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Abstract

Background: Since the outbreak of COVID-19 in December 2019 in Wuhan, Hubei Province, China, frequent interregional
contacts and the high rate of infection spread have catalyzed the formation of an epidemic network.

Objective: The aim of this study was to identify influential nodes and highlight the hidden structural properties of the COVID-19
epidemic network, which we believe is central to prevention and control of the epidemic.

Methods: We first constructed a network of the COVID-19 epidemic among 31 provinces in mainland China; after some basic
characteristics were revealed by the degree distribution, the k-core decomposition method was employed to provide static and
dynamic evidence to determine the influential nodes and hierarchical structure. We then exhibited the influence power of the
above nodes and the evolution of this power.

Results: Only a small fraction of the provinces studied showed relatively strong outward or inward epidemic transmission
effects. The three provinces of Hubei, Beijing, and Guangzhou showed the highest out-degrees, and the three highest in-degrees
were observed for the provinces of Beijing, Henan, and Liaoning. In terms of the hierarchical structure of the COVID-19 epidemic
network over the whole period, more than half of the 31 provinces were located in the innermost core. Considering the correlation
of the characteristics and coreness of each province, we identified some significant negative and positive factors. Specific to the
dynamic transmission process of the COVID-19 epidemic, three provinces of Anhui, Beijing, and Guangdong always showed
the highest coreness from the third to the sixth week; meanwhile, Hubei Province maintained the highest coreness until the fifth
week and then suddenly dropped to the lowest in the sixth week. We also found that the out-strengths of the innermost nodes
were greater than their in-strengths before January 27, 2020, at which point a reversal occurred.

Conclusions: Increasing our understanding of how epidemic networks form and function may help reduce the damaging effects
of COVID-19 in China as well as in other countries and territories worldwide.

(JMIR Public Health Surveill 2020;6(4):e24291) doi: 10.2196/24291
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Introduction

In December 2019, several cases of pneumonia of unknown
etiology were detected in Wuhan City, Hubei Province, China.
Chinese authorities identified the causative agent as a novel
coronavirus of probable bat origin [1], and the World Health
Organization (WHO) officially named the disease COVID-19
on February 11, 2020 [2]. Compared with the outbreak of severe
acute respiratory syndrome (SARS) in China in 2003,
COVID-19 has spread faster and infected more people [3];
furthermore, it is more difficult to prevent and control.
Considering that the number of cases started increasing
exponentially, the Chinese government imposed a lockdown in
Wuhan on January 23, 2020, aiming to cut off the route of virus
transmission through a traffic blockade [4]. After that,
COVID-19 was clearly brought under control. Since March
2020, this ongoing epidemic has now spread to more than 200
countries and territories, and it is undoubtedly casting a shadow
over the global economy. To mitigate the impact of epidemics
and ensure the continuity of global social development, an
exploration of the influential nodes and structural properties of
the COVID-19 epidemic network is urgently needed.

There have been extensive studies on epidemiological
transmission mechanisms from diverse perspectives, such as
epidemiology, medical statistics, spatial information science,
sociology, and dynamic models [5-10]. Due to the wide spread,
epidemic data are often presented in the form of a network. The
application advantages of complex network theory are gradually
being highlighted [11,12]. In the framework of complex network
theory, k-core decomposition is usually considered for
identifying influential spreaders [13,14] and finding specific
structural information [15-18].

K-core decomposition is a well-established method for analyzing
the structures of large-scale graphs [19,20]. The original idea
of k-core decomposition can be traced back to the concepts of
coloring number [21] and degeneracy [22], and the commonly
accepted concept was first proposed by Seidman [19]. Further
studies mainly involved two aspects. One focuses on solving
the theoretical problem of the k-core pruning process in different
networks, and the other involves finding the densest part of the
network by k-core decomposition across a broad range of
scientific subjects, including biology, ecology, computer science,
social networks, information spreading, and community
detection.

In particular, k-core decomposition provides a method for
identifying hierarchies in a network. It considers the coreness
of nodes by dividing networks into layers or shells. Compared
with other methods, k-core decomposition possesses a
significant advantage of computational simplicity [23]. It has
found a number of applications as a means to understand the
importance of nodes within large-scale network structures [20].

