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Abstract

Background: Throughout March 2020, leaders in countries across the world were making crucial decisions about how and
when to implement public health interventions to combat the coronavirus disease (COVID-19). They urgently needed tools to
help them to explore what will work best in their specific circumstances of epidemic size and spread, and feasible intervention
scenarios.

Objective: We sought to rapidly develop a flexible, freely available simulation model for use by modelers and researchers to
allow investigation of how various public health interventions implemented at various time points might change the shape of the
COVID-19 epidemic curve.

Methods: “COVOID” (COVID-19 Open-Source Infection Dynamics) is a stochastic individual contact model (ICM), which
extends the ICMs provided by the open-source EpiModel package for the R statistical computing environment. To demonstrate
its use and inform urgent decisions on March 30, 2020, we modeled similar intervention scenarios to those reported by other
investigators using various model types, as well as novel scenarios. The scenarios involved isolation of cases, moderate social
distancing, and stricter population “lockdowns” enacted over varying time periods in a hypothetical population of 100,000 people.
On April 30, 2020, we simulated the epidemic curve for the three contiguous local areas (population 287,344) in eastern Sydney,
Australia that recorded 5.3% of Australian cases of COVID-19 through to April 30, 2020, under five different intervention
scenarios and compared the modeled predictions with the observed epidemic curve for these areas.

Results: COVOID allocates each member of a population to one of seven compartments. The number of times individuals in
the various compartments interact with each other and their probability of transmitting infection at each interaction can be varied
to simulate the effects of interventions. Using COVOID on March 30, 2020, we were able to replicate the epidemic response
patterns to specific social distancing intervention scenarios reported by others. The simulated curve for three local areas of Sydney
from March 1 to April 30, 2020, was similar to the observed epidemic curve in terms of peak numbers of cases, total numbers of
cases, and duration under a scenario representing the public health measures that were actually enacted, including case isolation
and ramp-up of testing and social distancing measures.

Conclusions: COVOID allows rapid modeling of many potential intervention scenarios, can be tailored to diverse settings, and
requires only standard computing infrastructure. It replicates the epidemic curves produced by other models that require highly
detailed population-level data, and its predicted epidemic curve, using parameters simulating the public health measures that were
enacted, was similar in form to that actually observed in Sydney, Australia. Our team and collaborators are currently developing
an extended open-source COVOID package comprising of a suite of tools to explore intervention scenarios using several categories
of models.
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Introduction

March 2020 was a critical time in the global coronavirus disease
(COVID-19) pandemic, when political leaders and policy
makers were making crucial decisions that would shape the
lives and futures of people and communities. “Flattening the
curve” had become a rallying cry in the fight against COVID-19,
popularized by media outlets and leaders worldwide. However,
the ubiquitous COVID-19 “flattening the curve” infographic
[1] can be traced back to a purely conceptual diagram in a 2007
US Centers for Disease Control and Prevention report
recommending strategies for pandemic influenza mitigation [2].
It was essential that political leaders and their advisers had ready
access to more sophisticated mathematical and computational
tools to allow them to explore quickly and iteratively how
implementing various public health interventions would
potentially change the shape of the COVID-19 epidemic curve
in their settings.

Stochastic individual contact models (ICMs), also known as
individual-based or agent-based models, are increasingly used
for epidemic simulation modeling. These models represent
individual units in the population and the contacts between them
as discrete events and capture the stochasticity seen in real-world
disease outbreaks. Compared with more traditional deterministic
compartmental models (DCMs), which are based on systems
of differential equations for the movement of the population
through discrete states at specified rates, they may produce more
realistic results, especially in situations where microepidemics
emerge at city and community levels [3].

On March 30, 2020, ICMs for COVID-19 had recently been
reported for the United Kingdom, the United States [4], and
Australia [5], adapted from existing models for pandemic
influenza. These use whole-of-population census data and model
contacts between individuals in the population within
households, schools, workplaces, and in the wider community.
The UK model appears to have been influential in driving a
turnaround in the COVID-19 response strategy in that nation
[6]. The Australian model highlighted the potential for the virus
to spread virtually unchecked unless there were high levels of
compliance with social distancing measures [7].

Given the enormous consequences of decisions about public
health interventions that were being made at that time, it was
highly desirable to independently assess the robustness of these
(not yet peer reviewed) ICMs. However, the software code for
these models has not been made publicly available, limiting

scrutiny of their underlying structure and making it impossible
to exactly replicate their findings or test sensitivity to alternative
assumptions.

