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Abstract

Background: Social distancing and public policy have been crucial for minimizing the spread of SARS-CoV-2 in the United
States. Publicly available, county-level time series data on mobility are derived from individual devices with global positioning
systems, providing a variety of indices of social distancing behavior per day. Such indices allow a fine-grained approach to
modeling public behavior during the pandemic. Previous studies of social distancing and policy have not accounted for the
occurrence of pre-policy social distancing and other dynamics reflected in the long-term trajectories of public mobility data.

Objective: We propose a differential equation state-space model of county-level social distancing that accounts for distancing
behavior leading up to the first official policies, equilibrium dynamics reflected in the long-term trajectories of mobility, and the
specific impacts of four kinds of policy. The model is fit to each US county individually, producing a nationwide data set of novel
estimated mobility indices.

Methods: A differential equation model was fit to three indicators of mobility for each of 3054 counties, with T=100 occasions
per county of the following: distance traveled, visitations to key sites, and the log number of interpersonal encounters. The
indicators were highly correlated and assumed to share common underlying latent trajectory, dynamics, and responses to policy.
Maximum likelihood estimation with the Kalman-Bucy filter was used to estimate the model parameters. Bivariate distributional
plots and descriptive statistics were used to examine the resulting county-level parameter estimates. The association of chronology
with policy impact was also considered.

Results: Mobility dynamics show moderate correlations with two census covariates: population density (Spearman r ranging
from 0.11 to 0.31) and median household income (Spearman r ranging from –0.03 to 0.39). Stay-at-home order effects were
negatively correlated with both (r=–0.37 and r=–0.38, respectively), while the effects of the ban on all gatherings were positively
correlated with both (r=0.51, r=0.39). Chronological ordering of policies was a moderate to strong determinant of their effect
per county (Spearman r ranging from –0.12 to –0.56), with earlier policies accounting for most of the change in mobility, and
later policies having little or no additional effect.

Conclusions: Chronological ordering, population density, and median household income were all associated with policy impact.
The stay-at-home order and the ban on gatherings had the largest impacts on mobility on average. The model is implemented in
a graphical online app for exploring county-level statistics and running counterfactual simulations. Future studies can incorporate
the model-derived indices of social distancing and policy impacts as important social determinants of COVID-19 health outcomes.
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Introduction

As of September 8, 2020, the World Health Organization reports
that the COVID-19 pandemic has resulted in about 900,000
deaths worldwide [1]. Through rapid government response and
widespread changes in public behavior, countries including
South Korea, Vietnam, and New Zealand have limited the spread
of the virus and brought the number of new cases each day down
to single digits. In the United States, 6.5 million cases have been
detected, with more than 190,000 deaths; there were about
25,000 new cases and 286 new deaths on September 8 [2]. The
demographic contributions to the United States’ mortality rate
are not uniform. Those at greatest risk of mortality from the
virus include older adults, those with existing medical conditions
[3], and minorities [4,5].

Social distancing remains a basic and essential step toward
limiting the spread of the virus [6], which has so far been found
to transmit primarily in aerosols [7,8]. The United States has
shown variation in regional and individual patterns of social
distancing [9-11] in association with factors such as income
[12] and political viewpoint [13-15]. In a survey study of 7355
people by Moore et al [16], 39.8% of participants reported
noncompliance for reasons that included maintaining
employment, mental health concerns, belief in sufficient
precautions, childcare, distrust of media, and lack of direction.
In many places, people began social distancing as soon as
positive results came to light across the country and testing
overall remained limited and inaccessible. Elsewhere, social
distancing behavior has been practiced as a result of public
policy, and in some cases, has been practiced very little or not
at all [17].