While the existing literature is replete with explorations of
epidemic networks and applications of k-core decomposition,
few studies involve the effective combination of the two. In the
context of the COVID-19 epidemic in mainland China, this
paper applies k-core decomposition to the structural analysis
of the network of the epidemic with the purpose of arriving at

some novel conclusions to aid the prevention and control of the
disease. Our contribution is threefold. First, the COVID-19
epidemic data of all provinces in mainland China are timely
and unique. Second, we obtained the related static and dynamic
conclusions of influential nodes and the hierarchical structure
by applying k-core decomposition to the COVID-19 epidemic
network; furthermore, we detected the common characteristics
of provinces represented by these important nodes. Finally, the
influence power of k-shell nodes and the evolution of this power,
measured by out-strength and in-strength, can promote our
understanding of the roles of the provinces in epidemic
transmission.

In this paper, we briefly introduce the construction and further
analytical methods of the COVID-19 epidemic network after
describing the data used. We then summarize some basic
structural properties of the epidemic network by means of degree
distribution. Then, k-core decomposition is applied to the
constructed whole period and daily networks to statically and
dynamically investigate the network structure. Finally, the
influence power (outgoing and incoming) of the k-shell and its
evolution are exhibited.

Methods

Data
In view of the construction of COVID-19 epidemic network
among the provinces in mainland China, the cross-provincial
traveling data (1690 observations) of confirmed patients were
considered. In our study, the traveling extent mainly focused
on 31 provinces (all except Taiwan, Hong Kong, and Macao)
in China, and the traveling options were restricted to air and
train travel. The aforementioned data were obtained from a
website [24], that includes records from confirmed official
WeChat and Weibo accounts as well as official websites. In
addition, some unverifiable data were eliminated. In total, 1615
observations (328 observations by plane and 1287 observations
by train) were retained, and the period of the observations ranged
from December 27, 2019, to February 25, 2020, covering 61
days. It should be noted that a connection between province A
and province B can be established in the COVID-19 epidemic
network if the traveling data show that a latent confirmed patient
traveled from province A to province B and was diagnosed in
province B.

Some variables at the provincial level, such as gross domestic
product (GDP) per capita, population, volume of passenger
transport, starting date of first-level response to the major public
health emergency, response time, and distance from Hubei
Province were also used in the follow-up study on the common
characteristics of provinces represented by important nodes.
Specifically, the GDP, population, volume of passenger
transport, and starting date of first-level response to the major
public health emergency were obtained from the National
Bureau of Statistics and Provincial Health Committees.
Response time was calculated by the average number of days
between the arrival date and the confirmed date, and for the
spatial distances from Hubei Province, we referred to Yu [25].
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Methodology
Considering that the causative agent of COVID-19 is carried
by humans—in other words, it is mainly spread by
human-to-human transmission—the cross-provincial traveling
records of confirmed patients can directly depict the epidemic
network to a large extent. Specific to the COVID-19 epidemic
network G = (V,E), province A and province B can be viewed
as node VA and node VB, respectively; there are corresponding
directional edges EAB or EBA between nodes VA and VB if a
confirmed patient traveled from province A to province B or
from province B to province A. On this basis, the directionality
information of edges was well considered in the following
analyses of degree distribution and influence power, but was
not considered in the k-core decomposition.

As mentioned before, three methods were applied to the further
structural analysis of the COVID-19 epidemic network: degree
distribution, k-core decomposition, and influence power. Under
the method framework of degree distribution, the degree of a
node is defined as its number of connected edges, and it can be
divided into an out-degree and in-degree according to the
direction of the edges. In addition, the cumulative degree
distribution represents the probability distribution of nodes with
degree not less than k. In the Degree Distribution section, we
will show the cumulative distributions of both the out-degrees
and in-degrees to reveal some basic characteristics of the

epidemic network. The degree distribution provides useful
information about the network; however, it is limited by the
revelation of the complete structure. Therefore, other network
methods should be applied, such as k-core decomposition.

The advantage of k-core decomposition is that it can be used
to detect the core and surrounding shell of a complex network.
The fundamental application of this method is to decompose
the network into multiple partitions, which is a straightforward
procedure. Let G=(V,E) be a graph with n = |V| nodes and e =
|E| edges. The so-called k-core is a maximal connected subgraph
of G in which the degree of all nodes is at least k. A node Vi has
coreness ks(Vi)=k if it belongs to the k-core instead of the
(k+1)-core. We note that the value of k is automatically learned
from the observed network data and is also independent of our
prior anticipation. More specifically, the k-core decomposition
method can realize the k-shell classification of all nodes of G
by removing them iteratively, as follows. First, we removed all
nodes with degree k=1 and assigned the coreness value ks=1 to
the removed nodes. Second, a pruning process was repeated
until only nodes with degree k>1 remained. Next, we performed
a similar pruning process for the nodes with degree k=2 and
assigned the corresponding coreness value ks=2. The above
procedures were repeated until all nodes of G were removed
and assigned to one of the k-shells. Figure 1 illustrates the
simple k-core decomposition of a connected graph.