Furthermore, the ICMs reported on March 30, 2020, reflected
the circumstances of high-income western nations. Their
findings may not be applicable in countries and communities
that have substantially different demography, social network
structures, education and health systems, workplaces, and
community resources. Replicating them rapidly in other settings
is challenging because they require the ready availability of
detailed population-level data. Furthermore, running them
requires access to high-performance computing, which is not
feasible in many settings.

Our objective is to develop a flexible, freely available
COVID-19 ICM simulation model for use by modelers and
researchers that can be tailored to diverse settings and run using
standard desktop or laptop computing hardware. Importantly,
given the quickly evolving situation worldwide, we sought to
build a model that permitted highly flexible definitions of
intervention strategies that more closely reflect the real world,
in which epidemic control measures tend to take time to
implement, often less completely than hoped, and that cannot
be and are not sustained indefinitely.

Methods

Model Building
“COVOID” (COVID-19 Open-Source Infection Dynamics) is
a stochastic ICM that we constructed by extending the
peer-reviewed [8] open-source EpiModel package [9] for the
widely-used, open-source R statistical computing environment
(R Foundation for Statistical Computing) [10]. Our model
extensions allocate each member of a hypothetical population
to one of seven compartments (Figure 1). We have replaced the
traditional E (exposed) compartment as used in
susceptible-exposed-infectious-recovered (SEIR) models, with
an A (infected and asymptomatic) compartment, representing
infected, asymptomatic individuals who are nonetheless
potentially infectious. Additional compartments, representing
symptomatic or individuals who have tested positive in
self-isolation (isolated [Q]) and an infected individual that
requires hospitalization (H) were also added, as well as a
compartment for deaths due to COVID-19 (F) as distinct from
deaths due to other causes, which together with emigration are
handled by a separate demographic removal process.
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Figure 1. Structure of the COVID-19 Open-source Infection Dynamics stochastic individual contact model. The dashed arrows represent interpersonal
interactions through which transmission of infection may occur. The solid arrows indicate possible transitions between compartments. COVID-19:
coronavirus disease.

At each 1-day time step of the simulation, individuals randomly
encounter and are exposed to other individuals in the population.
The intensity of this population mixing is controlled by an act
rate parameter specific to each of the infectious compartments
(A, infected and infectious [I], and Q), with each “act”
representing an opportunity for disease transmission or at least
those “acts” between susceptible individuals and infectious
individuals. Recovered individuals are no longer infectious and
are assumed to be immune from further reinfection; thus, their
interactions do not result in infections, nor do interactions
between pairs of susceptible individuals nor pairs of infectious
individuals; only the interactions between susceptible and
infectious individuals may give rise to new infections. However,
not every such opportunity for disease transmission will result
in actual disease transmission. The probability of transmission
at each interaction is controlled by an infection probability
parameter, also specific to each of the infectious compartments
(A, I, and Q).

Thus, the interventions are simulated by varying the act
rate parameter (equivalent to social distancing in the population)
and the infection probability parameter (equivalent to increased
practice of hygiene measures such as hand washing, use of hand
sanitizers, not touching one’s face, and mask wearing by the
infectious). The act rate and infection probability for the isolated
compartment (Q) are set to lower levels than for the
asymptomatic infected and infectious (A) and symptomatic or
test-positive infected and infectious (I) compartments. Other
parameters can also be changed, as a function of time (so they
can be ramped up and ramped down or pulsed, as required) to
simulate public health interventions, such as changes to the rate
at which individuals in the symptomatic or test-positive I
compartment enter the isolation Q compartment.

Intervention Scenarios Modeled for March 30, 2020
We used COVOID to model intervention scenarios in a
hypothetical population of 100,000 people. A baseline case
assuming no interventions were established using parameters
based on values in the literature. Interventions were then
simulated by varying the number of times individuals in the
various compartments interact with each other (the act rate for
each of the infectious compartments A, I, and Q).

