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Abstract

Background: The rapid spread of COVID-19 means that government and health services providers have little time to plan and
design effective response policies. It is therefore important to quickly provide accurate predictions of how vulnerable geographic
regions such as counties are to the spread of this virus.

Objective: The aim of this study is to develop county-level prediction around near future disease movement for COVID-19
occurrences using publicly available data.

Methods: We estimated county-level COVID-19 occurrences for the period March 14 to 31, 2020, based on data fused from
multiple publicly available sources inclusive of health statistics, demographics, and geographical features. We developed a
three-stage model using XGBoost, a machine learning algorithm, to quantify the probability of COVID-19 occurrence and estimate
the number of potential occurrences for unaffected counties. Finally, these results were combined to predict the county-level risk.
This risk was then used as an estimated after-five-day-vulnerability of the county.

Results: The model predictions showed a sensitivity over 71% and specificity over 94% for models built using data from March
14 to 31, 2020. We found that population, population density, percentage of people aged >70 years, and prevalence of comorbidities
play an important role in predicting COVID-19 occurrences. We observed a positive association at the county level between
urbanicity and vulnerability to COVID-19.

Conclusions: The developed model can be used for identification of vulnerable counties and potential data discrepancies.
Limited testing facilities and delayed results introduce significant variation in reported cases, which produces a bias in the model.

(JMIR Public Health Surveill 2020;6(3):e19446) doi: 10.2196/19446
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Introduction

The continued spread of confirmed cases of COVID-19, absence
of a vaccine, limited resources for testing, and assisting people
with confirmed cases have presented a great challenge for our
public health and health care provider systems. To this point,
nonpharmaceutical interventions such as social distancing are
the only effective mitigation measures. The rapid spread of the
disease means that government and health services have very

little time to plan and design effective response policies such
as resource and workforce planning. Accurately predicting the
near future COVID-19 spread at sufficient granularity would
provide these organizations with better information and more
time to appropriately plan and respond.

We have developed a three-stage machine learning model to
estimate COVID-19 spread outcomes at the county level in the
United States. In the first stage, we estimate the probability that
a county has at least one confirmed COVID-19 case. In the
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second stage, we estimate the number of COVID-19 occurrences
given a county has at least one case. Finally, we combine the
results from the two stages to estimate those counties that have
the greatest and least vulnerability for changes in disease
prevalence for the next five-day period.

There has been significant epidemiological work for previous
coronavirus pandemics such as Middle East respiratory
syndrome (MERS) and severe acute respiratory syndrome
(SARS) [1]. For example, Badawi et al [2] performed a
systematic analysis of prevalence of comorbidities in MERS
using data from 12 studies and found that diabetes and
hypertension were present in 50% of the cases. Matsuyama et
al [3] systematically reviewed studies involving
laboratory-confirmed MERS cases to measure both the risk of
admission to the intensive care unit (ICU) and death. They
compared risks by age, gender, and underlying comorbidities.
Park et al [4] reviewed characteristics and associated risk factors
of MERS. Bauch et al [5] surveyed SARS modeling literature
focused on understanding the basic epidemiology of the disease
and evaluating control strategies. Surveyed SARS models varied
in terms of population studied and geographical characteristics
[6,7]. Different designs were used for SARS modeling, including
deterministic compartmental models [7], stochastic
compartmental models [6], a combination of stochastic and
deterministic compartmental models [8], discrete-time models
[9], logistics curve-fitting models [10], contact network models
[11], and likelihood-based models [12]. Studies associated with
risk factors for SARS [13] and MERS [3,14-20] have found an
association between comorbidities and infected cases.

MERS and SARS epidemiological modeling has been done at
different granularities such as the country [21,22], specific
region [23], and case clusters [6]. Given the much broader reach
of COVID-19 compared to MERS and SARS, it is very
important to make predictions at a sufficiently high level of
granularity. This is particularly important since previous studies
have shown that there is considerable heterogeneity in space,
transmissibility, and susceptibility [5]. Our approach is
developed at the county level with the inclusion of a variety of
health statistics, demographics, and geographical features of
counties. Further, we use publicly available data so that any
organization can leverage the model. To the best of our
knowledge, no work has been done to predict near future
infection risk at the county level using a combination of health
statistics, demographics, and geographical features of counties.

Methods

Recruitment
We performed an epidemiological study at the US county level
using publicly available data to develop a machine learning
predictive model. Data analysis was performed from February
15 to April 3, 2020. The study was reviewed by the Penn State
Integrated Research Ethics Board and deemed exempt because
it was a deidentified, secondary data analysis. This study
followed the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guideline [24].