Figure 1. Illustration of the k-core decomposition of a small network. The sets of nodes belonging to the 1-core, 2-core, and 3-core are enclosed by
different types of lines. The different k-shells can also be distinguished by the colors of the nodes.

To identify the important nodes of the COVID-19 epidemic
network and reveal its hierarchical structure through k-core
decomposition, a geospatial network topology map of the whole
time period showing the coreness of each node (province) and
their connections was plotted. From the dynamic angle, we also
focused on the daily or weekly evolution of kmax as well as the
number of nodes and edges. In addition, a group of scatter charts
was drawn to describe the relationship between the coreness

and characteristics of the provinces to demonstrate the common
characteristics of important provinces in COVID-19 epidemic
transmission. Most importantly, we could clearly present the
hierarchical structure of the epidemic network by week. Finally,
we introduced the method of influence power to measure the
transmission effects (outgoing and incoming) among provinces.
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Results

Degree Distribution
The method of degree distribution can offer a glimpse of the
properties of a network. In the study of a network, the degree
k of a node, which is regarded as the number of its direct
neighbors, can be measured by the number of connections with
other nodes. Hence, the degree distribution P(k) relates to the
probability that a randomly chosen node has k connections.
Considering the directivity, the out-degree and in-degree are
the respective numbers of outgoing and incoming connections.
Correspondingly, the probability that a randomly chosen node
has out-degree kout and in-degree kin are represented by P(kout)
and P(kin).

In terms of the COVID-19 epidemic network, where links are
directed among 31 provinces, the cumulative out-degree and

in-degree distributions are shown in Figure 2. We note that the
cumulative frequency of the out-degrees (in-degrees) is the
proportion of nodes in which the out-degree (in-degree) is not
less than k. We can clearly see that they all follow the power

law P(k)~k-γ, and the values of the exponent γ are 1.98 and 2.42
for the cumulative distributions of the out-degrees and
in-degrees, respectively. The above power-law distributions
demonstrate that most provinces have low out-degrees, and only
a small fraction of the provinces maintain relatively strong
outward epidemic transmission effects on other provinces.
Similarly, the overwhelming majority of provinces have low
in-degrees, and the proportion of provinces with stronger inward
epidemic transmission effects is small. This finding is consistent
with the fact that a few provinces, such as Hubei, Beijing, and
Henan, were seriously affected by the COVID-19 epidemic,
while others were less affected.

Figure 2. Cumulative frequency graphs of the out-degrees and in-degrees. (a) The cumulative distribution of the out-degrees follows an approximate
power law with exponent γ=1.98. (b) The cumulative distribution of the in-degrees follows an approximate power law with exponent γ=2.42. Both axes
are in logarithmic scale.

To identify the transmission role of each province in the
COVID-19 epidemic, a histogram describing the specific
out-degrees and in-degrees of the 31 studied provinces is shown
in Figure 3. In terms of the out-degree, the corresponding values
of seven provinces (Xinjiang, Shanxi, Qinghai, Gansu, Guizhou,
Ningxia, and Tibet) are less than 5; furthermore, the values for
the provinces of Ningxia and Tibet are 0. The reason that few
patients came from these provinces may be their location in the
western part of mainland China, which has a relatively recessive
economy and a less transient population. The provinces of
Hubei, Beijing, and Guangzhou show the three highest
out-degrees of 28, 19, and 18, respectively. Wuhan, the capital
city of Hubei Province, was the first place to witness confirmed
patients and is the epicenter of the epidemic outbreak. As two
of the most developed provinces in mainland China, Beijing
and Guangzhou had significant impacts on other provinces due
to their larger transient populations. In the case of in-degree,

three provinces (Xinjiang, Qinghai, and Tibet) have in-degrees
<5, and the three provinces with the highest values are Beijing,
Henan, and Liaoning (all 17). Similarly, provinces with higher
population mobility are more significantly affected than isolated
provinces. The higher in-degrees of Henan and Liaoning may
be caused by the return of confirmed migrant laborers during
the Spring Festival [26]. We also attempted to characterize the
intuitive time attributes of the COVID-19 epidemic network,
and we presented the evolution of the sum of the out-degrees
(in-degrees) of the daily networks in Figure 4. The traveling
route of a confirmed patient usually involves two different
provinces as departure and destination, which means that one
patient outbound relates to one inbound patient. Thus, the
out-degrees of all nodes in a network are equal to its in-degrees.
The sum of the out-degrees (in-degrees) shows an inverted
U-shape, and the maximum was achieved on January 22, 2020.
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It can be seen that the complexity of COVID-19 epidemic
network is time-varying, and it stood out on January 22, 2020.