The baseline case assumes 3 symptomatic infected individuals
(compartment I) at day 1, plus 4 asymptomatic but infected
individuals (compartment A). The initial value for the I
compartment was chosen heuristically, and we assumed that
60% of infected individuals were asymptomatic based on the
findings in Japanese citizens repatriated from Wuhan, as
reported by Mizumoto et al [11], which were the best estimates
available at the time. Other parameters were based on those
used by Constantino, Heslop, and Macintyre [12], which were
in turn based on the best estimates available in the preprint
literature at the time. We specified an average of 8.5
interpersonal interactions per day, 5% probability of infection
following interactions with symptomatic infectious individuals
(I compartment), 2% probability of infection following
interactions with asymptomatic infectious individuals (A
compartment), and just 3% of symptomatic individuals (I
compartment) self-isolate on each day of illness, with
subsequently 2.5 personal interactions per day while in
self-isolation. Hospital capacity is set at 1148 beds,
approximating the Australian average of 3.8 beds per 1000
population [13], and the rate of fatalities in those requiring
hospitalization (H compartment) is doubled for the prevalent
cases above this capacity limit who require hospitalization.

The parameters for both the initial and subsequent baseline
models are shown in Table 1.
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Table 1. Parameters used for baseline models.

RationaleDescriptionValueParameter

Beginning of sustained community transmis-

sion in NSWa, Australia

Day 1 of simulationMarch 1, 2020Start date

Hypothetical population used for initial
March 30, 2020 models

Susceptible population at day 1100,000Initial Sb compartment
(March 30 models), n

Population of Waverley, Woolahra, and
Randwick local government areas in eastern
Sydney [14]

Susceptible population at day 1287,337Initial S compartment (April
30 models), n

Assuming 60% of infected persons are
asymptomatic based on Mizumoto et al [11]

Infected but asymptomatic persons at day
1

4Initial Ac compartment, n

Number of detected cases in modeled popu-
lation in 3 weeks prior to start date

Infected but symptomatic or persons who
are test-positive at day 1

3Initial Id compartment, n

Assumed empty at startOther compartments at day 10Qe, Rf, Hg, and Fh compart-
ments, n

Based on average daily contact rates given
in Table 1 of Eames et al

Number of social contacts with potential
for infection per day per individual

8.5Act rate (social contact rate)
per day for A and I compart-
ments, n

Adapted from reduction in transmission for
those in isolation or quarantine used by
Constantino et al [12]

As above1.5Act rate (social contact rate)
per day for Q compartment,
n

No published values for COVID-19i found
in literature, heuristic values based on dis-
cussions with subject matter experts

Probability of transmitting infection at each
encounter as defined by act rate

0.05 for I compartment, 0.02
for A and Q compartments

Infection probability, n

No values found in literature, heuristic value
based on discussions with subject matter
experts

Proportion of symptomatic people putting
themselves into self-isolation per day of
symptoms, in absence of public health infor-
mation encouraging then to do so

0.033Isolation rate per day, n

Adapted from values used by Constantino
et al [12]

Distribution of time in A compartment,
equivalent to the incubation time

Discrete Weibull distribu-
tion, mean 5, shape 1.5

Progression rate

Adapted from values used by Constantino
et al [12]

Crude (non–age-specific) proportion of
people in I compartment that require hospi-
talization per day in compartment

0.01Hospitalization rate per day,
n

Reciprocal of mean length of stay, based on
values used by Constantino et al [12]

Proportion of persons in H compartment
who are discharged from needing hospital
care each day

0.05Discharge rate per day, n

Based on value used by Constantino et al
[12]

Proportion recovering each day, based on
reciprocal of mean duration of illness of 20
days

0.05Recovery rate per day, n

Based on mean death rates used by Con-
stantino et al [12]

Proportion of persons in H compartment if
number is less than or equal to hospital ca-
pacity who die each day

0.02Fatality base rate per day,
n

Heuristic value, no relevant COVID-19 data
relating to this found in literature

Proportion of persons in H compartment in
excess of hospital capacity who die each
day

0.04Fatality above capacity
rate per day, n

aNSW: New South Wales.
bS: susceptible.
cA: infected and asymptomatic.
dI: infected and infectious.
eQ: isolated.
fR: recovered.
gH: requires hospitalization.
hF: deaths due to COVID-19.
iCOVID-19: coronavirus disease.
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Chang et al [5] used a highly detailed agent-based model for
the entire Australian population, originally developed to
investigate influenza transmission, to investigate the effect of
90-day periods of reduced social mixing (social distancing) in
which 90%, 80%, and 70% of the population were assumed to
be instantaneously compliant, compared to their baseline model.

