
Original Paper

An Epidemiological Model Considering Isolation to Predict
COVID-19 Trends in Tokyo, Japan: Numerical Analysis

Motoaki Utamura1, BSc, PhD, PE; Makoto Koizumi2, BSc, MSc, PhD; Seiichi Kirikami3, BSc
1Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
2Hitachi Research Laboratory, Hitachi Ltd, Hitachi, Japan
3Hitachi Works, Hitachi Ltd, Hitachi, Japan

Corresponding Author:
Motoaki Utamura, BSc, PhD, PE
Research Laboratory for Nuclear Reactors
Tokyo Institute of Technology
Ookayama 2-12-1
Meguro-ku
Tokyo, 1528550
Japan
Phone: 81 3 5477 3464
Email: titech02715@gmail.com

Abstract

Background: COVID-19 currently poses a global public health threat. Although Tokyo, Japan, is no exception to this, it was
initially affected by only a small-level epidemic. Nevertheless, medical collapse nearly happened since no predictive methods
were available to assess infection counts. A standard susceptible-infectious-removed (SIR) epidemiological model has been
widely used, but its applicability is limited often to the early phase of an epidemic in the case of a large collective population. A
full numerical simulation of the entire period from beginning until end would be helpful for understanding COVID-19 trends in
(separate) counts of inpatient and infectious cases and can also aid the preparation of hospital beds and development of quarantine
strategies.

Objective: This study aimed to develop an epidemiological model that considers the isolation period to simulate a comprehensive
trend of the initial epidemic in Tokyo that yields separate counts of inpatient and infectious cases. It was also intended to induce
important corollaries of governing equations (ie, effective reproductive number) and equations for the final count.

Methods: Time-series data related to SARS-CoV-2 from February 28 to May 23, 2020, from Tokyo and antibody testing
conducted by the Japanese government were adopted for this study. A novel epidemiological model based on a discrete delay
differential equation (apparent time-lag model [ATLM]) was introduced. The model can predict trends in inpatient and infectious
cases in the field. Various data such as daily new confirmed cases, cumulative infections, inpatients, and PCR (polymerase chain
reaction) test positivity ratios were used to verify the model. This approach also derived an alternative formulation equivalent to
the standard SIR model.

Results: In a typical parameter setting, the present ATLM provided 20% less infectious cases in the field compared to the
standard SIR model prediction owing to isolation. The basic reproductive number was inferred as 2.30 under the condition that
the time lag T from infection to detection and isolation is 14 days. Based on this, an adequate vaccine ratio to avoid an outbreak
was evaluated for 57% of the population. We assessed the date (May 23) that the government declared a rescission of the state
of emergency. Taking into consideration the number of infectious cases in the field, a date of 1 week later (May 30) would have
been most effective. Furthermore, simulation results with a shorter time lag of T=7 and a larger transmission rate of α=1.43α0
suggest that infections at large should reduce by half and inpatient numbers should be similar to those of the first wave of
COVID-19.

Conclusions: A novel mathematical model was proposed and examined using SARS-CoV-2 data for Tokyo. The simulation
agreed with data from the beginning of the pandemic. Shortening the period from infection to hospitalization is effective against
outbreaks without rigorous public health interventions and control.
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Introduction

COVID-19 currently represents a global public health threat.
Tokyo, Japan, is no exception, but its epidemic was small despite
lacking rigorous public health intervention. The thorough
behavior changes of individuals, with social distancing and
avoidance of the 3 Cs [1], that is, (1) closed spaces with poor
ventilation, (2) crowded places with many people, and (3)
close-contact settings such as close-range conversations, appear
to explain Japan’s ability to slow the spread of SARS-CoV-2.
Medical collapse, however, nearly occurred due to a lack of
beds to accommodate the increasing number of patients [2].
Therefore, to cope with future epidemics, mathematical
prediction tools are thought to be indispensable to anticipate
the maximum number of patients requiring treatment.

From a clinical perspective, SARS-CoV-2 has an incubation
period of 7 days, according to the World Health Organization
(WHO) [3]. Other studies have reported an incubation period
of 5-6 days [4-6]. Moreover, SARS-CoV-2 can be transmitted
even before the onset of symptoms in infected individuals. We
recognize the presence of infection acquired during the time it
takes to carry out testing. Infections are not detected
immediately after the infection but at a delayed timing because
testing requires time. Hence, the date of true infection is some
time before the date of detection. Therefore, real-time conditions
cannot be known from future measurements. To take proper
preventive action, a mathematical model is necessary to infer
present conditions. The standard susceptible-infectious-removed
(SIR) epidemic model [7] and most of its modified versions
[8-10] have three compartments—the number of people who
are susceptible, infectious, or have been removed either through
recovery or death. Its derivative, the SEIR model [8], has another
compartment, exposed (E) individuals, added to take a latency
period into account. However, SARS-CoV-2 is different from
most conventional infectious diseases in the point that unique
symptoms are not well established yet and that patients with
subclinical symptoms may be infectious [9]. Since an infectious
patient cannot be identified clearly, contact between individuals
in daily life needs to be limited, which creates substantial impact
on social activities and the economy. Hence, it is important to
locate and isolate infectious patients via testing, as isolation
significantly affects the transmission. SIR/SEIR models have
been standard tools used for this purpose [7,8].