After grasping some basic characteristics of the epidemic
network, it is reasonable to assume that small groups of nodes
organize in a hierarchical manner into increasingly large groups.

However, the method of degree distribution lacks cognition of
which node belongs to which layer, and the differences between
layers are not sufficiently clear. K-core decomposition, which
disentangles the hierarchical structure of networks by
progressively focusing on their central cores, is of great use in
obtaining the above detailed structural information.

Figure 3. Histogram describing the specific out-degrees and in-degrees of the 31 Chinese provinces in the COVID-19 epidemic network.

Figure 4. Evolution of the sum of the out-degrees (in-degrees) in the COVID-19 epidemic network for each day.
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K-Core Decomposition
The generally accepted concept of k-core decomposition focuses
more on the connections between nodes, while directionality
can sometimes be ignored [16,18]. Specific to our COVID-19
network analysis, directionality was not taken into account in
the application of k-core decomposition. Statically, the network
relationship and the coreness of each node over the whole period
(from December 27, 2019, to February 25, 2020) are displayed
in Figure 5. Here, it should be pointed out that a visualization
software called Gephi [27] was used to exhibit the topological
image in geospatial space to provide clear insight into the exact
location of each node. It can be seen that there are 20 nodes

with the highest coreness 13, accounting for 64.52% of 31
provinces, while the lowest coreness of 1 appears for the remote
province of Tibet. More specifically, all provinces adjacent to
the outbreak area (Hubei Province) have the highest coreness
values. In addition, Figure 6 plots the core size with respect to
the coreness over the whole period. It can be seen that increasing
coreness usually results in shrinking of the network. Combining
Figure 5 with Figure 6, we can see that 25 nodes have corenesses
>8, and the nodes in the four innermost layers account for
80.65% of the entire epidemic network. These results further
indicate that the COVID-19 epidemic affected the overwhelming
majority of provinces in mainland China.

Figure 5. Topological image in geospatial space depicting the network relationship and the coreness of each node over the whole period. The color of
the node represents its coreness, which corresponds to the k-shell it belongs to.
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Figure 6. Plot of the core size versus the coreness of the network nodes over the whole study period. The core size represented in the vertical axis
indicates the number of nodes with corenesses greater than or equal to the corresponding coreness on the horizontal axis.

To investigate which characteristics of the provinces are the
key factors determining the coreness of each node, six variables
(GDP per capita, population, volume of passenger transport,
starting date of first-level response to major public health
emergency, response time, and distance from Hubei Province)
at the provincial level were introduced to draw a correlation
diagram, as shown in Figure 7. Here, a logarithmic
transformation was applied to the indicators of GDP per capita,
population, volume of passenger transport, and distance from
Hubei Province. It can be deduced from Figure 7 that the starting
date of the first-level response to the major public health
emergency and the distance from Hubei Province are significant
negative correlation factors, while the other factors tend to be
positively correlated. For example, we can reasonably assume
that the starting date of the first-level response to the major
public health emergency is related to the severity of the
COVID-19 epidemic. The earlier the first-level response, the
stronger the infection spread in that province. Generally, people
carrying SARS-CoV-2 are more likely to be found in provinces
with larger volumes of passenger transport, which also
determines the importance of these provinces to the spread of
the epidemic. These findings echo the analysis of the degree
distribution to some extent.

In fact, the COVID-19 epidemic network is more likely to be
dynamic than fixed over a period of time, and it is necessary to
investigate its time-varying maximum coreness kmax. Based on
this, we first constructed daily epidemic networks, and Figure
8 presents the evolution of kmax. The figure shows that there is

an obvious trend of initial rising and then falling for kmax, and
the maximum peak appears on January 21, 2020. We can
conclude that the epidemic network from the end of January to
the beginning of February is relatively complex. Considering
the simple structure of the daily epidemic networks, the
experiential patterns of summarized epidemic transmission are
limited. Furthermore, the whole period can be divided into
intervals, with a fixed window of 7 days.