Evaluation of policy impacts during the pandemic is complicated
by a number of factors. Policies could be considered impactful
either if subsequent patterns in public behavior correspond to
the intentions of the policy, or alternatively by whether
observable changes in public behavior occur at or after the time
of the policy’s implementation. These represent two distinct
choices of conceptual definition and statistical modeling
approach. Currently, policy impacts during the COVID-19
pandemic have been evaluated with relatively rough linear
models over a coarse statewide scale; these do not account for
the dependency of observed changes and other, longer-term
dynamics of public behavior [10,18,19]. Advanced time-series
analysis modeling strategies are needed for the following
reasons: (1) to account for social distancing behavior before the
implementation of policy, based on information, public
perceptions of risk, and early actions by institutions, (2) to
incorporate information from all data points across time in a
continuous manner rather than an arbitrarily selected number
from before and after the policy date, and (3) to account for
variable dynamic properties of mobility unique to each county
in the response pattern.

New data on social distancing behavior per county has been
derived by averaging over individual distancing metrics [20,21].
Such metrics are computed from the Global Positioning System
(GPS) data obtained from individual mobile devices by cellular
service providers. Social distancing metrics produce time series

of public behavior across days and enable the study of their
dynamics with respect to information, policy, and other rapidly
changing factors related to the pandemic.

With high-resolution time-series data, dynamical systems models
may be applied to estimate the dynamics, or time-invariant
properties, of change in mobility and momentary changes due
to particular events and policies. Of specific interest in this study
are equilibrium dynamics, by which the mobility curve trends
toward a certain point of normality over time. As economic and
social pressures mount, we anticipate that demographics will
vary in the rates at which they return to normal social behaviors.
Momentary changes in policy can be jointly estimated with such
dynamics to give fully integrated insights into their effects on
the long-term trajectories of behavior. In this study, we
operationalize policy impact by the degree to which social
distancing practices are accelerated at the time of
implementation conditional on the other social distancing
dynamics in play.

We aim to do the following: (1) specify and statistically estimate
the parameters of a dynamical system describing county-level
mobility patterns, (2) use the model to estimate the effects of
policy on long-term changes in behavior, and (3) examine the
distribution of mobility dynamics and policy impact across
counties. County-level analyses with the model are available
through an online graphical R Shiny app, with the URL and
further information in Multimedia Appendix 1.

Methods

Data
Policy Data

The main predictor variables of interest are the dates on which
states put one of several mobility-restricting policies into effect.
The policies considered here are stay-at-home (or
shelter-in-place) orders (SAH), restrictions on all large
gatherings (AG), closure of education facilities (EF), and closure
of all businesses (AB). Unlike all other variables, policies are
considered at the state level. Data on policy events are collected
by the Kaiser Family Foundation [22].

Mobility Data
To model social distancing behavior, we used mobility data
from Unacast [20]. Unacast uses displacement data from cell
phone GPS averaged at the county level to give an index of
mobility change. The measure for a given day is the percent
change of mobility measured on that day from a baseline
reference value calculated by Unacast from the period of
February 9 to March 8, 2020. The baseline value was chosen
by Unacast to represent average mobility levels from before
any changes due to the pandemic. In total, 3 measures of
mobility were used in this analysis. The first is the percent
reduction from baseline in total distance traveled per device,
averaged across all devices located in a county. The baseline
for a given weekday is the mean distance traveled by the devices
in the given county across four prepandemic weekdays of the
same day. The second metric is the percent reduction in
visitation to nonessential points of interest on a specific weekday
compared to baseline as in the first metric. Points of interest
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include a variety of locations such as restaurants, department
stores, hotels, and various other nonessential commercial
locations. The third metric is the percent reduction in the rate
of human encounters compared to the prepandemic baseline for
a given county. Unlike the first two metrics, the baseline is the
national average rate of human encounters taken over the 4
weeks prior to March 8, 2020, not the number of encounters on
the same weekday. Any two devices are said to have an
encounter when they come within 50 meters of one another
within 60 minutes of one another. Each index was obtained for
all days starting from February 24, 2020, and ending with May
31, 2020. No new, identified, human subjects data were collected
for the present study, nor were mobility data available at an
identifiable, individual level. Only county-level averages were
available and used.