We used US Census data to obtain county-level population
statistics for age, gender, and density [25,26]. We obtained
county-level data for diagnosed adult diabetics percentage and
cancer crude rate statistics from the Centers for Disease Control
and Prevention (CDC) [27,28]. We used county-level
hypertension estimates and chronic respiratory disease mortality
rates obtained from the Global Heath Data Exchange (GHDx)
[29,30] website, provided by the Institute for Health Metrics
and Evaluation. We obtained the centroids for each county from
ArcGIS [31]. Finally, we obtained US Census Cartographic
Boundary files for each county in JSON format [32] and
county-level COVID-19 daily occurrences data (confirmed
cases) from the NYTimes GitHub page [33,34].

Statistical Analysis
There are three primary outcomes for our predictive model: (1)
the probability that a county has at least one confirmed case of
COVID-19, which we define as a positive instance; (2) the
number of confirmed COVID-19 cases within a county, which
we define as occurrences; and (3) vulnerability of the county.

Previous studies have shown angiotensin-converting enzyme 2
(ACE2) facilitates infection by COVID-19 [35-37], and that
patients with diabetes, hypertension, and cardiovascular diseases
have an increased expression of ACE2 [35]. County population
factors such as density, age, and sex have a significant impact
on the spread of an epidemic [38]. Cancer and chronic
respiratory diseases have also been shown to increase mortality
risk for COVID-19 [39]. The data set used for our three-stage
model contains correlated variables. For example, diabetes and
hypertension prevalence, cancer crude rate, and older adult
population. Additionally, the underlying relationship between
variables was assumed to be nonlinear.

Precursor to the Prediction Model
Machine learning techniques help us to derive insights and
predict trends using data without the explicit need for
programming. They are mainly divided into two types based
on the explicit availability of outcomes for a given set of
observations: supervised and unsupervised techniques. In
supervised techniques, the outcome or dependent variable is
available for a given set of observations. Supervised techniques
are further divided into regression or classification techniques
depending upon the data type of the outcome variable:
continuous or categorical [40]. In the literature, artificial neural
network–based deep learning and tree-based gradient
tree–boosting techniques have demonstrated better prediction
capabilities in exploring nonlinear relationships among
correlated predictors [41-49].

XGBoost (Extreme Gradient Boosting) [50] is a gradient
tree–based supervised machine learning technique capable of
performing both regression and classification tasks. The
underlying algorithm combines the results from multiple
individual trees with weak predictions (weak learners) to yield
accurate final predictions. During the combining process, the
algorithm prevents overfitting by regularizing objective function.
The performance of this technique depends upon effective tuning
of multiple hyperparameters such as learning rate and maximum
depth with respect to underlying data distribution. These
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hyperparameters can be tuned with the help of random or
exhaustive search as well as by using Bayesian optimization.
The Bayesian optimization method has shown efficiency in
terms of accuracy and time [51].

Developing the Prediction Model
To predict COVID-19 outcomes, we divided the problem into
three stages. In the first stage, we classified each county either
as a positive or negative instance and used the same as a
dependent variable. Hence, we built an XGBoost classifier
model to learn from the data.

In the second stage, to predict number of occurrences (a
continuous variable), we leveraged an XGBoost regression
model that included data only for positive instances with the
number of occurrences as the response.

In the last stage, we combined results from the first two stages
and calculated the expected occurrences for counties as a
measure of county vulnerability. For the calculation of expected
occurrences, we multiplied the probability of a county belonging
to the positive instances derived using the classification model,
with potential occurrences the same county will have if it
becomes a positive instance derived using the regression model.

Evaluating the Prediction Model
The evaluation process is illustrated with an example for the
date March 14, 2020. For this date, modeling data comprised
of COVID-19 cases reported at a county level at the end of
March 14 along with all other variables were obtained from
fusion process.

In the first stage (classification problem), this data was divided
into an 80:20 ratio for training and testing, simultaneously
ensuring equivalent representation of both classes (positive and
negative instance). With this setup and leveraging the HyperOpt
package, multiple hyperparameters of the model were tuned
using area under the receiver operating characteristic curve
(AUC) and accuracy values as the evaluation criteria. The
resultant model was used to compute county-level probability
score.

In the second stage (regression problem), the data set was
filtered to include only positive instance counties as of March
14 with number of occurrences being a dependent variable. Like

the first stage, this data was divided into an 80:20 proportion
for testing and training and hyperparameters were optimized
by leveraging the HyperOpt package. The regression problem
used the root mean squared error (RMSE) value as an evaluation
criterion. The best model was used to calculate the number of
occurrences associated with counties.