Similar to Figure 8, Figure 9 shows the weekly evolutions of
the maximum coreness kmax, node number, and edge number.
In terms of their common trends, there is a significant increase
before the fourth week, at which point a steep decline appears;
thus, the fourth week (January 17 to January 23, 2020) becomes
its peak point. Considering the differences among the three, the
number of nodes and edges goes up slightly after the eighth
week. The above findings again confirm that the fourth week
is the critical period of the COVID-19 epidemic outbreak, and
the network structure formed in the surrounding weeks is
relatively complex. The above statistical results depict the
dynamic development of the COVID-19 epidemic. The outbreak
and spread of COVID-19 led to a surge in the number of
confirmed cases. The overwhelming majority of provinces
started their first-level responses to the major public health
emergency from January 23 to January 25, 2020, and many
measures, such as isolating at home and wearing masks, were
taken to contain the outbreak. The following swift drop in the
number of confirmed cases demonstrates the effectiveness of
these measures.
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Figure 7. Correlation diagrams of the corenesses and characteristics of the provinces. The horizontal and vertical axes denote the characteristic variables
and corenesses, respectively. The numbers in the lower right corner of each subgraph are the corresponding correlation coefficient. **5% significance,
***1% significance.

Figure 8. Daily evolution of the maximum coreness (kmax) in the COVID-19 epidemic network.
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Figure 9. Evolutions of the maximum coreness (kmax), number of nodes, and number of edges in the weekly COVID-19 epidemic networks.

To visualize the epidemic transmission process dynamically,
Figure 10 shows the node composition and hierarchical structure
of the COVID-19 epidemic network by week. In general, the
epidemic network structure corresponding to the third to sixth
weeks tends to be more complex, and the fourth week stands
out. Chinese spring rush may give a reasonable explanation.
Taking the period from the third to sixth week as an example,
there is no doubt that Tibet has kept the lowest coreness all the

way, while provinces of Anhui, Beijing and Guangdong show
the highest coreness. There is a novel discovery about the
changes of coreness in the epidemic outbreak area Hubei
Province, which kept the highest level from the third to fifth
week, and suddenly dropped to the lowest in the sixth week.
To some extent, the two-week-lagging effective control of
COVID-19 epidemic transmission by lockdown measures
imposed by Wuhan government on January 23, 2020 is verified.

Figure 10. Dynamic networks of the COVID-19 epidemic showing the node composition and hierarchical structure. The color and label of each node
denote the coreness and geographical province, respectively. The subgraphs from top to bottom and from left to right correspond to the nine weeks in
order in the period from December 27, 2019 to February 25, 2020. AH: Anhui; BJ: Beijing; CQ: Chongqing; FJ: Fujian; GD: Guangdong; GS: Gansu;
GX: Guangxi; GZ: Guizhou; HA: Henan; HB: Hubei; HE: Hebei; HI: Hainan; HL: Heilongjiang; HN: Hunan: JL: Jilin; JS: Jiangsu; JX: Jiangxi; LN:
Liaoning; NM: Mongolia; NX: Ningxia; QH: Qinghai; SC: Szechwan; SD: Shandong; SH: Shanghai: SN: Shaanxi; SX: Shanxi; TJ: Tianjin; XJ: Xinjiang;
XZ: Tibet; YN: Yunnan; ZJ: Zhejiang.

Influence Power
Epidemics generally occur in some regions first and then spread
out rapidly when the situation in these regions becomes more
serious and cannot be controlled. Specific to the network
structure of an epidemic, the so-called outbreak or serious areas

have high centrality and occupy a certain shell. Naturally, after
applying k-core decomposition to the COVID-19 epidemic
network in a fixed period, the extent to which each k-shell will
influence the other shells becomes a more attractive question.
Here, the method of influence power can provide a good answer.
Under the framework of influence power, there are two
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indicators, out-strength and in-strength, that can respectively
evaluate the power of each node to influence others and be
influenced by others. Correspondingly, the calculation depends
on the number of outgoing and incoming links. In terms of the
COVID-19 epidemic network, if a large number of outgoing
routes appear in one province, this province usually has a great
transmission influence on other provinces. Similarly, if one
province has a large number of incoming routes, it will also be
greatly influenced by other provinces. Hence, the following
formula can be used to further quantify the influence power ηk

of the k-shell:

where ηk is the calculated ratio of the influence power and Lk-shell

relates to the number of outgoing (incoming) links in each
k-shell of concern.