SIR/SEIR models including a compartment for quarantined (Q)
individuals are called SIQR [10] or SEIQR, respectively [11-13].
Some examples of derivatives include the inclusion of isolated
patients in the SIR model [11], a delayed SEIQR epidemic
model with a vaccination effect [12], or with quarantine and
latent compartments [13]. The outbreak of SARS-CoV-2 has
been analyzed by many authors in terms of quarantine rate
[14-18]. Quarantine rate (ie, transition coefficient from
compartment “infected” to “quarantined”) was estimated by
available data under some simple assumptions [14] or using
statistical methods [15], an AI (artificial intelligence) model

[16], or a sophisticated 6-compartment model [17]. Cases in
Japan was analyzed by Odagaki [18]. In the actual situation,
however, the PCR (polymerase chain reaction) test followed
by a quarantine action was executed at a later time after the
infection. As a result, it has been surmised that the actual
infection situation is reflected on the daily confirmed PCR test
positive number by a delay of about 2 weeks in Japan [19].
Young et al [20] developed a delayed SEIQR model including
this delay effect, which was applied to the COVID-19 context
by Vyasarayani and Chatterjee [21]. All patients detected by
PCR testing should be quarantined but their model does not
always guarantee this due to its probabilistic approach.

The SIR model essentially suits analysis for a short-term
epidemic in local districts [22]. It has been widely used mainly
in developing countries in need of coping with various infectious
diseases where the collective population is small [22]. However,
this has changed in the context of COVID-19 as spread of
infection is prevailing in developed countries with a large
collective population.

The limitation of these SIR derivative models lie in the fact that
in the case that the collective population is large (eg, Tokyo,
Japan, or Wuhan, China), previous works solved only a part of
the equation rather than the whole governing equation, with the
assumption that susceptible individuals are replaced by the
collective population (N) [15,18]. As a result, they construct an
entire solution by connecting piecewise exponential function
exp(λt) with λ’s fitted by trend data corresponding to each
piecewise period of the whole time domain. For example,
Odagaki [18] fitted the trend of daily confirmed new cases in
Japan in the March 1 to April 29 period with four piecewise
exponential functions.

This paper attempts to propose a new epidemic model that
provides not a combination of piecewise solutions but a direct
simulation based on a discrete delay differential equation that
includes the isolation period (hospitalization). This model is
unique because of its inclusion of delay time T in the equation,
and its ability to simulate a complete trend of various infectious
variables from the beginning of the epidemic until the endpoint.
We propose two models (PART1 and PART2). The former
assumes that all infected cases lead to symptoms and eventually
isolation, and was examined through various time-series data
obtained from February 14 to May 23, 2020, in Tokyo [2]. The
latter includes not only symptomatic but also asymptomatic
cases (subclinical patients at large). Both models are capable
of counting inpatient and infectious cases separately.

The relation between the fundamental reproduction number R0

and the parameter of the present model is discussed.
Furthermore, based on this knowledge, an exit strategy (a
criterion for exiting the stay-at-home state of emergency) for
the first wave [23] and how to cope with the coming second
wave are discussed.
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Methods

Data
For this study, we used a publicly available COVID-19 data set
provided by the public health authority of the Tokyo
Metropolitan Government in Japan [2]. The present
epidemiological model was verified through various time-series
data from February 28 to May 23, 2020, up to 2 days before the
Japanese government declared a rescission of the state of
emergency.

The average number of treatment days in hospital was estimated
from data on the cumulative sum of discharge and deaths [2].
Simulations by the present model were examined by cumulative
infections, daily new confirmed cases, detected and hospitalized,
the number of inpatients, and recoveries/deaths in hospitals [2].
Numerical results were also examined via positivity ratio in
PCR tests in Tokyo [2]. To establish the PART2 model, we
used data from the report on antibody prevalence tests conducted
by the Ministry of Health, Labor and Welfare from June 1 to 7,
2020, just after the end of the first wave in Tokyo [24]. These
data were collected by public health authority announcements,
were aggregate rather than individual case information, and
were used only for the purpose of comparison with simulation
results. Therefore, ethical approval was not considered to be
required for this study.