In the final stage, the vulnerability of a county was determined
by multiplying the stage one probability score with the stage
two number of occurrences. This calculated value was used to
identify the riskiest and safest counties. The model is serving
as a proxy for estimating after-five-day-vulnerability, the third
stage outcome that was evaluated using actual COVID-19
numbers observed 5 days later, on March 19, 2020. To measure
sensitivity among the top 5% riskiest counties estimated at the
end of the third stage of the model, the number of counties that
were observed to be positive as of March 19 were identified
(Multimedia Appendix 1). The corresponding fraction was
defined as sensitivity. Similarly, the specificity among the top
10% least vulnerable counties was estimated by the third stage
of the model (Multimedia Appendix 2). The number of counties
that continued to be observed as a negative instance were
identified and the corresponding fraction was reported as
specificity. The third stage model was assessed for both
sensitivity and specificity.

Finally, the consistency of the three-stage modeling process
was verified by repeating this process daily from March 14 to
March 26 and assessing the same from March 19 to March 31.

Results

The variable importance of the overlapping predictors between
the final classification and regression models for March 16 is
shown in Figure 1. Total population (TOT_POP) was the most
important variable for both the classification and regression
models. Other important variables included population density,
longitude, hypertension prevalence, chronic respiratory mortality
rate, cancer crude rate, and diabetes prevalence. Latitude (we
use this to identify neighboring counties and the presence or
absence of positive cases in the neighborhood) and the
percentage of the population aged >70 years were found to be
the least important features of those considered, though they
still played a role.
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Figure 1. Variable importance for the classification and regression models.

Figure 2 shows a map of the United States with the predicted
probability of a given county being a positive instance visualized
as a color gradient. Within the software, county-level statistics

can be viewed by moving the cursor over the county of interest.
The example of New York County as of March 14 is shown in
the Figure 2.

Figure 2. Predicted probability of there being a positive instance for each county in the United States.

Accuracy and AUC for the first-stage model is shown in Table
1. Predictions of the model for all US counties are consistent
over 18 days with little variation in AUC and accuracy values.

Similarly, RMSE for the second-stage model for all US counties
is presented in Multimedia Appendix 3. The results for first two
stages of the model were evaluated until March 31.
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Table 1. XGBoost classification training and testing details.

Number of daysStandard deviation, %Maximum value, %Minimum value, %Mean value, %Data set and evaluation metrics

Test

185927783Accuracy

183837178Area under the curve

Train

1851008294Accuracy

1861008091Area under the curve

The sensitivities and specificities for the vulnerability
predictions for the three-stage model trained on data from March
14 to March 26 are shown in Tables 2 and 3. The values are
given for each day. The sensitivity (Table 2) is given by the
percentage of counties that had no confirmed cases but were

identified as being among the 5% most vulnerable and had at
least one confirmed COVID-19 case 5 days later. The specificity
(Table 3) is given by the percentage of counties identified as
being among the 10% least vulnerable with no confirmed cases
that still had no confirmed cases 5 days later.

Table 2. Sensitivity of the three-stage model.

Sensitivity, %Number of counties that reported cases after 5 daysNumber of 5% most vulnerable counties identified on
a given date (with 0 confirmed cases)

Date

66.30619214/3/2020

75.639011915/3/2020

65.569915116/3/2020

72.3614419917/3/2020

76.3911014418/3/2020

65.3411517619/3/2020

73.7414619820/3/2020

75.3012516621/3/2020

75.9512015822/3/2020

78.57668423/3/2020

73.03658924/3/2020

61.9020833625/3/2020

69.237210426/3/2020
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Table 3. Specificity of the three-stage model.

Specificity, %Number of counties with 0 cases after 5 daysNumber of top 10% least vulnerable counties identified
on a given date (0 confirmed cases)

Date

99.2827427614/3/2020

97.8727628215/3/2020

95.65444616/3/2020

97.1230431317/3/2020

94.6128129718/3/2020

92.5219821419/3/2020

90.1726629520/3/2020

93.2729131221/3/2020

93.33141522/3/2020

93.2328931023/3/2020

89.1127030324/3/2020

92.0619721425/3/2020

94.3721823126/3/2020

The data set is comprised of 37% urban and 63% rural counties
based on the urban and rural county definition for 2013 [52].
To determine if there is an association between urbanicity and
vulnerability, we performed a set of one-sided t tests. The null
hypothesis that the 10% least vulnerable counties would have
the same proportion of rural counties as the actual proportion
of rural counties in the data set was rejected for every day from
March 14 to 26. Additionally, the null hypothesis that the actual
positive instances counties would have the same proportion of
urban counties as the actual proportion of urban counties in the
data set was also rejected for every day over the analysis period.
It can therefore be concluded that there is a positive association
between urban and the most vulnerable counties as well as rural
and the least vulnerable counties. The continuous decreasing
trend in the confidence interval of the urban counties proportion
estimate within actual positive-instance counties can be used
to infer that COVID-19 is propagating from urban counties to
rural counties.

