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Abstract

Background: Different states in the United States had different nonpharmaceutical public health interventions during the
COVID-19 pandemic. The effects of those interventions on hospital use have not been systematically evaluated. The investigation
could provide data-driven evidence to potentially improve the implementation of public health interventions in the future.

Objective: We aim to study two representative areas in the United States and one area in China (New York State, Ohio State,
and Hubei Province), and investigate the effects of their public health interventions by time periods according to key interventions.

Methods: This observational study evaluated the numbers of infected, hospitalized, and death cases in New York and Ohio
from March 16 through September 14, 2020, and Hubei from January 26 to March 31, 2020. We developed novel Bayesian
generalized compartmental models. The clinical stages of COVID-19 were stratified in the models, and the effects of public
health interventions were modeled through piecewise exponential functions. Time-dependent transmission rates and effective
reproduction numbers were estimated. The associations of interventions and the numbers of required hospital and intensive care
unit beds were studied.

Results: The interventions of social distancing, home confinement, and wearing masks significantly decreased (in a Bayesian
sense) the case incidence and reduced the demand for beds in all areas. Ohio’s transmission rates declined before the state’s “stay
at home” order, which provided evidence that early intervention is important. Wearing masks was significantly associated with
reducing the transmission rates after reopening, when comparing New York and Ohio. The centralized quarantine intervention
in Hubei played a significant role in further preventing and controlling the disease in that area. The estimated rates that cured
patients become susceptible in all areas were small (<0.0001), which indicates that they have little chance to get the infection
again.

Conclusions: The series of public health interventions in three areas were temporally associated with the burden of
COVID-19–attributed hospital use. Social distancing and the use of face masks should continue to prevent the next peak of the
pandemic.

(JMIR Public Health Surveill 2020;6(4):e25174) doi: 10.2196/25174
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Introduction

A novel coronavirus was identified as the cause of a cluster of
pneumonia cases in Wuhan, the capital city of Hubei Province,
China, at the end of 2019. It quickly spread throughout China,
followed by an increasing number of cases in other countries.
The virus was named SARS-CoV-2. The World Health
Organization (WHO) designated the disease caused by
SARS-CoV-2 as COVID-19. The disease’s main clinical
manifestations include fever, cough, shortness of breath, fatigue,
and dyspnea [1-4], with progression to multi-organ dysfunction
in severe cases. In March 2020, the WHO declared the
COVID-19 outbreak a global pandemic. As of October 20, 2020,
there are 40,756,188 cases (including 1,124,627 deaths)
attributed to COVID-19 that have been reported worldwide,
with sustained transmission in many countries, including the
United States.

Many statistical and mathematical models were proposed to
estimate the dynamics and the potential spread of COVID-19
[5-9]. The classical compartmental models such as the
susceptible-exposed-infectious-removed (SEIR) models were
the most widely used [10]. These models were applied to
estimate the transmission risks, predict the numbers of infected
subjects, and evaluate the public health interventions [9,11,12].
A key parameter in these models was the basic reproduction
number (R0), defined as the expected number of additional cases
that one case will generate. If R0 is above 1, continuous
human-to-human transmission with sustained transmission
chains will occur. The median R0 of COVID-19 was recently
estimated [12] at 2.79 (IQR 1.16), which is significantly higher
than that of the severe acute respiratory syndrome coronavirus.

Admissions to hospitals and intensive care units (ICUs)
increased exponentially during the first few weeks of the
outbreak in many countries, significantly straining resources
and, at times, transforming a public health emergency into an
operational crisis [13]. Rigorous government control policies
were instituted to slow the spread of the disease and reduce the
burden of COVID-19–attributed hospital use. Although
associations of public health interventions with COVID-19
epidemiology in Wuhan City were studied [14,15], the effects
of these interventions on hospital use at a state level remain to
be investigated. This knowledge gap is significant given the
growing public health concern regarding the adequacy of
resources to treat severe COVID-19, including hospital beds,
ICUs, and ventilators, in the United States. To project the timing
of the outbreak peak and the number of ICU beds required at
the peak, Moghadas et al [11] simulated a COVID-19 outbreak
parameterized with the US population demographics. Grasselli
et al [16] presented a linear model as well as an exponential
model to predict ICU admissions.