Prediction Models

An Epidemiological Model Considering Isolation With
Delay
Figure 1 displays the concept of the present epidemiological
model. For simplicity, it is assumed that once the susceptible
are infected at time t with a transmission rate of α (1/day), they
become infectious without delay. Whether an infected individual
becomes symptomatic or asymptomatic is assumed to be
intrinsically determined. The asymptomatic cases remain
infectious until removed (recovery/death) at time t+S while the
symptomatic cases continue being infectious until hospitalization
(isolation) at time t+T. Parameters S and T are not fitting
parameters but are to be determined by empirical knowledge
based on observed data. A part of infections (ε) is designated
as asymptomatic (subclinical patients) and the rest (1–ε) as
symptomatic. Taking cumulative infections x(t) as a primary
dependent variable, then the number of infectious cases at large
(Q) can be counted as a sum of asymptomatic portion ε(x(t) –
x(t–S)) and symptomatic one (1–ε)(x(t) – x(t–T)). The susceptible
portion in a collective population (M) can be expressed by 1 –
x(t)/M. We assume the rate of infections (daily new cases) is
proportional to the product of Q and the susceptible portion,
that is, dx(t)/dt = αQ(1–x(t)/M). Then, x(t) is governed by the
following delay differential equation:

Figure 1. Concept of the present epidemic model. Two paths from newly infected until removed (recovered/died) are shown, with symptomatic and
asymptomatic paths. The portion of the former is ε and the latter 1–ε. The former remains infectious in the time period [t, t+T] and the latter [t, t+S],
with T<S (typically). We call the case ε=0 model PART1 and 0<ε<1 model PART2. The case ε=1 is equivalent to the standard SIR model, in which no
distinction exists between symptomatic and asymptomatic cases.

where x(t) is abbreviated by x, and u(t–T) or u(t–S) is a step
function such that:

Given the number of initial infectors x(0) imported from outside
of the collective population, parameters S and T, and a single
set of fitting parameters α and M for an entire period of
epidemic, a numerical solution would be obtained.

Equation 1 is featured in an explicit inclusion of time lag
parameters, S and T, which is different from the SIR model and
its derivatives. We designate this formulation as the apparent
time-lag model (ATLM) hereafter.

The model for ε=0 treats clinical symptoms alone and does not
take asymptomatic infections (subclinical patients) into
consideration. Hence, all infections are to be eventually detected
and hospitalized, and equation 1 becomes equation 3, which we
refer to as the epidemic model PART1:

In the case ε=1, an alternative formulation equivalent to a
standard SIR model is obtained. In the case 0<ε<1, we call
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equation 1 the epidemic model PART2 (see Multimedia
Appendix 1 for details). For the numerical integration of
equations 1-3, the fourth-order Runge-Kutta-Gill method was
applied. With a time step of half a day, numerical accuracy was
found to be adequate.

In the present model, the whole epidemic trend was simulated
by a single delay differential equation in terms of cumulative
infections x as the dependent variable.

Once x is obtained, other important variables would be evaluated
in a straightforward way. For example, daily new cases dx/dt
can be calculated by the right-hand side of equation 3, the
number of hospitalized x(t–T) designated by Y, removed
(recovered/died) x(t–S) by Z, infectious cases at large x–Y by
Q, the number of inpatients Y–Z by P and PCR test positivity
ratio Q/M by Pr.

In the subsequent section, we will focus our attention on model
PART1. Table 1 summarizes the variables and their
corresponding expressions.

Table 1. Expressions for infection variables in terms of cumulative infections x.

ExpressionVariableItem

—axCumulative onset

x(t–T)YHospitalized

x(t–S)ZRecovered/died

Y–ZPInpatients

x–YQInfectious cases in the field

Q/M × 100 (%)PrPositivity ratio for PCRb testing

aNot applicable.
bPCR: polymerase chain reaction.

The value of time interval T was inferred as the sum of the
incubation time, detection, and testing and reporting times. As
mentioned already, the WHO announced that the incubation
time of SARS-CoV-2 to be 7 days [3]; in other studies in the
literature, it was reported as 5-6 days [4-6]. In actuality,
however, the PCR test followed by a quarantine action was
executed at a later time after the infection. As a result, the actual
infection situation has been said to reflect in the daily confirmed
PCR test positive number after a delay of about 2 weeks in
Japan, in which the time from specimen collection to reporting
back to the patient is delayed. Assuming an incubation period
of 5 days [25], an infectious period of presymptomatic cases of
2 days [3], and a reporting delay of PCR test results of 3 days
[26], infectious patients might not be quarantined until about
14 days. Hence, in the analysis of the first wave of the
SARS-CoV-2 epidemic in Tokyo, we assumed T to be 14 days.

Dimensionless Parameter and the Final Size of the
Epidemic
Equation 3 can be simplified to respective time spans for 0<t<T
as follows:

This equation has an analytic solution, a so-called logistic
function:

At the beginning, equation 5 shows an exponential epidemic

growth x = x(0)eαt = x(0)2(t/τ), where τ is clinical doubling time
and related to α as shown below:

For example, with α being 0.164, the equivalent value of τ
would be 4.22 days; x/x(0) would become 10 in 2 weeks.

When t>T,

Normalization of equation 7 provides the following:

where p=x/M and σ=t/T. It should be noted that a single
dimensionless parameter (αT) appears in equation 8 and governs
epidemic behavior.

Here, we have derived a final size equation from equation 7:

Solving for final size x(∞) is obtained as Mp(∞). Mathematical
proof of equation 9 is available in Multimedia Appendix 2.

It is interesting to note that once αT is known in the early phase
of the epidemic, the final size is also known without a numerical
analysis. In other words, if we happen to know the final size
x(∞) as well as αT in advance, we can estimate the virtual
collective population M.