Using the baseline parameters shown in Table 1, we investigated
the same intervention scenarios, as well as 60% and 50%

compliance levels, by using weighted means of compliant and
noncompliant act rate parameters. The scenarios are listed in
Table 2. Because we were simulating in a hypothetical
population of only 100,000, resulting in faster spread than would
occur in the full Australian population of 25 million, we initiated
the social distancing interventions at 15 days, rather than at 45
days as done by Chang et al [5].

Table 2. Scenarios modeled for March 30, 2020.

DescriptionScenario

Starting at day 15 (March 15, 2020), instantaneous imposition of 90% social distancing for 90 days, then instantaneous reversion to
baseline social contact rate

Scenario 01

Starting at day 15 (March 15, 2020), instantaneous imposition of 80% social distancing for 90 days, then instantaneous reversion to
baseline social contact rate

Scenario 02

Starting at day 15 (March 15, 2020), instantaneous imposition of 70% social distancing for 90 days, then instantaneous reversion to
baseline social contact rate

Scenario 03

Starting at day 15 (March 15, 2020), instantaneous imposition of 60% social distancing for 90 days, then instantaneous reversion to
baseline social contact rate

Scenario 04

Starting at day 15 (March 15, 2020), instantaneous imposition of 50% social distancing for 90 days, then instantaneous reversion to
baseline social contact rate

Scenario 05

Comparison of Modeled vs Observed Epidemic Curves
in Sydney, Australia for April 30, 2020
The first cases of COVID-19 were reported in Australia on
January 24, 2020. The island of Australia has a vast geography
and sparse population, and has limited border entry points. The
city of Sydney, capital of the state of New South Wales (NSW),
is the major entry point for international travelers. As of April
30, 2020, 358 out of 6746 (5.3%) of Australia’s recorded locally
acquired cases of COVID-19 were among residents of three
contiguous local government areas of Sydney: Randwick,
Waverley, and Woollahra, with a combined population of
287,344 [14]. As of April 30, 55% of cases in Woollahra,

Waverley, and Randwick were locally acquired [14], and they
were among 13 “high risk” local government areas in NSW
where immediate testing of all symptomatic people was
encouraged from April 6, 2020. To compare scenarios modeled
using COVOID with observed Australian data from the
COVID-19 epidemic, we ran simulations for incident cases in
the combined population of these three local areas, where it
could be assumed that the population had ample opportunities
for mixing and exposure to the virus.

A staged series of public health measures were enacted in
Australia from February 1, 2020, summarized as they applied
in the state of NSW in Table 3.

Table 3. Coronavirus disease public health measures enacted in the state of New South Wales, Australia, February 1 to April 30, 2020.

Public health measures enactedDate (2020)

Borders closed to all nonresidents and non-Australian citizens who had left or transited through Mainland ChinaFebruary 1

Outdoor events with more than 500 attendees bannedMarch 16

Self-isolation (14 days) for overseas travelersMarch 17

Borders closed to all nonresidents and non-Australian citizensMarch 20

Social distancing rule of 4 square meters per person in any enclosed spaceMarch 21

Pubs, clubs, gyms, indoor sporting venues, entertainment venues closed, and food outlets restricted to takeaway or deliveryMarch 23

Closures extended to include places such as personal services, arcades, brothels, galleries, museums, swimming pools, community
facilities, libraries, gambling venues, and markets

March 26

Public gatherings limited to two people; people only to leave their houses for: shopping for essentials, medical or compassionate needs,
exercise in compliance with the public gathering restriction, or work or education purposes.

March 29

Mandatory isolation in hotels for travelersMarch 30

Gradual easing of restrictions commencesApril 28

To compare our simulations with observed incidence data, we
chose a starting date for our simulations of March 1, 2020, 15
days prior to the gradual ramp-up of social distancing measures

in NSW. At that date, 3 cases had been recorded in the three
eastern Sydney local government areas used for our model;
thus, we initialized the model with 3 persons in the I
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compartment. As previously noted, we assumed approximately
60% of infections were asymptomatic and thus also initialized
the model with 4 persons in the A compartment. Other
parameters were also as per the baseline model previously
described.

Using this baseline model for eastern Sydney, we then modeled
several scenarios to explore the effect of various intervention
strategies on the fit of our baseline model to the observed data.
The scenarios are described in Table 4. In particular, scenarios
08 and 10 were intended to mimic the actual interventions that
had occurred in Sydney on April 30, 2020.