However, most of the current models used prespecified
parameters from the literature to simulate the COVID-19
outbreak [17]. They did not account for dynamic disease
evolution, which often resulted in underestimating or
overestimating hospital use. In this study, we propose a novel
generalized dynamic SEIR model. The clinical stages of
COVID-19 are stratified in the model, and the effects of public

health interventions are modeled through piecewise exponential
functions. Unlike the other existing methods, we estimated all
dynamic parameters from observed epidemic data through
Bayesian inferences.

In the United States, New York State was hit the hardest by
COVID-19 in the early stage of the pandemic, and Ohio State
had early public health interventions by its government and
medical community. In China, Hubei Province was where
COVID-19 was first detected, and the province was put under
strict lockdown. Using the proposed model, we aim to evaluate
and compare the effectiveness of public health interventions on
hospital use in patients with COVID-19 for the three
representative areas; in addition, we aim to study the
time-dependent associations between the interventions and
transmission rates and effective reproduction numbers.

Methods

Data Sources
The epidemiological data of COVID-19 in New York State and
Ohio State were obtained from the Centers for Disease Control
and Prevention of the United States, Johns Hopkins Coronavirus
Resource Center [18], and the COVID tracking project from
the Atlantic [19]. We collected the daily number of confirmed
cases, the number of cumulative deaths, and the number of
cumulative cured cases from March 12 to September 14, 2020.
In addition, we obtained the number of hospitalization cases
from March 21 to September 14, 2020, in New York and the
numbers of hospitalized, mild, severe, and critically ill patients
in Ohio from May 2 to September 14. In this study, the data
from March 12 to August 31 were used for model building, and
the data from September 1 to September 14 were used for
external validation.

The epidemiological data of COVID-19 in Hubei, China were
mainly obtained from the National Health Commission of China,
Chinese Center for Disease Control and Prevention, and Hubei
Provincial Health Commission [20]. We collected the daily
numbers of confirmed infected cases, cured cases, and deaths
from December 1, 2019, to March 31, 2020. We also extracted
the numbers of hospitalized, mild, severe, and critically ill
patients from January 26 to March 31, 2020.

Dynamic SEIR Model
In the classical SEIR model, the human-to-human transmission
of COVID-19 was modeled using a compartmental
representation of the disease where an individual occupied one
of the four states: susceptible (S), exposed (E), infectious (I),
and removed (R). The population was assumed to have a
homogeneous spatial distribution. Susceptible individuals could
acquire the virus through contact with individuals in the
infectious compartment and become exposed. The exposed
individuals were infected but not yet infectious. They
experienced an incubation duration and progress to the infectious
stage at a certain rate. The infectious individuals could progress
into the removed stage (usually recovered with immunity) at
another rate.

To characterize the hospital use for patients with COVID-19,
we generalized the classical SEIR model by introducing a few
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new compartments. We considered three clinical stages for
COVID-19 in our model [4,21]: mild, severe, and critical. Mild
included patients who had symptoms like fever and cough, and
may have mild pneumonia. Hospitalization was not required in
the United States, but such individuals were required to admit
to temporary hospitals in China. Severe was characterized by
dyspnea, respiratory frequency≥30/minute, blood oxygen
saturation≤93%, PaO2/FiO2 ratio<300, or lung infiltrates>50%
within 24-48 hours. Hospitalization and supplemental oxygen
were generally required for them. Critical cases exhibited
respiratory failure, septic shock, or multiple organ dysfunction

and failure. Treatment in an ICU, often with mechanical
ventilation, was typically required.