Effective Reproductive Number
The effective reproductive number Rt refers to the number of
infections per infectious cases in a collective population until
removal. Various calculation methods have been reported

JMIR Public Health Surveill 2020 | vol. 6 | iss. 4 | e23624 | p. 4http://publichealth.jmir.org/2020/4/e23624/
(page number not for citation purposes)

Utamura et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


[27-29] for R0 but less for Rt. Its expression is dependent on the
epidemiological model. Hattaf [27] derived R0 for delayed SEIR
model and showed delay reduces R0. Wallinga and Lipsitch [28]
showed a framework for deriving R0. In the present model,
possible infectors at time t exist within a time span [t–T, t] whose
number is Q because the infectors produced before t–T are all
hospitalized. Consequently, for this paper, Rt was calculated as
the ratio of daily new cases to the average number of infectants
per day during time span [t–T, t] as:

Combining equation 10 with equation 7 yields:

This is consistent with the literature [17]; the effective
(time-dependent) reproductive number Rt is the product of R0

and susceptible S(t) if αT is the same as R0.

Since no preventive measure was taken at an initial stage of the
first wave of the COVID-19 pandemic from February 14 until
May 23 in Tokyo, the value of Rt at the initial phase coincides
with that of the basic reproductive number R0. Hence, noting
1>x(0)/M, we have:

Now that dimensionless parameter αT has been identified as
the basic reproductive number R0 in the present model, Rt in
equation 11 is the effective reproductive number. Furthermore,
the physical meaning of R0 was clarified, which is the product
of the ratio of time lag T and epidemic doubling time multiplied
by ln2. In contrast, Makino [30] and Inaba [22] reported that
the standard SIR epidemic model provides βN/γ for the basic
reproductive number:

Recalling βN=α and 1/γ as the time constant, equation 13 has
a meaning similar to equation 12.

Results

A Dimensionless Parameter to Characterize Early
Stage Epidemic Trends
Figure 2 presents an early stage epidemic trend for the solution
x(t) of equation 7. The dimensionless parameter (αT) is
equivalent to R0 in equation 12. To confirm whether it is correct
or not, a numerical calculation was conducted with (αT) as a
parameter. It is clear in the case (αT)>1, cumulative cases x
show exponential growth of the epidemic; when (αT)<1, they
seem to be saturated. The marginal line is expressed as a broken
line in Figure 2, when (αT)=1. With these features, (αT) is
identified to be R0.

Figure 2. Behavior of solution x with a change in the value of the parameter (αT). A clear change in the behavior of the solution x(t) depending on the
value of αT, a so-called bifurcation nature, is apparent. In fact, αT=1 is found to be a threshold with αT>1 causing an outbreak and αT<1 an endemic.
This is consistent with the interpretation that αT is equal to R0 in equation 12.

Comparison of PART1 Prediction With Observed
Trend Data
Cumulative confirmed cases between February 28 and April 28
in the first wave of COVID-19 in Tokyo were adopted for the
fitting of parameters, transmission rate α, and virtual collective
population M. Values of other parameters, time lags from

infection until isolation T and from infection until removed S,
were preset as 14 and 36 based on empirical knowledge. The
former has been commonly acknowledged for SARS-CoV-2 in
Japan. The latter was derived as a sum of T and average length
of stay (LOS) in hospital until discharge or death. The average
LOS days of inpatients was estimated to be 22 days based on
the data for a total sum of discharge and deaths. Model PART1

JMIR Public Health Surveill 2020 | vol. 6 | iss. 4 | e23624 | p. 5http://publichealth.jmir.org/2020/4/e23624/
(page number not for citation purposes)

Utamura et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


was used. According to parameter survey calculations, α and
M were selected, respectively, as 0.164 and 6200. In the
following sections, the number 0.164 will be designated as α0
and used throughout the text in later sections.

Figure 3 presents a comparison of epidemic simulation against
observed data in terms of the cumulative hospitalization number
(Y), the number of inpatients (P), and removed cases
(recovered/died) (Z) in hospitals. Whereas observed data are

available for February 28 onward, calculations started with
initial infection x(0)=3 on February 14, which was 14 days prior.
The vertical line indicates the date April 28. Calculations
succeeded in simulating observed data in general. However, Y
starts overestimating data at 77 days (May 2) and afterward. It
is probable that α became smaller due to stay-at-home orders
announced by metropolitan authorities 5 days earlier on April
27, by which point people’s behavior changes lowered the value
of transmission rate α.

Figure 3. Comparison of simulation results with data in the entire period of the first wave of COVID-19 in Tokyo. Axis represents the number of
cumulative hospitalized cases (Y), the number of inpatients (P), and the number of recovered/deaths (Z). Solid lines represent simulations by model
PART1. Dotted points show data observed in Tokyo, Japan.