The results of influence power (out-strength and in-strength) of
each shell and the innermost nodes based on the COVID-19
epidemic network in the whole period are shown in Table 1 and
Table 2, respectively. The maximum coreness of the COVID-19
epidemic network is 13, and almost all the outgoing links
(1164/1220, 95.41%) are from the provinces with the highest
coreness. Among these provinces, more than half of the outgoing
links (689/1220, 56.48%) come from Hubei Province, which is

the origin of the COVID-19 epidemic. The provinces of
Guangdong and Beijing rank second and third, accounting for
4.51% (55/1220) and 3.77% (46/1220), respectively. Hainan
Province, which is located in the same shell as Guangdong and
Beijing, has the lowest proportion of outgoing links (7/1220,
0.57%). We can conclude that it is important to identify the key
“outgoing” provinces for the prevention and control of the
COVID-19 epidemic.

Furthermore, Table 2 can help us understand the “incoming”
role of each shell and the innermost nodes in the transmission
process of the COVID-19 epidemic. Consistent with the findings
in Figure 5, the epidemic network in the whole period can be
pruned recursively into 8 shells. In addition, there are nodes
with incoming links in each shell. The highest proportion of
incoming links, up to 86.80% (1059/1220), appears in the
provinces with the highest corenesses. Among these provinces,
the top three are Henan (152/1220, 12.46%), Szechwan
(82/1220, 6.72%), and Guangxi (80/1220, 6.56%), while
Zhejiang (16/1220, 1.31%) has the lowest proportion. Focusing
on the breakout area of Hubei Province, there are only 28
incoming links (28/1220, 2.30%), in contrast to its largest
number of outgoing links; this indicates that this province is
less influenced by other provinces. On the whole, the in-strength
performance of the provinces is different from the out-strength,
and the “incoming” roles of these provinces tend to be more
equal.

Table 1. Comparison of the out-strengths of each shell (coreness) and the innermost nodes (provinces) based on the COVID-19 epidemic network in
the study period (N=1246 links), n (%).

Incoming linksCharacteristic

Coreness

3 (0.25)4

5 (0.41)6

6 (0.49)7

3 (0.25)10

39 (3.20)12

1164 (95.41)13

Provincea

7 (0.57)Hainan

33 (2.70)Henan

38 (3.11)Shaanxi

42 (3.44)Hunan

46 (3.77)Beijing

55 (4.51)Guangdong

689 (56.48)Hubei

aBecause some nodes with 2 shells (Ningxia and Tibet) do not have outgoing links, only 6 shells of the COVID-19 epidemic network in the whole
period are included in the table.
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Table 2. Comparison of the in-strengths of each shell (coreness) and the innermost nodes (provinces) based on the COVID-19 epidemic network in
the study period (N=1220 links), n (%).

Incoming linksCharacteristic

Coreness

1 (0.08)1

5 (0.41)4

5 (0.41)5

2 (0.16)6

27 (2.21)7

22 (1.80)10

99 (8.11)12

1059 (86.80)13

Province

16 (1.31)Zhejiang

28 (2.30)Hubei

58 (4.75)Liaoning

63 (5.16)Jiangsu

71 (5.82)Hunan

80 (6.56)Guangxi

82 (6.72)Szechwan

152 (12.46)Henan

In some cases, the dynamic influence of a shell consisting of
the most important nodes in the whole network is more worthy
of attention. The above influence can also be measured by the
method of influence power, which depends on the time-varying
set of the innermost nodes and all the related directional links.
On the basis of the daily COVID-19 epidemic networks, Figure

11 presents the evolution of from the perspectives of
out-strength and in-strength, which elucidates the dynamic
“outgoing” and “incoming” roles of those important provinces.
It is notable that a relatively large gap between out-strength and

in-strength exists on January 21, 2020, which echoes the most
complex daily network indicated in Figure 8. We also observed
that the out-strengths of the innermost nodes are larger than the
in-strengths before January 27, 2020, which indicates that those
provinces tend to have more influence on others rather than
being influenced by others. After that, due to the stricter control
measures imposed by those provinces, their out-strengths and
the above contrast greatly weaken. To a certain extent, the above
findings confirm the effectiveness of the control measures
implemented by the Chinese government during the COVID-19
epidemic.
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Figure 11. Daily evolution of the innermost shell from the perspectives of out-strength and in-strength in the COVID-19 epidemic network. The vertical
dotted lines correspond to January 21, 2020, and January 27, 2020, respectively.

