the week (ie, Thursday
to Saturday) performed better than hindcasts performed earlier
in the week, presumably as they had the furthest distance from
the weekends. Weekends had lower overall case counts than
weekdays (see Figure 1). Until mid-May, hindcasts more often
overestimated than underestimated true case counts, whereas
at the end of May hindcasts more often underestimated case
counts, reflecting changes in the delay distribution over time
(see Figure 2 and Figure S3 in Multimedia Appendix 1).

To minimize day-of-week effects that were most prominent on
weekends, we also restricted performance analysis to hindcasts
of cases on weekdays only, which resulted in better metrics, as
expected (see Table 1 and Table S1 in Multimedia Appendix
1). The hindcasts restricted to estimating case counts for
weekdays with a 2-week moving window and negative binomial
distribution also performed better than the hindcasts with a
3-week moving window and Poisson distribution, with 54%
lower mean absolute error, 46% lower relative root mean square
error, and 0.69 higher 95% prediction interval coverage (see
Table 1 and Table S1 in Multimedia Appendix 1). Performance
metrics were similar across days the hindcasts were conducted,
with Mondays having the lowest mean average error and relative
root mean square error, as expected given the 2 additional days
between the last day reported (ie, Friday) and the day the

hindcast was conducted (ie, Monday). On weekdays during the
study period, the average daily case count after data lags
resolved was 2914, the average hindcasted case count with a
2-week window and negative binomial distribution conducted
on Mondays was 2878, and the mean absolute error was 183.
A combination of the window length and underlying distribution
influenced the performance of the mean absolute error and
relative root mean square error metrics, with larger differences
occurring between different windows with the same distribution
than between different distributions with the same window. On
the other hand, the distribution was the primary driver for
differences in the 95% prediction interval coverage (ie,
differences were larger between analyses with different
distributions than between analyses with the same distribution
and different windows).

For hindcasts at the modZCTA level, a 2-week moving window
and negative binomial distribution performed best across all
metrics evaluated (see Table 2 and Table S1 in Multimedia
Appendix 1), although the prediction interval coverage for the
nowcasts with a Poisson distribution was higher than for
citywide hindcasts. The hindcasts that assumed a citywide delay
distribution performed slightly better than hindcasts that
assumed different distributions by modZCTA. Metrics for 3000
versus 10,000 adaptations were essentially the same.
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Table 2. Performance measures for hindcasting approaches in Nowcasting by Bayesian Smoothing (NobBS), applied to case counts of New York City
residents diagnosed with COVID-19 from March 22 to May 31, 2020, stratified by modified ZIP Code Tabulation Area (modZCTA) of residence.

Weekdays onlyAll daysApproach and sensitivity analyses

95% predic-
tion interval
coverage

Relative root
mean square
error

Mean absolute
error

95% predic-
tion interval
coverage

Relative root
mean square
error

Mean absolute
error

Base scenario used in near-real time by NYC

DOHMHa,b

0.840.182.750.840.373.823-week Poisson (10,000 adaptations)

0.840.182.760.840.373.833-week Poisson (3000 adaptations)

0.930.152.090.930.332.922-week negative binomial (10,000 adapta-
tions)

0.930.152.080.930.342.932-week negative binomial (3000 adaptations)

Conducting hindcasts on Fridaysc

0.950.252.980.940.222.622-week negative binomial

Estimate delay distribution separately by

modZCTAd

0.950.212.570.940.363.552-week negative binomial

aNYC DOHMH: New York City Department of Health and Mental Hygiene.
bThe approach used the strata option in NobBS, which estimated the delay distribution citywide and epidemic curve separately for each modZCTA,
conducted on Mondays
cThe approach used the strata option in NobBS, which estimated the delay distribution citywide and epidemic curve separately for each modZCTA,
conducted on Fridays.
dThe approach involved estimating both the delay distribution and epidemic curve separately for each modZCTA conducted on Mondays.

Discussion

Principal Findings
NYC DOHMH improved situational awareness of COVID-19
testing and cases during the first epidemic wave in near-real
time by applying NobBS, a readily accessible nowcasting and
hindcasting method. As a result of the retrospective performance
evaluation, to improve nowcast accuracy prospectively effective
August 2020, we implemented the following changes to the
nowcasting approach: (1) we used a negative binomial case
distribution instead of a Poisson; (2) we linked the determination

of the moving-window length (ie, 2 or 3 weeks) to the 90th

percentile of the lag between specimen collection and report
for reports received in the most recent week, choosing 3 weeks

if the 90th percentile of the lag distribution is more than 14 days;
and (3) we suppressed nowcasting results for specimens
collected on weekends, given lack of adjustment for day-of-week
effects. The evaluation supported the results of nowcasting
conducted on any weekday.