Discussion

Principal Findings
We developed a three-stage machine learning model using
publicly available data to predict the 5-day vulnerability of a
given US county. The model estimates the likelihood and impact
that a county with no documented COVID-19 cases will have
within a 5-day period and a vulnerability prediction for a county
is made using those estimates. Using data from March 14 to 31,
2020, the model showed a sensitivity over 71.5% and specificity
over 94%. We found a positive association between affected
counties and urban counties as well as top 10% least vulnerable
counties and rural counties. Further, counties with higher
population density, a greater percentage of people aged >70
years, as well as higher diabetes, cardiac illness, and respiratory
diseases prevalence are more vulnerable to COVID-19 than
their counterparts.

Our model serves multiple purposes. First, it can help in
identifying potentially vulnerable counties. This prediction
would be a vital component in managing COVID-19 spread by
providing vulnerability information based on the likelihood and
magnitude of change within 5 days. That can help health
organizations to effectively plan the management of hospital
resources and the workforce, rapid response teams, COVID-19
testing kits, and COVID-19 testing locations. In addition, there
are multiple counties with limited testing facilities, and with
current swab-based testing, it takes multiple days to get the
results. Thus, occurrences associated with each county fluctuate
rapidly daily.

Limitations
There are multiple limitations to our work. First, there are
several predictors that we did not include in the model that have
known associations with COVID-19. However, one of our goals
was to make sure that any organization could use our model by
only including data that is publicly available. Second, our
analysis (Multimedia Appendix 4) found that there is an
increasing trend for the coefficient of variation (CV) for
occurrences associated with positive-instance counties. Note
that CV is a proxy for economic inequality [53-56]. Hence,
there is a bias in the response variable, which can reduce the
accuracy of the prediction. As testing facilities improve in terms
of numbers and efficiency, this bias would be minimized and
would be reflected in the model. Given this point, it would
useful to look at the riskiest and safest counties predicted by
the three-stage model and examine the data for potential
discrepancies. Finally, additional feature engineering and
stacking methods can be used to enhance the prediction
capabilities of existing models.

Our work uses open source programming and publicly available
data. The full data set, sample modeling, and result outputs are
available, with instructions for use [57].
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Commentary on Present Models
Presently, multiple research groups are providing COVID-19
projections on death and hospitalization case numbers. In the
United States, the CDC website maintains a list of
projection-providing research groups. These projections are
available along with an ensemble projection. As COVID-19
approached a flattened curve stage, states deployed varied levels
of easing of restrictions. Thus, these restrictions are expected
to alter the presently observed dynamics of disease spread.
Hence, they play an important factor in projections. To account
for the same, some of these models assume stationary parameters
during the projection period, while others assume some form
of dynamic nature [58]. These projections are provided at
different levels: country level [59], states level [60],
metropolitan area level [61], and at the county level [62,63].
These projections are developed using variants of SEIR models
[63], deep learning models [64], agent-based models [65],
variants of mechanistic disease transmission models [66],
renewal equations-based models [67], and statistical models
[62]. In all these models, Columbia University’s
Meta-Population SEIR Model [63] and the University of Iowa's
[62] nonparametric spatial-temporal model provide projections

at a county level. Columbia University’s initial model leveraged
US Census county-level daily commute data during daytime
and nighttime to account for the movement of the disease.
However, this model does not account for county-level
population heterogeneity. The University of Iowa's approach
was developed using a combination of statistical and
mathematical modeling techniques with an assumption of
parameter-agnostic exponential family–based conditional
distribution of COVID-19 cases and deaths. This model
leverages county-level data on intervention policies,
demographic characteristics, health care infrastructure,
socioeconomic factors, urban rate, and geographical information.
However, their model does not account for county-level
prevalence of comorbidities. Finally, The University of Texas
at Austin [61] model provides projections at the metropolitan
area level using mobile-based data. With the better availability
of data and information about COVID-19, current models can
forecast projections for a longer period with better accuracy
than our model. However, our model still presents a unique
assumption-free county-level modeling approach accounting
for heterogeneity using demographic, health, and geographical
features.
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