Figure 1 displays the flowchart of the proposed model. Here,
the infectious stage includes all individuals who are confirmed
COVID-19 cases, which is composed of three subcompartments:
Im represents the infectious individuals with mild symptoms, Is

represents the severe patients, and Ic represents the patients who
were critically ill. The removed stage includes two
subcompartments: the dead compartment (D) and the recovered
compartment (R).

Figure 1. Flowchart of the dynamic susceptible-exposed-infectious-removed model.

We assumed that an individual who is susceptible or at risk can
only be infected by exposed individuals (patients with
COVID-19 who had not been confirmed) or mild patients, since
severe or critically ill patients were hospitalized and had a small
(ignorable) probability to infect others. In Figure 1, βm is the
transmission rate that infectious individuals in the compartment
Im contact susceptibles and infect them, and βE is the
transmission rate at which exposed individuals in E contact
susceptibles and infect them. α* is the rate of progression from
the exposed to infectious class I*, where the subscript “*”
denotes one of the patient groups, mild (m), severe (s), and
critically ill (c). γ* is the rate that infectious individuals in class
I* recover from the disease. ps is the rate that infectious
individuals in Im progress to Is, and pc is the rate that infectious
individuals in Is progress to Ic. q represents the death rate for
patients who are critically ill. Since the WHO recently stated
that there was no evidence that patients who recover from
COVID-19 are entirely immune, we used δ to represent the rate
that infected individuals are cured and become susceptible again.
The mathematical details of the proposed model are given in
Multimedia Appendix 1.

Mathematically, our model is expressed as a system of ordinary
differential equations:

with the size of population N:

N = S(t) + E(t) + Im(t) + Is(t) + Ic(t) + R(t) + D(t) (8)

Public Health Interventions

Classification of Time Periods in New York
To better reflect the epidemic trends and corresponding
interventions of COVID-19, four periods were classified
according to data relevant for virus transmission in New York
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State (Figure 2). The first period was from March 12 to 22,
2020, the free virus transmission period. The second period was
from March 22 to April 17. The governor of New York State,
Andrew Cuomo, issued the “New York State on PAUSE”
(Policies Assure Uniform Safety for Everyone) Executive Order
on March 20, which took effect on March 22. This 10-point
policy included a new directive that all nonessential businesses
statewide must close in-office personnel functions, temporary
banning of all nonessential gatherings of individuals of any size
for any reason, and mandated social distancing of at least 6 feet

from others for individuals in public. The third period was from
April 17 to May 15. The governor announced another order that
all people in New York would be required to wear a face
covering when out in public and in situations where social
distancing cannot be maintained. The fourth period started on
May 15. Some regions of New York State started to enter the
first phase of reopening. To reflect the effects of governmental
public health policy in the different periods, we modeled the
transmission rates using piecewise exponential functions (see
Multimedia Appendix 1).
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Figure 2. Classification of time periods according to key events and interventions in New York State, Ohio State, and Hubei Province.

Classification of Time Periods in Ohio
We considered five time periods based on several key time
points that could affect the virus’s spread in Ohio. Ohio was
the state that took early actions against COVID-19. The first
period was from March 9 to 22, 2020. The governor of Ohio,
Mike DeWine, declared a state of emergency in Ohio on March
9 and announced several steps to fight against the spread of the
COVID-19 epidemic; before, there were no confirmed cases in

Ohio. The second period was from March 22 to May 1. A
statewide “stay at home” order was issued on March 22. The
order included advising people to stay at home, closing most
nonessential businesses, and requiring individuals in public to
practice social distancing. The third period was from May 1 to
July 8. Ohio entered the first phase of its reopening program.
The fourth period was from July 8 to 23, 2020. Mr DeWine
announced that any county at level 3 or higher in the Public
Health Advisory System must wear masks in public places. The
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fifth period started from July 23. Ohio mandated the use of
masks and face coverings across the state while in public.