Table 4. Scenarios modeled for April 30, 2020.

DescriptionScenario

Starting at day 1 (March 1, 2020), linear ramp up of self-isolation rate (per day) from 3.3% to 33% over a 15-day period, then hold at
33% indefinitely

Scenario 06

Isolation rates per scenario 06, plus a moderate increase in social distancing to 50% starting at day 15 (March 15, 2020) by linearly
ramping the act rate per day down from 8.5 to 4.75 over a 15-day period (through to March 30, 2020), then maintaining social distancing
at 50% (act rate=4.65) for a further 45 days, then reverting immediately to no social distancing (act rate=8.5 per day)

Scenario 07

Isolation rates as per scenario 06, plus a substantial increase in social distancing to 80% starting at day 15 (March 15, 2020) by linearly
ramping the act rate per day down from 8.5 to 2.5 over a 15-day period (through to March 30, 2020), then maintaining social distancing
at 80% (act rate=2.5) for a further 30 days, then reverting immediately to 50% social distancing (act rate=4.75 per day) on an ongoing
basis

Scenario 08

Isolation rates as per scenario 06 plus a substantial increase in social distancing to 80% starting at day 15 (March 15, 2020) by linearly
ramping the act rate per day down from 8.5 to 2.5 over a 15-day period (through to March 30, 2020), then maintaining social distancing
at 80% (act rate=2.5) for a further 30 days, then slowly reverting to no social distancing (act rate=8.5 per day) over the subsequent
90-day period

Scenario 09

As per scenario 09 but, immediately following the full “lockdown” period between March 30 and April 30, 2020, there is a linear increase
of the isolation rate (per day) from 33% to 66% over a 30-day period through to May 28, 2020, with subsequent maintenance of self-
isolation with high compliance (66% per day) on an ongoing basis.

Scenario 10

We compared the epidemic curves simulated by COVOID with
reported data for locally acquired new cases for Randwick,
Waverley, and Woollahra for the period March 1, 2020, to April
30, 2020 [15], by examining modeled and observed daily peak
and total numbers of incident cases.

Software and Code
COVOID is implemented on top of EpiModel v1.8 [9] running
on R version 3.6.1 [10]. The COVOID model is described in
more detail in the technical blog of the first author [16], and all
the code used for the simulations reported in this paper is
available at [17] and [18].

Results

Computing Resources
The twelve simulations reported in this paper were each run
eight times and the results averaged, taking approximately 60
minutes to complete when running in parallel on an eight-core
Intel central processing unit (CPU). The same set of simulations
for a population of 1,000,000 were also run successfully on the
same hardware, taking approximately 3 hours and using less
than 16GB of RAM, suggesting that run times scale as a
low-order power of the population size. Running on 1, 2, 4, or

8 CPU cores resulted in near-linear reductions in total run times,
which was expected given that each simulation run is
independent. Scaling to use more CPU cores is automatic, and
near real time response would be possible on suitably sized
cloud computing infrastructure, if required.

Baseline Model
The results of the baseline model simulated for a hypothetical
population of 100,000 people, without any public health
interventions, is shown in Figure 2. Unsurprisingly, nearly 90%
of the population are infected within 2 months, with several
thousand projected deaths due to COVID-19 infection. These
projections are unrealistic because a complete lack of public
health intervention (or equivalent spontaneous behavior
modification in the population) has not occurred anywhere, but
they serve to show that the baseline model produces the expected
results.

An important but rarely reported aspect of simulation models
is the distribution of (simulated) persons in each compartment
of the model. This provides additional assurance that flows
between compartments reflect known or expected distributions
of real-life times in various disease states corresponding to the
compartments. The distribution of durations in key model
compartments for the baseline model are shown in Figure 3.
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Figure 2. Baseline simulation with hypothetical 100,000 population. COVID-19: coronavirus disease.

Figure 3. Distributions of time in each compartment in the baseline model. hosp: hospital.
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Social Distancing Scenarios With Varying Compliance
Modeled for March 30, 2020
The results of COVOID modeling of 90-day periods of social
distancing with instantaneous effect and varying levels of
compliance, based on interventions modelled by Chang et al
[5], are shown in Figure 4. Social distancing with at least 80%
compliance completely suppresses the epidemic for the duration

of the intervention, while compliance of 70% still substantially
reduces cases and deaths. In each of these scenarios, cases
rebound dramatically once social distancing is relaxed,
demonstrating that ongoing control measures will be required.
These findings are similar overall to those reported by Chang et
al [5], noting the differences in time frames due to the different
population sizes being modeled.