Figure 4 presents a comparison of predictions with observed
data on daily new confirmed cases from February 28 to May
23, that is, the whole span of the first wave in Tokyo. Although
the data show remarkable scattering, prediction succeeded in
simulating their average trend at large especially toward the end
of the epidemic. It should be noted that during the first wave of

the epidemic in Tokyo, the Metropolitan Tokyo Government
asked those with a positive PCR test to stay in hospital until
they were confirmed negative again twice. Therefore, PCR
positives are equated with those who were hospitalized. Figure
5 exhibits observed trends of the positivity ratio in PCR testing
compared with calculation Pr (equation 13).
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Figure 4. Simulation of daily new confirmed cases compared with observed data. Model PART1 with the same parameter values as in Figure 3 was
used. Note that dY/dt=dx(t–T)/dt since nearly 2 weeks are needed in Japan to confirm infection by polymerase chain reaction testing.
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Figure 5. Simulation of positivity ratio compared with observed PCR (polymerase chain reaction) tests. Model PART1 with the same parameter values
as in Figure 3 was used for the simulation.

Data in the early stage might include large statistical error
because of the fewer inspections conducted. Except for this
period, however, data trends are well simulated in spite of the
model simplicity. That is reasonable because the model counted
infections with the onset of clinical symptoms, which suits the
attribute of tested data. It is important to note that the agreement
of numerical results with observed data implies correctness of
counting infectious cases at large (Q) because of the definition
of the PCR positive ratio, Pr≡Q/M*100 (%), in the present
model. Accuracy is recognized toward the endpoint of the
epidemic.

Trends in the Effective Reproductive Number
Figure 6 provides trends of infectious cases at large, daily new
confirmed cases, and Rt. Different from the method of past
literature, Rt in the present model is expressed by a continuous
convex function. Infectious cases at large were predicted to
have a peak of 2363 on day 57 (April 12), whereas the effective
reproductive number Rt decreases to reach unity on day 54 (April
9). The vertical line indicates April 9 when it crosses the point
where Rt=1. Both dates are close and reasonable. Susceptible
persons remain uninfected by about 1000 susceptible individuals
who are not infected. The value of αT (=R0) is estimated as 2.30
using equation 11 with the transmission rate α as α0. The value
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of α0, however, is influenced by the Japanese government’s
declaration of emergency issued on April 7, which might

underestimate the value at the initial stage of the epidemic.
Therefore, the actual R0 might be higher.

Figure 6. Trends of the reproductive number, Rt, infectious cases at large, and daily new confirmed cases. Model PART1 with the same parameter
values as in Figure 3 was used. The value of Rt is on the left axis and the other variables, infectious cases at large (Q) and daily new confirmed cases
(dY/dt), are on the right axis. The vertical line represents the date when Rt=1, which almost coincides with the date maximum Q is reached. This verifies
the expression of Rt.

The vaccine ratio needed to avoid an outbreak in Tokyo was
estimated using equation 11. To calculate the condition Rt<1 at
t=0 when the epidemic fades out, the following equation can
be used:

Rearrangement provides the vaccine ratio as:

This estimate is reasonable since it is close to the value of 0.63
that Wu et al [31] obtained for the COVID-19 epidemic in
Wuhan, China, as of January 23, 2020.

Comparison of ATLM With SIR
Figure 7 presents a comparison of ATLM with standard SIR

epidemiological models in terms of under the same
parameter values. Their corresponding variables in ATLM are,
respectively, P+Q, Z, and M–Z. Marked differences are apparent
between the two. In fact, SIR predicted that most of the
population would be infected, although ATLM left behind 1000
as uninfected. This is because the attack rate p(∞) of ATLM is
0.86, which is smaller than that of SIR (almost 1) since αT<αS.
Furthermore, ATLM provides lower values by 20% for
infections, which results from modeling hospitalizations before
removal.
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Figure 7. Comparison of simulations by the present apparent time-lag model (ATLM) with that of the standard susceptible-infectious-removed (SIR)
equivalent. The results obtainable by SIR are based on equation 1 with ε=1 shown as a broken line and those by ATLM model PART1 as a solid line.
Variables for infectious, removed and susceptible in SIR model correspond to those P+Q, Z and M-x, respectively in ATLM model PART1.

Results by PART2
According to the report of antibody prevalence tests conducted
by the Ministry of Health, Labor and Welfare from June 1-7,
2020, just after the end of the first wave in Tokyo, the antibody
ratio was found to be 0.10%. Since the metropolitan population
is 14 million people, the number of individuals having antibodies
is estimated to be 14,000. As the number of removed cases in
the first wave was 5236 as of May 3 in Tokyo, this leaves 9000
in the field. Taking ε as 9000/14,200=0.634 as the first estimate,
simulation of the first wave was conducted using PART2 to
reproduce 5200 for (1–ε)x(∞) with ε varied. The best fit value
of ε was 0.627.