Covariates
Two county-level covariates, population density and median
household income, were used to illustrate and validate the model
by determining whether the estimated parameters reproduce
previous findings and bear relation to relevant county-level
attributes. Population density data were provided by the 2010
US census [23] and median household income data were
provided by the 2016 US census. Population density was natural
log–transformed for normality.

While our measures of population density are not the most recent
and are expected to have changed since 2010, the locations of
counties and urban centers along their distribution of density
are unlikely to change enough to affect our results. We assume
that most cities, suburbs, and rural areas have remained
classifiable as such.

Model
The model of social distancing behavior describes a smooth
trend of mobility, M(t), characterized by changes in acceleration
due to policy Ψi, and information or other events Fj(t).

The parameters η and ζ together characterize the behavioral
dynamics, including the rate of return to baseline social activity
and social inertia. Specifically, the further M(t) strays from the
baseline value of 0, the larger its acceleration will be in the
opposite direction. The total acceleration is also proportional
to the instantaneous velocity, such that the system moves in a
more or less “viscous” manner. This model is known in
engineering and mathematical literature as the damped linear
oscillator. The parameter η, when greater than 0, is the squared
frequency of oscillations around the equilibrium point, while ζ
determines the damping or decay in amplitude of those
oscillations. The half-period in days given by η with adjustment

for ζ is . For critically damped or overdamped

systems, this expectation will not correspond to the zero-crossing
of M(t), as the zero value in those cases is the asymptote of the
trajectory. The parameter conversion is nonetheless useful for
comparing overall rates of return.

When , the system is critically damped, meaning
oscillatory behavior vanishes and the expected return to

equilibrium is monotonic. At , the overall rate of
monotonic decay toward equilibrium is further reduced. A
dimensionless index of social inertia will be given in this case

as , which is conventionally known as the damping ratio.
In physics, η is often used to represent a spring constant,
gravitational force, or the strength of any kind of attractor, while
ζ is used to represent forces of friction, viscosity, or other factors
in the dissipation of energy. We chose this model for its
analogous interpretation when applied to the mobility data. The
frequency parameter η in this case represents the total forces
driving public behavior toward its normal baseline, including
the need to work and maintain employment and desire for
normal social interactions. We interpret it as the average
eagerness to return to normalcy, and from that we can compute
a predicted number of days until public mobility has returned
to its normal rates. Regarding friction or viscosity, the best
analogy may be a tendency toward social inertia by which
people are resistant to both the initial reductions in mobility as
well as later reversions to normalcy. We continue to refer to
this as damping in the current study but note this possible
interpretation. As with a physical system, the damping parameter
determines how gradually people returned to baseline, if they
did at all. For small values of damping, we expect to see higher
than normal levels of mobility following the period of social
distancing.

As we are fitting the above model to multiple noisy indices of
mobility, a measurement model is necessary. This part of the
model brings the indices onto a common scale and allows them
to be described altogether by the dynamics of M(t). The indices,
y(t), are proportional to M(t) plus additional, normally
distributed noise or short-term fluctuations, v(t). The residual
covariances of the indices, Σ, is a diagonal matrix (ie, the
residuals are assumed to be uncorrelated).

The column vector of weights Λ includes one weight fixed at
a value of 1.0 to anchor the scale of M(t), Λ = {1, λ2, λk}. The
parameter for visitations was chosen to be fixed such that M(t)
took on the scale of percentage change. Two examples of the
complete model fit to data are given by Figure 1, with the red
line showing the estimated trajectory of M(t) overlaid on scaled
distance traveled (green), visitations (blue), and log encounters
(purple). The pre-policy period is highlighted in yellow, and
individual policy dates are shown as the blue vertical lines.
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Figure 1. Two examples of social distancing behavior by county with estimated dynamics and policy effects. Top: One county shows no pre-policy
distancing followed by inflections at the dates of major policies. Bottom: Distancing was driven almost entirely by pre-policy behavior; policy had little
to no effect. The Virginia policies shown in order were restrictions on all large gatherings (AG), closure of all businesses (AB), closure of all educational
facilities (EF), and stay-at-home orders (SAH).