Figure 4. Social distancing scenarios with varying compliance modeled on March 30, 2020. COVID-19: coronavirus disease.

We modeled two additional scenarios of 60% and 50%
compliance with social distancing and found that, although these
flatten the epidemic curve compared to the baseline scenario,
transmission is not halted, and substantial numbers of cases and
deaths occur during the intervention period. In the 50%
compliance scenario, hospital capacity is overwhelmed during
the intervention period. However, sufficient herd immunity is
attained in the 50% social distancing scenario to prevent any
second wave of infection after social distancing is relaxed at

the expense of considerable morbidity and mortality, and an
overwhelmed hospital system while social distancing is in place.

Comparison of Modeled Interventions vs Observed
Epidemic Curves in Sydney, Australia for April 30,
2020
The results of COVOID modeling of the eastern Sydney
population, using the same parameters as the baseline model
previously shown, are displayed in Figure 5. Unsurprisingly,
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hospital capacity is quickly exceeded, resulting in a large
number of deaths as people die without receiving adequate
medical care. However, as can be seen in the left panel of Figure
5, in retrospect, this scenario is also completely unrealistic. The
results using various scenarios that approximate public health
interventions as they occurred in NSW, Australia during March
and April 2020 are shown in Figures 6 and 7. The actual,
observed incidence of confirmed COVID-19 infections in the
same eastern Sydney population is similarly shown in the left
two columns in those figures. Under all scenarios, compared to
the baseline simulation, the COVID-19 epidemic curve is
substantially flattened and “shrunk” due to case-based
interventions, specifically isolation and self-isolation of all
symptomatic or test-positive cases with moderate alacrity (33%
of cases entering isolation each day post–symptom onset or test
result). Under none of the modeled intervention scenarios does
the number of cases requiring hospitalization overwhelm
assumed hospital capacity, but a significant number of deaths
nevertheless occur in several of the scenarios.

Scenario 06 demonstrates that moderate compliance with
self-isolation, with no increase in social distancing, substantially
dampens the epidemic and reduces deaths by 50%. Scenario
07, which adds 1 month of moderate social distancing (at
considerable social and economic cost), shows that the epidemic

is merely delayed by the social distancing, and the final result
is almost identical to the case where no social distancing was
attempted.

Scenario 08, in which substantial social distancing, effectively
“lockdown” (80% reduction in average contacts), is
implemented for 1 month, followed by a relaxation of social
distancing to approximately 50% of baseline levels results in
only a small initial epidemic, which closely resembles the
observed data in both magnitude and duration, with ongoing
suppression, but not complete elimination, of cases following
the relaxation of the lockdown period.

Scenario 09, which is the same as scenario 08 except that social
distancing slowly relaxes all the way back to baseline levels,
results in a “second wave,” which is much better than the first,
but still only one-tenth the size of the no-intervention model
epidemic.

Scenario 10 is the same as scenario 09 except that the isolation
rate is increased postlockdown to double the level in the other
scenarios. This simulates very high testing rates and very
efficient case-based interventions. The result is almost complete
suppression of any second or subsequent waves, despite social
distancing slowly being relaxed to baseline levels.

Figure 5. Eastern Sydney baseline simulation, no interventions. COVID-19: coronavirus disease.
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Figure 6. Comparison of modeled vs observed epidemic curves in Sydney, Australia on April 30, 2020. COVID-19: coronavirus disease.
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Figure 7. Details for scenarios 08 and 10.

Supplementary Files
The outputs of all the simulations reported here are provided in
Multimedia Appendix 1 and 2 in CSV (comma-separated values)
format.

Discussion

Principal Results
COVOID allocates each member of its hypothetical population
to one of seven compartments. The number of times individuals
in the various compartments interact with each other and their
probability of transmitting infection at each interaction can be
varied to simulate the effects of interventions.

Using COVOID for March 30, 2020, we were able to replicate
the epidemic response patterns to specific social distancing
intervention scenarios reported by other investigators at that

time and to further investigate emergence of herd immunity
effects with even lower levels of social distancing. Importantly,
we confirmed “second wave” rebound behaviors of the epidemic
after the higher levels of social distancing were relaxed, a
phenomenon that was not remarked upon in the study that
motivated the COVOID model [5].