Despite a mature electronic laboratory reporting system and
strong informatics infrastructure and data cleaning procedures
at NYC DOHMH, input data available for nowcasting had
several limitations. First, for records with long lags between
specimen collection and report, as long as the specimen was
reported to have been collected during the pandemic period, it
was not possible to distinguish long lags attributable to true
delays in testing or reporting—and, thus, informative to the
delay distribution—from long lags attributable to laboratory
data entry errors in specimen collection dates. Second,

nowcasting by patient modZCTA of residence relied on accurate
laboratory reporting of patient address. For example, 1 week of
real-time nowcasting results were biased when, for a batch of
reports, one commercial laboratory misreported its own address
as the residential address of all patients tested. Third, patient
hospitalization status was largely ascertained by matching
administrative records. To allow time for record matching,
hospitalization nowcasts were conducted at a 3-day lag, limiting
the real-time availability of results. Furthermore, records from
certain facilities were unavailable in near-real time, so nowcasts
of hospitalizations by patient residence and by facility were
subject to spatial bias, although still considered by DOHMH
leadership to be useful for situational awareness.

This version of NobBS (ie, version 0.1.0) also had several
limitations when applied for nowcasting COVID-19 in NYC.
First, there was no built-in functionality in NobBS to account
for observable factors influencing data lags, including
day-of-week and holiday effects in outpatient testing, and
time-varying testing backlogs at specific laboratories
differentially processing specimens for residents across
neighborhoods. A recent COVID-19 nowcasting study in
Bavaria, which adapted certain modeling elements from NobBS,
found that modeling a weekday effect improved nowcast
performance [16]. Given the substantial differences in diagnoses
on weekdays compared with weekends, similar adjustments
would likely benefit NYC nowcasts but were unavailable in
NobBS. Similarly, there was no functionality to account for
temporal trends in testing (eg, the time-varying ratio of number
of tests performed to number of cases detected). Third, while
95% prediction intervals reflected uncertainty in the nowcasts
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themselves—encompassing uncertainty in the estimation of the
delay distribution as well as in the time evolution of the
epidemic curve—they did not reflect uncertainty introduced by
the user-specified window length. Fourth, in generating
geographically stratified nowcasts, the strata option in NobBS
estimated the delay distribution citywide and epidemic curve
separately for each modZCTA or health care facility stratum.
For a highly transmissible infectious disease, nowcasting
performance might be improved by considering spatial
relationships across geographic strata, including spatial
autocorrelation. Finally, although government officials have
demonstrated interest in publicizing test percent positivity by
report date [25,26], which can be biased by data lags, NobBS
did not have functionality to nowcast percentages as an outcome.
NobBS could be used to separately nowcast persons testing
positive and negative and then to calculate test percent positivity,
but there is no functionality to appropriately account for the
separate uncertainties in the numerator and denominator of this
percentage.

Practice Implications
When tracking ongoing outbreaks using epidemic curves, public
health officials recognize that data for recent days are incomplete
because of reporting delays. Data lags can make it difficult for
policy makers to discern in near-real time whether apparent
decreases in recent case counts are the result of public health
interventions, such as social distancing guidelines.

NYC DOHMH filled in COVID-19 epidemic curves using
NobBS, which helped ensure that recent decreases in observed
case counts were not overinterpreted as true declines in disease
and supported the continuation of policies to reduce
transmission. Nowcasted citywide case counts supported
situational awareness and assisted DOHMH leadership in
anticipating the magnitude and timing of hospitalizations and
deaths. Nowcasting hospitalizations by health care facility was
useful in helping to route patient transports and avoid
overburdening facilities.

As the COVID-19 pandemic continues, state and local health
departments should incorporate nowcasting into their workflows.
This performance evaluation led to analytic improvements in
place for the second wave of COVID-19 in NYC, including the
use of a more suitable underlying distribution for case
occurrence, a dynamic window length to account for periods
with an extended lag distribution, and suppression of diagnoses
on weekends to avoid biased trend estimates. Nowcasted case
counts can also be used as inputs for near-real time estimates
of other outbreak monitoring metrics, including the time-varying
reproduction number [27] and doubling times [28]. Further
evaluations are warranted to assess nowcasting performance
during different COVID-19 epidemic phases and across
jurisdictions experiencing a variety of data lag distributions,
including more extensive reporting delays [29], and for
additional outcomes, such as deaths.
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