Figure 8 presents the trends of various variables with
asymptomatic cases considered. Compared with Q of PART1
in Figure 3, the peak value of the apparent spreader (ie, the
symptomatic or covert patient) inferred from PART2 is 90% in
size with an inpatient ratio of 92%, both of which seem to be
reasonable. Apparent to asymptomatic patients, the ratio is 0.45,
which is less than the relative existence ratio (1–ε)/ε=0.6. This
may be due to a difference in the values of T and S. As S/T is
2.6, a silent spreader continues to reproduce infections after an
apparent spreader is isolated. Further information on incubation
as well as the recovery period of silent spreaders are needed for
improved accuracy.
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Figure 8. Model calculation with subclinical patients considered. Model PART2 (equation 1) was used. Model parameter M was determined to be
14,200 with the aid of the antibody prevalence test results. Parameter ε was optimized so as to give cumulative symptomatic infections, (1-ε)x is the
same as that computed by PART1. The remaining parameter values of x(0), T, S, and α were the same as PART1. Broken lines represent infectious
cases as covert and subclinical separately.

Assessment of Preventive Measures Against Spread
Toward the end of the first wave in Tokyo, strong public health
interventions were conducted to prevent contact with others by
80% (stay-at-home orders issued for 80% of residents). The
actual reduction in the number of contacts was estimated to be

50%-60%. The official stay-at-home announcement was
declared on day 72 (April 27) after the onset of the epidemic.
The simulation was tailored to assess its effects on daily new
confirmed cases with and without stay-at-home actions. Results
are presented in Figure 9.
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Figure 9. A posteriori assessment of the impact of restrained contact to reduce transmission rate, α. Stepwise change in the value of transmission rate
α from α0 to 0.2α0 (action A) or to 0.43α0 (action B) was applied at day 86 when the effect of the action should appear on daily new confirmed cases.
Solid lines represent daily new confirmed cases (left axis) while the red broken line (infectious cases at large) to the right. It was found that “real” action
A was too late in suppressing spread. If “imaginary” action C had been implemented 1 month earlier, it would have had a greater impact.

In Figure 9, actions A, B, and C are assumed public preventive
measures against the spread of SARS-CoV-2. The government
requested a reduction of contact between persons by 80%. In
the simulation, this was modeled by a sudden decrease in the
transmission rate. In a general form of φα0, φ ranges as follows:
0<φ<1. For instance, 0.2α0 implies an 80% reduction of contact
compared with no action (φ=1).

In Figure 9, simulation of daily new confirmed cases with three
transmission rates of α0 (no action), 0.43α0 (action B), and
0.2α0 (action A) were given together with PCR test data (orange
color), with an α0 value of 0.164. Unexpectedly, the measured
data appear to follow the case with no action dY/dt, which
implies that the action failed. According to the postanalysis by
ATLM, the action should have been conducted earlier.
Imaginary action with 0.43α0 (action C) was taken at day 40.

Its effect appears on daily new cases data 2 weeks later (day
54) when computational action was made. A significant effect
on a reduction in infections and a reduced impact on social and
economic activities might have been obtained.

Assessment of Criterion for Rescission of Emergency
Statement
The Japanese government issued a criterion for the rescission
of the stay-at-home order for the purpose of early economic
recovery, stipulating that daily infections decrease to no more
than 0.5 person/day per 100,000 population. Applied to Tokyo,
the criterion would yield 10 infections per day. To confirm its
validity, a posterior assessment was conducted. Figure 10
presents trends of infectious variables toward the end of the first
wave in Tokyo.
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Figure 10. Trends of infectious variables as SARS-CoV-2 transmission declines. dx/dt represents a simulation of the actual trend of daily new cases.
dY/dt was drawn with the curve dx/dt shifted to the right by 2 weeks. The daily data show daily new confirmed cases based on a positive polymerase
chain reaction test. Both agreed well. The vertical blue line exhibits the date of rescission of the state of emergency declared by the Government of
Japan. Then, the rescission criterion, that is, no more than 10 infections per day in terms of dY/dt, is satisfied. Infectious cases at large (Q), however,
was estimated to have been 10 then according to the simulation. It should have been less than unity to aim for the extinction of SARS-CoV-2. To realize
this, the rescission must be delayed by an additional week.

The criterion of 10 infections/day can be represented as dY/dt
(broken line in Figure 10) at day 93 after the onset of the first
wave (February 14). Noting that measured values appear with
a 14-day delay, the actual number is predicted to be 0.3,
according to dx/dt. This number is below unity and is low
enough to meet the rescission criterion. Infectious cases at large
(infectious people who are not hospitalized), however, are still
around 10 according to the simulation by ATLM (red broken

line). Hence, the rescission should have been delayed by an
additional 7 days (100 days afterward).

Parametric Effect of the Public Intervention Against
the Coming Wave
Figures 11 and 12 show parametric effects. Calculations with
parameter set of t=14 and α0 are set for the first wave and
standard case. A smaller α is seen to reduce the second wave
markedly.
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Figure 11. Effect of transmission rate α on cumulative infections. With a reduced transmission rate α, the final size x(∞) was observed to be smaller
and took longer to be attained.

Figure 12. Effect of time lag T from infection until hospitalization on cumulative infections x (left axis) and daily new confirmed cases dY/dt (right
axis). The reduction of T has a significant effect on both x and dY/dt.
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A similar effect is expected by reduction of time lag T for both
cumulative and daily new confirmed cases. Recovery of social
and economic activities must accompany infections in a tolerable
range. Consequently, a reduction in T under an increase in α is
expected to be the basic policy for the coming wave followed
by the first wave.