Classification of Time Periods in Hubei Province
We considered four time periods according to the critical dates
that may have affected virus transmission in Hubei. The first
period was from January 17 to 23, 2020, the Spring Festival
period in China. There was a large-scale population flow, and
there was no strong intervention to prevent and control the
epidemic. The second period was from January 23 to February
2. The China’s central government imposed a lockdown in
Wuhan and other cities in Hubei to quarantine the center of the
COVID-19 outbreak on January 23. The actions included
suspending public transport, banning all vehicles in cities,
blocking the main roads between cities, requiring people to
wear masks in public places, and forbidding gathering activities.
The third period was from February 2 to 17. Hubei successively
opened several new temporary hospitals to treat patients with
mild symptoms and isolate the infection source. The fourth
period started on February 17. The government began the
individual symptom screening for all residents.

The Effects of Medical Resources
In the early period of the COVID-19 pandemic, medical
resources such as hospital beds, ICU beds, and ventilators fell
short. During this period, the availability of the medical
workforce was affected since many physicians and nurses were
becoming ill or quarantined [22]. With the continuous allocation
of more medical resources and the opening of new temporary
hospitals, patients with mild disease got a better treatment.
Therefore, we considered that the cure rate γm changed with
time and modeled it with a three-parameter logistic function to
reflect the continuous improvement of reactive medical
resources in the three areas.

Statistical Analysis
We performed a Bayesian analysis with Markov chain Monte
Carlo (MCMC) to fit the models to the COVID-19
epidemiological data in the three areas. To implement the

MCMC algorithm, we followed the method by Raftery and
Lewis [23]. After an initial number of 10,000 burn iterations,
every 10th MCMC sample was retained from the next 200,000
samples. Thus, 20,000 samples of targeted posterior distributions
were used to estimate the unknown parameters. The stability
of the posterior distributions was checked by examining the
graphics of the runs. The mathematical details of the dynamic
SEIR model are presented in Multimedia Appendix 1. We also
developed an online R shiny app to help readers assess the
models [24]. All analyses were done with R software (V3.6.3;
R Foundation for Statistical Computing).

Results

Parameters
The parameters in the dynamic models included the transmission
rates βm and βE; the progression rates αm, αs, ps, and pc; the
recovery rates γm, γs, and γc; the death rates qs and qc; and the
rate that recovered individuals become susceptible again, δ.
Posterior means and 95% credible intervals (CIs) for the model
parameters are presented in Table S1 in Multimedia Appendix
1. Those estimated parameters varied for the three areas.
Noticeably, we found that the rate δ was low and ignorable in
all areas, which indicates that the patients who were cured had
little chance to become susceptible again. The fitted curves for
the epidemic trends of COVID-19 for the three areas are
presented in Figure S1 in Multimedia Appendix 1. The proposed
models performed well in simultaneously fitting the
multidimensional epidemic data.

Transmission Rates and Effective Reproduction
Numbers

The estimated transmission rate functions and for
the three areas are displayed in Figure 3. The estimates of decay
parameters with their 95% CIs and the mean differences between
different periods are presented in Table S1 in Multimedia
Appendix 1.
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Figure 3. The estimated time-varying transmission rates and , in New York State, Ohio State, and Hubei Province. The solid lines denote
the posterior mean curves, and the grey areas denote the 95% credible intervals.

In New York, the PAUSE Executive Order appeared effective.
The transmission rates declined quickly after the order was
executed. With the effects of the first and second orders, the
rates continued decreasing after April 17, 2020. In Ohio, we
noticed that the rates declined before the “stay at home” order
because of the early interventions by the government. The
transmission rates in Ohio were lower than those in New York
before April.

However, the rates in Ohio started to increases after May 1,
2020, when Ohio entered the first phase of its reopening
program. Ohio had a second wave of COVID-19 but New York
did not in July. It might be because more strict reopening
policies were implemented in New York after May. Ohio’s
transmission rates decreased again after the order of mandatory
use of masks and face coverings was implemented.

In Hubei, the transmission rate of the virus was growing rapidly
in the first period because of the large floating population during
the Spring Festival of China. In the second period, due to the
city lockdown policy implemented, the transmission of the virus
had been adequately controlled. In the third period, the
transmission rates were further reduced because temporary
hospitals effectively treated patients with mild symptoms and
isolated the infection sources.