A formal model of the distributions of parameters η and ζ and
their functional mappings from demographics is left to future
work.

Outputs
Table 1 gives a summary of the model outputs with descriptions
of each, including transformations. Indices labeled “damping
ratio” and “approximate days until normal” are useful because
the transformations eliminate systematic correlations between
η and ζ, and thus represent unique features of the resulting
trajectory of M(t). Policy effects Ψi are computed for the 4

policies abbreviated AB, AG, SAH, and EF. If two or more
policies were enacted on the same day, the model was not
identified and the effects of each had to be grouped into a single
“unknown” policy parameter F(t) that represents pre-policy
distancing, which is formalized as a continual force on M(t)
distributed over all the days leading up to the first state policy.
Rhode Island did not issue any policies. All other states enacted
at least two policies, with all closing educational facilities, all
except North Dakota restricting all gatherings, and all except
South Dakota closing all businesses.

Table 1. Parameters of the model.

DescriptionParameter

Frequency, rate of return to normalityη

Damping, social inertiaζ

Damping ratio (0=undamped, 1=critically damped)
R = 

Period, expected days until normal
D = 

Policy effect iΨi

Pre-policy distancing, other effects jvi
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Estimation and Software
The model was fit to each county time series of mobility indices
using Maximum Likelihood Estimation (MLE) in an R statistical
coding environment [24] (R Foundation for Statistical
Computing) using the OpenMx package [25]. Statistical models
were specified as continuous-time state-space models with
Kalman-Bucy filter implementation [26,27]. Optimization of
model parameters to obtain statistical estimates was performed
with gradient descent, followed by computation of standard
error from numeric derivatives. Parameters were constrained
such that Ψi, vj ≥ 0 and η >0.

Results

Quality Control
Estimates were obtained for a total of 3050 counties and cities
in the United States. In total, 4 counties were removed for

extreme parameter estimates with D≥500 or R≥100: Northwest
Arctic, Alaska; Clark, Arkansas; Eagle, Colorado; and Fillmore,
Nebraska. Mobility data for these counties resembled random
noise, with rapid fluctuations around a fixed mean value. As a
result, dynamic parameters were likely unidentified, thus
trending toward extremely high values (ie, frequency of zero,
equivalent to infinite number of days until normal or no
oscillation). States without certain policies were marked as
missing data for the parameter estimates representing the
respective policies’ effects (Table 2). All states except North
Dakota issued AG, and all except South Dakota issued AB.
Only 12 states did not issue a SAH order.

Table 2. Percentages of policy effects across counties with estimated near-zero effect and percentage implemented (N=3139).

Number of statesNumber of countiesNear-zero effect, n (%)Counties where implemented, n (%)Policy

381938566 (18.03)1939 (61.77)Stay-at-home order

491436411 (13.09)1440 (45.87)Ban on all gatherings

491502467 (14.88)1506 (47.98)Closing all businesses

502377544 (17.33)2381 (75.85)Closing of educational facilities

301758620 (19.75)1759 (56.04)Unknown (overlap)

Descriptive Statistics
Descriptive statistics were obtained for each of the dynamics
and policy effects estimated by the model and are shown in
Table 3. The most commonly implemented policy was the
closure of educational facilities, though for many counties its
effect was grouped under “unknown” because it occurred on
the same day as one or more other policies, making the number

of estimated effects fewer than the total number of counties.
From the frequency parameters, the average expected days until
normal was estimated to be about 62, with 95% of estimates
falling between 28 and 96 days. The damping ratio varied
highly, with an average close to the critical damping value of
1, with outliers at 0 (no damping) and 24. Counties with a high
damping ratio showed little or no acceleration toward normal
but rather a very gradual and nearly linear trajectory.