Discussion

Principal Findings
In economics, epidemiology, and many other fields, the
increasing number of participants and volume of data further
complicate the formation of networks. It is critical to extract
effective information from these large and complex networks.
Hence, it is necessary to identify and focus on the central nodes
that drive the whole network instead of paying the same amount
of attention to all the nodes. As mentioned above, degree
distribution is the simplest way to measure the centrality of each
node in a network; it only involves the local structure around
the node. Specifically, in a binary network, the degree
distribution depends on the number of edges of the considered
node. In a directed network, the connecting edges of a node
may have two directions, outgoing and incoming, which
correspond to the out-degree and in-degree under the framework
of degree distribution. Furthermore, the concept of degree has
generally been extended to the sum of weights when analyzing
a weighted directed network [28], and the strength (out-strength
and in-strength) of nodes has been proposed. Additionally, to
acquire more detailed information about a network structure,
k-core decomposition can be employed to disentangle the
hierarchical structure of the network by progressively focusing
on its central core. In summary, the indicators of degree,
coreness, and strength we adopted above can provide different
perspectives to understand the nodes and structures of a network.

Taking the COVID-19 epidemic network over the whole period
as an example, we calculated the degrees (out-degree and
in-degree), strengths (out-strength and in-strength), and
corenesses of all the nodes (31 provinces) in Table 3, and we
plotted the geospatial network topology map, as shown in Figure
12. It should be emphasized that considering the diversity of
the degrees and strengths of each node, the top 10 nodes were
defined as having the highest degrees and highest strengths after
ranking in descending order. In Figure 12, the color of the nodes
indicates the intensities of the three indicators: degree, strength,
and coreness. The red nodes correspond to high degree, high
strength, and the highest coreness; the green nodes are
representative of high degree and the highest coreness; the blue
nodes denote high strength and the highest coreness; and the
yellow nodes relate to other cases. Concerning the neighboring
provinces of the outbreak area of Hubei, three provinces (Hunan,
Henan, and Chongqing) show high degrees and strengths as
well as the highest coreness. In the same case of the highest
coreness, the degree of Anhui Province is high, the strength of
Shaanxi Province is high, and neither the degree nor the strength
of Jiangxi Province is high. After expanding the considered
objects nationwide, due to their high values of degree, strength,
and coreness, the provinces of Beijing, Guangdong, and Jiangsu
can be regarded as the central nodes of the COVID-19 epidemic
network. When analyzing the common characteristics of these
three provinces, their high-mobility populations may provide
the most reasonable explanation.
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Table 3. Central properties of 31 provinces during the COVID-19 epidemic. The provinces are arranged in descending order according to the indicators
of coreness and degree.

CorenessStrengthIn-strengthOut-strengthDegreeIn-degreeOut-degreeProvince

1371728689391128Hubei

131015546361719Beijing

1318515233341717Henan

13105505526818Guangdong

13896326251312Jiangsu

131137142241113Hunan

1382582424177Liaoning

1346172922715Shanghai

13855728211011Chongqing

13104822220128Szechwan

1382562620119Anhui

1361431820119Yunnan

1361491219127Shandong

1358471118117Heilongjiang

1387493818711Shaanxi

1334201417710Jiangxi

13564971697Hainan

1336162016610Zhejiang

139080101578Guangxi

133117141578Mongolia

125643131495Hebei

12332671385Jilin

122818101257Fujian

12211291275Tianjin

10252231073Shanxi

7211831082Gansu

71293752Guizhou

6725624Xinjiang

5550550Ningxia

4853523Qinghai

1110110Tibet
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Figure 12. Topological image in geospatial space depicting the network relationship and the centrality of each node over the whole period. The colors
of the nodes relate to the intensity of the degree, strength, and coreness.

Some central properties of the 31 provinces during the
COVID-19 epidemic are revealed in Table 3. Generally
speaking, the maximum coreness of the COVID-19 epidemic
network is 13, and provinces with high degrees and strengths
tend to have the highest coreness. Furthermore, it can be seen
that high strengths and low degrees exist in the provinces of
Szechwan, Shaanxi, and Guangxi simultaneously, indicating
that these provinces have strong interactions with few provinces.
In contrast, the provinces of Liaoning, Anhui, and Shanghai
have high degrees and relatively low strengths, which suggests
that these provinces have weak interactions with numerous
provinces. These findings are more likely to be related to the
heterogeneous characteristics of those provinces, such as traffic,
population, education, and weather.