In all areas, the transmission rate of exposed individuals was
higher than that of mild patients. The transmission rates of mild
patients βm in New York and Ohio were higher than in Hubei,
which may be due to the policy of centralized treatment of mild
patients in temporary hospitals in Hubei. This policy seemed
to effectively reduce the contact between mild illness patients
and susceptible people, thus reducing the transmission rate of
mild patients. The public health interventions of social
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distancing and home confinement played a significant role in
preventing and controlling the disease in all areas. The decay
rates of transmission were significantly changed (in a Bayesian
sense) before and after implementing the interventions (Table
S1 in Multimedia Appendix 1).

The estimated effective reproduction numbers in the three
areas are displayed in Figure 4. The solid lines indicate the

posterior mean curves, and the grey areas denote the 95% CIs.
After the polices of social distancing, no gathering activities,

and closure of business activities, gradually fell below 1.0

for all areas. However, in Ohio, gradually increased after
entering the first phase of its reopening program, and exceeded
1.0 on June 3, 2020. It started to decrease after people were
mandatorily required to use masks in public.

Figure 4. The estimated effective reproduction number in the three areas. The solid lines denote the posterior mean curves, and the grey areas
denote the 95% credible intervals.

Estimated Parameters for COVID-19 Clinical
Progression and Disease Severity
Table 1 presents the estimated parameters and their 95% CIs
for COVID-19 clinical progression and disease severity. The
mean incubation periods were close in the three areas (New
York: 6.99 days; Ohio: 6.20 days; Hubei: 6.55 days). However,
the time from symptoms to hospital admission in New York
and Ohio was longer than that in Hubei (16.84 days and 16.72
days vs 10.20 days, respectively). The time from hospital
admission to critical care was shorter in New York and Ohio
than that in Hubei (5.43 days and 5.32 days vs 8.49 days,

respectively). The time from hospital admission to death was
shorter in New York and Ohio than that in Hubei (10.33 days
and 11.25 days vs 13.40 days, respectively). The proportion of
infected subjects progressing to the severe stage in New York,
Ohio, and Hubei were 23.56%, 12.63%, and 30.92%,
respectively. The proportions progressing to the critical stage
were 14.91%, 6.41%, and 13.49%, respectively. The proportions
progressing to the death stage were 8.00%, 5.17%, and 4.48%,
respectively. These differences may be because of the different
hospitalization and ICU admission criteria, and a mixed patient
population.
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Table 1. Posterior mean and 95% CIs for quantities of COVID-19 clinical progression and disease severity.

Hubei Province, posterior mean
(95% CI)

Ohio State, posterior mean
(95% CI)

New York State, posterior mean

(95% CIa)

Quantities

6.55 (6.28-7.00)6.20 (5.55-6.91)6.99 (6.84-7.17)Incubation period (days)

10.20 (9.57-10.81)16.72 (16.28-17.11)16.84 (16.68-16.91)Time from symptoms to hospital admission
(days)

8.49 (7.77-9.31)5.32 (5.03-5.59)5.43 (5.06-5.80)Time from hospital admission to critical care
(days)

13.40 (12.33-14.52)11.25 (10.52-12.00)10.33 (9.90-10.67)Time from hospital admission to death (days)

30.92 (29.01-32.88)12.63 (12.02-13.24)23.56 (23.05-24.29)Proportion of infected patients progressing to
severe stage (%)

13.49 (12.01-15.05)6.41 (5.76-7.18)14.91 (14.11-15.88)Proportion of infected patients progressing to
critical stage (%)

4.48 (4.10-4.87)5.17 (4.97-5.37)8.00 (7.88-8.12)Proportion of infected patients progressing to
death stage (%)

aCI: credible interval.