Table 3. Descriptive statistics for all social distancing and policy parameters.

MaximumMinimumMedianσμParameter

141.98112.40662.42717.10162.615D (period, return rate)

24.1840.0000.8160.7930.949R (damping ratio, social inertia)

1.0930.0000.0030.0200.004η (raw)

50.5700.0000.0810.9320.128ζ (raw)

0.8930.0000.1200.0700.116
(pre-policy)

0.9580.0000.0770.0890.083
(stay-at-home)

0.3230.0000.0890.0810.085
(ban on all gatherings)

0.8470.0000.0010.0740.059
(closure of all businesses)

1.5170.0000.0830.0920.086
(closure of educational facilities)

0.7070.0000.0630.0640.064
(unknown)

Figures 2 and 3 show the matrices of Spearman correlations
between estimated policy effects, mobility dynamics, and two

demographic covariates: the log population density and median
household income. Policy (Ψ) and pre-policy (ν) social
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distancing effects were reverse coded to positive values and the
square roots were taken to improve normality. The transformed
frequency and damping (as expected days until normal and
damping ratio, respectively) were used to eliminate parameter
dependence.

The policy effects that correlated most with population density
and median household income were SAH and AG (Figure 2).
Both policies had moderate to large associations but with

opposite signs: with Spearman r(SAH, log population
density)=–0.37, 95% CI –0.42 to –0.33, P<.001; r(SAH, median
household income)=–0.38, 95% CI –0.42 to –0.33, P<.001;
r(AG, log population density)=0.51, 95% CI 0.46 to 0.56,
P<.001; r(AG, median household income)=0.39, 95% CI 0.32
to 0.44, P<.001. More densely populated areas with lower
median income complied more with AG and less with SAH.
AB and EF showed only small associations. Few counties had
nonzero effects for more than two policies.

Figure 2. Scatter plots of county-level policy effects with two demographic covariates. Spearman correlations are given in the upper-right triangle and
marginal histograms are shown in the diagonal cells.
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Figure 3. Scatter plots of county-level mobility dynamics with two demographic covariates. Spearman correlations are given in the upper-right triangle
and marginal histograms are shown in the diagonal cells.

Both the damping ratio and expected days until normal showed
weak to moderate positive associations with population density
and median household income (Figure 3). Pre-policy distancing
was uncorrelated with household income (Spearman r=–0.03,
95% CI –0.08 to 0.02, P=.58) and had only a weak positive
correlation with log population density (r=0 .11, 95% CI
0.06-0.16, P=.03). Household income had the strongest
relationship with the expected number of days until normal
(r=0.39, 95% CI 0.35-0.44, P<.001). Log population density
was also associated with days until normal (r=0.31, 95% CI
0.27-0.36, P<.001). The correlations suggest that cities
experienced the most gradual reversion to normal social
behavior, with some maintaining nearly constant levels of social
distancing up to the present day. The expected number of days
until normal shows a bimodal Gaussian distribution. The
subdistribution with the higher mean has an upper tail that was
more correlated with population density than the rest of the
distribution, possibly representing the comparatively small
number of major cities in the sample. The same nonlinear

relationship is apparent to a lesser extent in the joint distribution
of expected days until normal and median household income,
suggesting that social distancing behavior may be stratified by
other relevant socioeconomic factors.

Effects by Chronology
The chronological order of the policies (see Figure 1) may be
a large determinant of their effects as estimated by the model.
To test this, Spearman correlations were calculated between the
effect size and chronological rank order per county of each
policy. All correlations of effect size with rank order were
negative and moderate to strong except for the closing of
businesses. From Table 3 and Figure 2, we can see that the small
correlation of business closings is likely due to its overall small
effect in most counties. SAH was implemented later than all
other policies on average, while AG tended to be the first and
most effective policy. For each policy, there were many
zero-valued estimates, partly as a result of the precedence of
other policies, as shown in Table 2. Zero-valued estimates were
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distinct from missing estimates, which were due to lack of
implementation in certain states.