Considering the direction of epidemic transmission, we drew a
k-means clustering graph based on the indicators of out-degree,

in-degree, out-strength, in-strength, and coreness, as shown in
Figure 13. The left panel presents the optimal number of clusters
by the Elbow method, and the right panel visualizes the
corresponding clusters. We can clearly see that the optimal
clustering number of the 31 provinces is 4, and these four
clusters obviously exist. Uniquely, Hubei Province formed a
single cluster, which can be explained by its role as the initiator
of the epidemic. The provinces of Beijing, Henan, Hunan,
Jiangsu, Liaoning, and Szechwan are in the same group, and
they show relatively high values of the above indicators. In
contrast, provinces with lower values, such as Gansu, Guizhou,
Ningxia, Qinghai, Tibet, and Xinjiang, belong to another cluster.
The remaining provinces are also grouped together. This
clustering is similar to that shown in Figure 12 and Table 3, and
its uniqueness lies in considering directional factors when
investigating the central properties of each province.
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Figure 13. The optimal number of clusters and the clustering plot. The horizontal and vertical axes of the right panel represent the first and second
principal components, respectively.

The findings in this section comprehensively demonstrate the
important nodes in the COVID-19 epidemic network and reveal
the transmission path among provinces in mainland China. On
this basis, we can further identify some economic and social
factors determining the development of this epidemic; finally,
effective control can be achieved by imposing some public
interventions. With more countries or territories involved in the
COVID-19 epidemic, the structure of the world network has
become more complex, and it is more urgent to explore the
corresponding central properties.

In addition, we attempted to consider directionality in the
empirical analysis of the COVID-19 epidemic network, and the
results again confirmed the existing findings (see Multimedia
Appendix 1).

Limitations
It is worth mentioning that our study is limited to the
transmission of the COVID-19 epidemic in 31 provinces in
mainland China, and the k-core decomposition is applicable to
unweighted and undirected networks. In the future, more
network analysis methods can be considered to explore the
epidemic transmission dynamics involving more regions in
China or the rest of the world.

Conclusions
The COVID-19 epidemic is spreading worldwide, and increasing
numbers of countries and territories are becoming involved in
the network of the outbreak. Identifying the most important
nodes and the hierarchical structure of this network has become
a priority. Focusing on mainland China, a COVID-19 epidemic
network was constructed from the cross-provincial traveling
records of confirmed patients; then, three methods, namely
degree distribution, k-core decomposition, and influence power,
were employed in further structural analysis of the network.

With regard to the empirical results of degree distribution, the
power-law distribution suggests that most provinces have either
low out-degrees or in-degrees, and only a small fraction of
provinces tend to have relatively strong outward or inward

transmission effects. In descending order, the three provinces
of Hubei, Beijing, and Guangzhou showed the highest
out-degrees, and the three highest in-degrees were observed for
the provinces of Beijing, Henan, and Liaoning.

The application of k-core decomposition also resulted in some
novel findings. First, we verified the hierarchical structure of
the COVID-19 epidemic network over the whole period, and
more than half of the 31 provinces were found to be in the
innermost core. Second, we considered the correlation of the
characteristics and coreness of each province, and we identified
some significant negative and positive factors. In addition, the
variation of the maximum coreness with time was investigated
from two perspectives: daily and weekly. An obvious trend of
initial rising and subsequent falling appeared both on January
21, 2020, and in the fourth week. To be more specific,
considering the dynamic transmission process of the COVID-19
epidemic, the three provinces of Anhui, Beijing, and Guangdong
always showed the highest coreness from the third to the sixth
week, and Hubei Province maintained the highest coreness until
the fifth week but suddenly dropped to the lowest coreness in
the sixth week.

Subsequently, the influence power (out-strength and in-strength)
was introduced to measure the influence intensity of each
k-shell. It was observed that most outgoing and incoming links
were from the provinces with the highest corenesses. Moreover,
we investigated the dynamic “outgoing” and “incoming” roles
of those important provinces, and we found that the out-strength
of the innermost nodes was larger than their in-strength before
January 27, 2020, after which a reversal occurred.

Our study is committed to making policy recommendations to
relevant departments. First, when a public emergency such as
an epidemic breaks out, it is necessary to promptly adopt
antiepidemic measures (home isolation, wearing masks, etc),
and mandatory traffic control should be implemented in a timely
fashion to improve the emergency response. Second, measures
such as the blockade of Wuhan should not only be implemented
in the epicenter of the epidemic, but also in neighboring
provinces and territories with high population mobility. The
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level of the blockade can be determined according to the severity
of the local epidemic situation. Finally, in view of the dynamic
process of the COVID-19 epidemic, local health organizations

should identify the epidemic stage and adjust the controlling
measures in a timely fashion.
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