Prediction of Hospital Use
Since the COVID-19 pandemic in the United States was still
ongoing, we applied our model to predict hospital use since
September 1, 2020. Table S4 in Multimedia Appendix 1 presents
the predicted versus observed numbers of patients that were
newly hospitalized with COVID-19 in New York and Ohio.
The mean absolute percentage error (the common measure of
prediction accuracy for forecasting) was reasonably low, with
15.15% (SE 3.57%) in New York and 2.07% (SE 0.42%) in
Ohio.

Discussion

New York, Ohio, and Hubei were three representative areas hit
by COVID-19 in the United States and China. Evaluating the
effectiveness of their public health interventions on reducing
disease burden and estimating hospital use through the available
historical epidemiological data is vital since adequate hospital
capacity is critical to saving lives during this ongoing pandemic.
Our findings highlight that early intervention is crucial. Ohio
has lower transmission rates than New York in the early stage
of the pandemic because Ohio declared a state of emergency
on March 9, 2020. We also found that wearing masks is critical
in controlling disease transmission. Ohio had a second peak of
the outbreak but New York did not after entering the phase of
reopening. In comparing their policies, Ohio implemented the
order of the mandatory use of masks in July, while New York
implemented it in April.

We noticed that the centralized quarantine, in addition to social
distancing and wearing masks, could play an important and
indispensable role in preventing and controlling the disease. In

Hubei, the decay parameters in and significantly
increased after the centralized quarantine was implemented,
which indicated the disease transmission received further
controls. During Hubei’s lockdown, more than sixteen public
venues such as exhibition centers and gymnasiums were
converted into temporary hospitals to treat patients with mild
symptoms and isolate the source of infections amid strained

medical resources. Before these hospitals, many confirmed cases
were quarantined at home and stayed in their communities,
which could easily lead to clustered infections in families and
communities. In New York, there was no centralized quarantine
intervention and the mild patients were required to quarantine
at home. A recent survey of nearly 1300 patients with
COVID-19 admitted to hospitals in New York in May 2020
showed that 83% of new patients were at home. The temporary
hospitals that treat mild patients during the COVID-19 epidemic
could be beneficial in effectively reducing the contact of mild
illness patients and susceptible people, and further reducing the
transmission rate.

Consistent with the results from the recent studies in Wuhan
City, China [14,15,25,26], our results showed that public health
interventions dramatically decreased the case incidence and
reduced the demand for hospital and ICU beds in these areas.
In Figures S3 and S4 in Multimedia Appendix 1, we demonstrate
a few simulation scenarios when interventions were not
implemented. We found that COVID-19 would overwhelm the
hospital bed capacity limits if the interventions were delayed
or not implemented. One caveat in this conclusion is that our
analyses looked at bed capacity and use at a state level. Health
care use, however, is local: unless bed use is coordinated across
the multiple hospital systems within a given state, patients may
overwhelmingly “flock” to a handful of specialized hospitals
and overwhelm them. In such situations, even if there is
adequate capacity across the state, individual hospital systems
may be overwhelmed. This calls attention to the importance of
public health coordination of resources and strategies.

At present, the immunogenicity, efficacy, safety, production
capacity, and availability of COVID-19 vaccines are not yet
clear. It is crucial to maintain the transmission at a low level
until a safe and effective COVID-19 vaccine is developed and
widely used to establish a population immune barrier. The recent
meta-analysis by Chu et al [27] confirmed evidence of moderate
certainty that current policies of at least 1 m physical distancing
were probably associated with a large reduction in infection and
that distances of 2 m might be more effective. The public health
interventions, including social distancing and wearing a face
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covering, should be continued to avoid the next peak of the
outbreak.

The advantage of our proposed statistical methods is that all
dynamic parameters can be estimated from observed data using
MCMC algorithms under the Bayesian modeling framework.
It is unlike many other methods that simulated disease spread

with prespecified parameters. We hope our analysis provides
data-driven evidence to potentially improve on whether, when,
and how to adapt public health interventions in the future. As
an increasing number of cases are still being identified in the
United States, we believe our proposed model could help project
hospital use during the COVID-19 outbreaks.
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