Figure 13 presents trends of cumulative cases with three (αT)
values at 14α0. 10α0 and 7α0 have two curves each. Among

them, the parameter set of t=14 and α0 is the standard case used
to simulate the first wave. It is noteworthy that the asymptotic
values x(∞) of the two curves under the common αT are the
same although initial increasing rates are different. It can be
seen that the lower the (αT), the smaller the magnitude of the
epidemic. From this observation, three sets of parameter
combinations (αT, x(∞)/M)—(1.148, 0.251), (1.640, 0.665),
and (2.296, 0.862)—were obtained.

Figure 13. Effect of αT on x(∞). Model PART1 was applied with parameter values same as those in Figure 3 except for transmission rate α and time
lag T. Given their product αT, the final size x(∞) could be uniquely determined.

Figure 14 presents the accuracy of equation 9. Excellent
agreement with numerical results is obtained. In the region (αT)
<3 strong correlation are observed between p(∞) and (αT), but

the attack rate tends to become saturated to unity if (αT) exceeds
3.

Another point of checking is to prepare the necessary number
of hospital beds. Figure 15 exhibits the number of inpatients
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and infectious cases at large under αt=10α0 (ie, attack rate of
0.665). Two cases are compared with the case of the first wave
in terms of beds and infectious individuals at large. The peak
number of infectious cases is seen to be reduced to half the size
of the first wave for both cases. In the case of T=7 with 1.43α0,
the epidemic will cease 1 month earlier although the maximum

number of beds is much the same as that in the first wave.
Unless T=7 is feasible, the next choice would be t=10 with α0,
which would require a reduced number of beds with a delayed
transmission endpoint. From an economic point of view, T=7
is preferable because α is bigger. Earlier identification of
infectious cases at large is essential.

Figure 14. Relationship between attack rate p(∞) and αT. The accuracy of equation 9 is verified by this numerical simulation.
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Figure 15. Effect of T on the number of inpatient and infectious cases at large under the condition of (αT)=10α0. Model PART1 was applied with
parameter values same as in Figure 3 except transmission rate α and time lag T. Solid lines represent the number of inpatients (P) and broken lines the
number of infectious at large (Q). The reduction of T and an increase in α may provide a solution that reduces inpatient count and enhances economic
activity.

Discussion

Principal Findings
The present epidemiological model ATLM is very simple in
terms of mathematics and comprises a small number of fitting
parameters, that is, the governing equation is described by only
one dependent variable x (cumulative infections). Once it is
solved numerically, other infection-related variables can be
obtained in a straightforward manner as a function of x, as
illustrated in Table 1. On the other hand, conventional
approaches are complex. For example, the mathematics of SIR
and its derivatives consists of multiple equations with variables
depending on the number of compartments of community in
the model—SEIR [8] or SIQR [10] uses four compartments,
SEIQR [11-13] five, and delayed SEIQR [20] six. In essence,
they have not been solved directly in the entire time span but
have been approximated by a combination of piecewise
exponential functions, each of which is a solution applicable to
a short-term interval with a fitting parameter. For example,
Odagaki [18] divided the entire time span of the first epidemic
in Japan (March 1 to April 30) into four intervals and applied
an SIQR model with four parameter values fitted to each
interval, that is, in total 16 (4×4), whereas ATLM employs only
four parameters. The accuracy of ATLM was examined by
various data obtained from the first SARS-CoV-2 trends [2].
They are cumulative infections x, daily new confirmed cases
dY/dt, the number of inpatients P, discharge and deaths Z, and
trend of PCR positivity ratio Pr. All of these are filed in the
database [2] and were simulated well by ATLM PART1. It
should be noted that this was done so by a single set of four

parameters for a transmission rate α of 0.164, a virtual collective
population M of 6200, a time lag T of 14 from infection until
isolation or hospitalization, and a time interval S of 36. ATLM
succeeded in simulating the whole data trend of the first wave
of the COVID-19 epidemic in Tokyo.

Among them it is noteworthy that the simulation matched the
trend of the positivity ratio of PCR testing. This implies that
the number of infectious cases at large was counted properly
by ATLM. This fact may essentially be a base to apply
simulation results to the assessment or proposal of strategies
for public control of the epidemic (ie, public health interventions
at the right magnitude and timing). We demonstrate two
examples below.

One is the assessment of the stay-at-home order to reduce
person-to-person contact by 80% declared by the metropolitan
authority on April 27 (72 days after the onset of the first wave
of the epidemic). Based on the prediction of infectious cases at
large by the present model, the declaration should have been
made 1 month earlier. If so, moderate reduction of contact by
43% would have been effective enough to reduce both inpatient
and impact on social and economic activities.