The chronology of state policies helps to explain the correlations
between their effect sizes (Figure 2). The results given in Table
4 suggest that per county, the maximum total change in mobility

was distributed unequally between the four policies. Where an
earlier policy accounts for most of the changes, later policies
were less consequential. This was true for pre-policy distancing
as well. Pre-policy distancing was weakly negatively associated
with the earlier AB and AG, but positively associated with the
later SAH and EF.

Table 4. Spearman correlations of policy effect sizes with chronological rank order of implementation.

μ Orderr (95% CI)Policy

3.30–0.33 (–0.37 to –0.29)
(stay-at-home order)

1.51–0.56 (–0.60 to –0.53)
(restriction of all gatherings)

2.08–0.12 (–0.17 to –0.07)
(closure of all businesses)

1.77–0.42 (–0.45 to –0.39)
(closure of educational facilities)

1.70–0.37 (–0.41 to –0.33)
(unknown)

Discussion

Principal Findings
In this study, we used three indices of social distancing behavior
and evaluated four social distancing policies across the United
States. Many of these indices have moderate to strong
correlations with two demographic variables, population density
and median household income, which are themselves strongly
correlated. These results, though descriptive, suggest that there
are notable differences between cities and rural areas in the
average degree to which people in each complied with the social
distancing policies and practiced distancing before the first
policy was issued. We also demonstrated differences in the
long-term social distancing behavior using indices of the
expected time taken to return to normal, computed from the
model frequency parameter, and the general responsiveness to
policies and information represented by the damping ratio
parameter. Our results support previous findings that the SAH
(or shelter-in-place) order and EF (or educational facility
closings) were the most influential, but contradict the finding
that AB, the ban on gatherings, had a smaller effect [10,28,29].

Population density was more strongly associated with AG than
SAH. One possible explanation is that large-scale public
gatherings are generally more common in urban centers than
rural places, and there are more available venues, whereas in
rural communities, people may tend to gather in smaller groups
at home. Conversely, household income had the same magnitude
of association with both AG and SAH. The association with
income aligns with other recent findings that wealthier
individuals often have jobs that allow them to work from home
and control their immediate environment in other ways
[12,30-32].

The SAH order and AG had oppositely signed associations with
both population density and household income. They were also
negatively correlated with each other. The overall finding that
unites these statistics is that SAH and AG seemed to apply to
different populations, with SAH delineating the time of the

largest rural changes in mobility, and the AG applying mainly
in urban centers.

Two social distancing dynamics, damping ratio and days until
normal, were also associated with population density and
income. The relationship is easily observed by browsing the
graphical Shiny app interface for our analysis [33], with rural
counties showing comparatively smaller changes in mobility
and sharper curves in the long-term trajectories back toward
baseline. There may be many related reasons for the differences
by both population density and household income, including
less job security and financial stability over longer periods of
distancing [12,32], political differences that correlate with the
given measures of income and density [13,14,34,35], and
differing access, trust, or comprehension of scientific and
medical information about the pandemic [36,37].

It is also apparent from our analysis that the chronological order
of policies was strongly related to their impact, suggesting that
policy order is more important than policy content for slowing
mobility. Among similar policies like AG and SAH, it may not
have mattered which policy was chosen but only which came
first. The first response from the state acted as an official
determination of individual risk levels beyond information
conveyed by social media, doctors, or scientists. Possibly, many
people made up their minds at that point about the necessary
precautions to take, and further policies were redundant toward
their personal decisions. Additionally, subsequent policies may
have lost influence if it became apparent that the initial policy
was not sufficiently enforced. It is clear in any case that states
will benefit from taking decisive and early action in the future
as soon as the risks become clear.

The prominence of pre-policy effects implies that early
informational campaigns were in many places more important
than particular policies, but our analysis did not find this effect
to be strongly stratified by population density or at all by
income. Pre-policy and other nonpolicy effects may have also
resulted from universities and employers taking early action
regardless of state orders. Armstrong et al [38] devised a
measure of policy “aggressiveness” and found an overall
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association with reductions in mobility and lower rates of
COVID-19 deaths but conclude that lower rates of distancing
in Canada are not well explained by policy alone. They also
note some of the unmodeled differences in the long-term
trajectories of mobility among cities that were captured by our
own model, such as whether mobility remained low, regardless
of initial response. The three aforementioned studies of policy
impact likewise found a significant role of voluntary or
otherwise non–policy-related changes in mobility [10,28,29].

Limitations
As information about and management of the pandemic have
been highly politicized, and oversimplified analyses stand to
negatively impact vulnerable communities, we refrained from
undertaking a more complete observational analysis of
demographic factors contributing to our observed trends in
mobility. Rather, future work to determine the causes of different
social distancing behaviors will have to carefully consider the
complex and tightly intercorrelated nature of socioeconomic,
racial, geographic, educational, and political factors. We
considered a sufficiently responsible analysis of other
demographic factors beyond the scope of this study.

For similar reasons, we chose to limit our analysis to the effects
of policy on social mobility rather than to extend it to case
counts and deaths. While it is feasible that policy-induced
reductions in mobility would have an effect on case counts and
deaths, it is not possible to observe the counterfactual and
measure what cases or deaths would have been without the
policy. Further, taking account of the effects of policy on cases
and deaths would necessitate the use of a comprehensive model
of disease spread, which we considered to be beyond the scope
of the present work. Rather, our aims were primarily
methodological and focused on one aspect of the dynamic
interplay between policy, mobility, and spread. From this work,
we can offer both the mobility time series model and the indices
derived from it as a supplement or basis for future work and
collaboration.

Many counties had mobility damping ratios less than one. This
means that they did not monotonically return to baseline but
overshot and actually had above-average levels of mobility later
in time. There are at least two possible explanations for this
observation. On one hand, many counties may have legitimately
reacted to the previous social distancing by “making up for lost
time” and increasing their social activity or attending to business
at more urgent rates.

Alternatively, the phenomenon may arise because indices of
relative mobility were computed in reference to the February
average, and seasonality over the rest of the year was not
considered. This second explanation seems more likely as
outdoor activity and travel increase throughout the spring and
summer. The latter scenario may account for some degree of
the return behavior in all counties. Variable magnitudes of
average seasonality by county are therefore an important
confound to the behavioral dynamics estimated in this study.
Other factors, including mask usage and systematic adaptations
of normal business operations to pandemic circumstances, were
not included in the model but likely account for some part of
the public’s willingness to re-engage in social behavior later in

time. It is also possible that the effects of chronology found in
this study (ie, weakening of policy effects implemented later in
their succession) result from the upward seasonal trends in
mobility at that time. Arguably, the 2-week interval over which
all policies were implemented in each state is too short to reflect
seasonal changes observed over several months.

In this analysis, typical seasonal fluctuations were necessarily
subsumed under the effect size of the frequency parameter, used
to calculate the expected days to return to baseline. If counties
experience similar degrees of seasonal fluctuation on average,
then it is possible that seasonality induces only a mean affect
across the frequency parameters, meaning relative comparisons
based on the variation around that mean are still informative.
However, this is not a strong assumption and future studies
implementing this model should seek data sets that include the
full year of 2019 to provide seasonal adjustments for mobility
across 2020. Subtracting out monthly averages will ensure more
accurate expectations of social and business equilibria. A free,
open-source alternative source for such information may be,
for instance, SafeGraph [39].