The second example is the timing of the rescission of the state
of emergency issued on April 7. It was actually done on May
25 based on PCR test results. However, according to the
behavior of the infectious cases at large, it should have been
postponed by 1 week when the calculated infectious cases at
large would reach below one at which point the epidemic would
cease.
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As a corollary, we induced a single dimensionless parameter
(αT) from the governing equation that occupies the whole
epidemic trend from onset until endpoint. More specifically,
(αT) was identified as R0; it also determines attack rate p(∞)
and the final size of the epidemic x(∞). In practice, once we
know (αT) in the early phase by data fitting, we can estimate
the attack rate of the specified epidemic without numerical
simulation. The value of (αT) obtained was 2.30 for the first
wave of the epidemic in Tokyo; this value is close to the value
of 2.20 that Li et al [6] obtained from the data taken from
Wuhan, China, or the value 2.68 reported by Wu et al [31] for
SARS-CoV-2.

As for the time-dependent effective reproductive number Rt,
conventionally it was evaluated as a piecewise function [18].
However, ATLM expresses Rt as a function of x(t) applicable
to the entire period of epidemic. This is consistent with findings
from the literature [17] that an effective (time-dependent)
reproductive number Rt is the product of R0 and susceptible S(t).

Three parametric survey calculations for the preparation of a
coming wave clarified the combination of T=7 and α=1.43α0
as providing the best solution for restoring social activity, with
a smaller magnitude of cumulative infections. To make T smaller
in practice, faster identification and quarantine of infectious
cases at large are necessary. This requires a strong task force
to find infection clusters and to apply rapid testing to the greatest
degree possible.

Limitations and Future Work
The present model (ATLM) has limitations. First, it is assumed
that all new cases spread the infection from the time of infection
t until t+T isolation in hospital. In fact, a noninfectious period
(exposed period) exists at the nascent stage of incubation, which
may reduce the infectious period. This mechanism could be
formulated within the frame of ATLM by introducing another
time lag for the exposed period. It is our future task to complete
this with a reliable empirical database. To do so, more
information on incubation as well as recovery period of
asymptomatic patients are needed for accurate modeling.

After June 2020, PCR testing was enhanced in Japan in order
to suppress infectious subclinical patients as a measure of
intensive cluster intervention. As a result, the number of positive
PCR tests increased compared with the first wave of the
epidemic and a similar number of subclinical patients as
inpatients was found. Nevertheless, the maximum number of
hospital beds required were less than that of the first wave in
Tokyo. This may be owing to improved medical care as well
as the larger portion of young patients. Postanalysis of the
epidemic from June to October 2020 using general ATLM
PART2 (equation 1) with information mentioned above will be
our next task.

Secondly, the characteristics of the onset of clinical symptoms
are stochastic. Therefore, the modeling of a preonset period and
a statistical process are needed for accurate prediction. Thirdly,
we assumed in the model PART2 that subclinical patients

continue to be infectious from infection to removal, which must
overestimate the number of infectious cases. With more
information on period S from infection until recovery for
subclinical patients, modeling should be improved.

Fourthly, input parameter M (virtual collective population)
introduced into ATLM as a fitting parameter enabled us to
simulate the entire span of the SARS-CoV-2 trend from the
beginning through to the endpoint of the epidemic in Tokyo
with a single value to designate transmission rate α. However,
this should be modeled in the future. In ATLM, both
transmission rate α and virtual collective population M were
simultaneously determined by data fitting to cumulative cases.
α can be alternatively understood as the reciprocal of clinical
doubling time, that is, the accelerating factor of the spread. On
the other hand, M is understood as the initial susceptible, a
decelerating factor for the spread if M is small. In fact, M was
extremely small (~5000) compared to the actual population of
Tokyo (14 million). This might be related to the mobility of
individuals in daily life. Populations outside the flow of
individuals are not susceptible. To define the invisible wall
between the susceptible and the nonsusceptible would be the
key to model M. This will be addressed in our future work.

In summary, this study is the first complete simulation of the
first wave of the epidemic in terms of the trends associated with
various SARS-CoV-2 infection parameters in Tokyo, Japan.
Existing data and outbreak patterns in other countries may be
better understood via the present model.

Conclusion
A novel epidemiological model (ATLM) was developed using
a single delayed differential equation with explicit inclusion of
the time lag associated with the isolation of infectious cases. It
provides a full simulation of the various infection variables in
the entire span from onset to endpoint with a small number of
calculation parameters. The model was verified by various
epidemic trend data (including the PCR positivity ratio)
published by the Tokyo Metropolitan Government. The validity
of counting infectious cases at large was checked indirectly by
the coincidence of data for the PCR positivity ratio. Based on
this, two practical issues about public health control of
SARS-CoV-2 surfaced. One of them is the mitigation of
infections by reducing social contact, declared on April 27,
2020. Based on the trend of infectious cases at large predicted
by ATLM PART1, this order should have been issued 1 month
earlier, which would have led to less infection as well as a
reduced slowdown of social activities. The other issue is the
timing of the declaration of the rescission of the state of
emergency, which was issued on April 7 and rescinded on May
25. However, according to the predicted behavior of the
infectious cases at large, this should have been done 1 week
later when infectious cases are at <1 and the epidemic would
fade out. Finally, as a control measure for a coming second
wave, the combination of T=7 and α=1.43α0 is recommended,
which would result in enhanced social activities and a smaller
magnitude of cumulative infections.
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