The indices η and ζ represent average tendencies of public
behavior given the assumptions of the model. They do not
necessarily represent anything intrinsic or invariant to each
subpopulation. The model may therefore be improved by
allowing for nonstationarity in these dynamics as new
information, changes in policy, and the aforementioned factors
of mask usage and business operations gradually change public
behavior.

We also recognize that the model assumptions may not perfectly
represent the “true” data-generating process, as they were chosen
for generality and simplicity in describing the common patterns
of change across all counties. There are plausible scenarios in
which the assumptions of the model may not be valid. Policy
changes were detected relative to the ongoing trajectory of social
distancing, which was assumed to be continuous and
differentiable, and to follow a linear second-order differential
equation. However, policy impact could be defined differently
and evaluated according to alternative models that do not make
these assumptions. For instance, if the model expectation absent
any policy effect is a sharp turn in mobility toward its baseline,
then a smooth continuation of the trend away from baseline (ie,
absence of any inflection point) would be modeled as a nonzero
effect. It was therefore our own judgment that the presence of
an inflection point along a smooth path was the most obvious
indication of a policy effect.

Future Directions
As the pandemic continues, the model may be periodically
updated with new events, policies, or other covariates to account
for continued changes in mobility. Positive tests for COVID-19
and counts of mortalities were not included in this model, but
they are likely a factor in motivating increased social distancing
behavior. An improvement to the model will therefore
incorporate the dynamics of the disease itself to represent the
real feedback relations between its spread and distancing
behavior.
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Demographic variables such as income, population density,
political vote share, race, and so forth may explain variation in
the rates of distancing and compliance with policy. Policies
were unlikely to apply equally to different counties and
subpopulations. People living in densely populated areas and
with lower incomes may have been unable to avoid sharing
spaces or were more likely to be deemed essential workers and
thus prohibited from social distancing by their employers. Many
of the previously mentioned covariates, including political vote
share and race, are both highly controversial and complex.
Simple correlations or linear regressions will not be sufficient
to draw conclusions about their roles in the pandemic. The
authors thus plan to incorporate the current derived data set into
structural equation models and other appropriate strategies in
subsequent work.

Our modeling approach provides a general method for
evaluating the effects of one-time occurrences, whether policies
or events, and may be useful for deciding the type and timing
of future policies. Furthermore, counterfactual simulations may
be run by using estimated model parameters as starting values,
then adjusting the parameters according to counterfactual
scenarios, such as testing the consequences of a later
implementation date for a particular policy. As a tool for policy
evaluation, counterfactual simulations will be particularly useful
when future iterations of the model are specified to relate social
distancing behavior to mortality and positive test results. Such
simulations would allow empirical estimation of the number of

deaths or infections prevented or preventable by particular
events and policy decisions.

The general method used here may be applied at different scales
insofar as GPS-based indices of mobility can be obtained. For
example, the model may be applied to evaluate university-level
policies intended to limit spread among students at the start of
a new semester, determine the effects of possible spreading
events, and further examine the co-evolution of public behavior
with the spread and control of the pandemic.

Conclusions
We have proposed a novel strategy for modeling changes in
mobility during the COVID-19 pandemic, with a special focus
on evaluating the impact of policies. Our approach relies on
state-space modeling with differential equations to estimate the
equilibrium behavior of public movement and impacts of
particular events and policies. A preliminary observational result
reveals that the chronology of the policies is a major determinant
of their relative impacts. Substantial distancing was undertaken
in many counties before any policy was implemented, pointing
to the influence of other nongovernmental authorities and public
information. Population density and median household income
were associated with both policy impacts and long-term trends
in social distancing, showing separate, stratified impacts. With
this summary of the model and brief analysis, we provide in
Multimedia Appendix 1 an online R Shiny application that
allows examination of county-level data with model expectations
and counterfactual simulations.
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