Using COVOID on April 30, 2020, the simulated incidence for
three local areas of Sydney from March 1 to April 30, 2020,
was similar to the actual, observed epidemic curve in two of
the intervention scenarios that were modeled. These two
scenarios (08 and 10) are also arguably closest to the
interventions that took place in Sydney during the months of
March and April 2020. At the time of writing (early May 2020),
these two scenarios also point to possible postlockdown “exit
strategy” futures in which social distancing is gradually relaxed
over several months, either to intermediate levels compared to
pre–COVID-19, or completely but, in the latter case, allied with

JMIR Public Health Surveill 2020 | vol. 6 | iss. 3 | e18965 | p. 11https://publichealth.jmir.org/2020/3/e18965
(page number not for citation purposes)

Churches & JormJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


greater expanded testing to detect cases as early as possible,
and extremely efficient and swift isolation of cases and
associated contact tracing and quarantining. At this stage, both
Australian and NSW governments appear to be contemplating
a path similar to scenario 10 and have invested heavily in both
testing capacity and case-based intervention capacity, including
deployment of a smartphone contact tracing “app” nationwide
[19].

Limitations
COVOID was developed quickly in a rapidly evolving
environment in terms of our understanding of the infection
dynamics of COVID-19, and thus, several key parameters had
to be informed by expert opinion from colleagues and other
heuristics. In addition, we could not test the effects of closures
of schools or universities because COVOID is a global mixing
model that does not reflect mixing in specific settings such as
schools or workplaces.

The absence of age-specific parameters is another key limitation
of the current model; although, in the absence of detailed data
on age differences in COVID-19 disease progression, with the
exception of death rates, the added complication of
age-specificity may not add much. Future versions of COVOID,
which will leverage the POLYMOD age-specific contact
matrices [20], will use age as an attribute of each person in the
simulation.

Agent-based models are notoriously computationally intensive,
and the COVOID model is no exception, although it does take
advantage of parallel computation available on almost all
computers these days. However, computational burden means
that it is impractical to simulate very large populations; although,
the model was successfully trialed with populations of 1 million.
Further work is underway to improve the processing efficiency
by rewriting critical sections of the R code as C++.

It is beyond the scope of this paper to undertake a
comprehensive comparison of agent-based computational
models with the more commonly used continuous- or
discrete-time mathematical models implemented as systems of
ordinary differential equations (ODE). However, it is well
recognized that the systems of equations needed by
mathematical models that seek to simulate different, potentially
conditional or contingent, behaviors in subgroups can quickly
become unwieldy and difficult to define. Adding stochastic
behavior, which may be particularly important for modeling
“exit strategies” where small numbers of incident cases may
(or may not) establish new transmission chains, is an additional
task with ODE models, whereas it is intrinsic in most
computational models.

Due to time constraints in the rapidly evolving situation in
March 2020, the initial COVOID model was released as a set
of R scripts rather than as a software package with detailed
documentation or simple user interface, and hence, its potential

user base was limited to modelers and researchers with relevant
technical expertise. Our team and collaborators are currently
developing an extended open-source COVOID package for R
comprising of a suite of tools to explore intervention scenarios
using several categories of models.

Comparison With Prior Work
In our initial simulations for March 30, 2020, we explicitly
sought to test the simulations produced by COVOID with those
reported by Chang et al [5] based on a highly detailed
agent-based models for the entire Australian population. Our
findings regarding social distancing interventions with varying
degrees of compliance are very similar to theirs [5] and broadly
consistent with those for social distancing interventions
produced by the UK Imperial College agent-based model [4].
Importantly, COVOID and the other agent-based models all
highlight the potential for resurgence of cases once social
distancing measures are relaxed. This indicates that these
measures may “buy time” in which to put in place
comprehensive measures for testing, case finding, isolation, and
quarantine, rather than being sufficient in themselves to halt the
epidemic.

It is encouraging that results produced by COVOID are similar
to those so far reported from the more complex agent-based
models that require highly detailed population data and
high-performance computing.

As of April 30, 2020, we could locate only one other study that
compared modeled predictions with observed data for
COVID-19 incidence for a specific population. Turk et al
[21] compared the DCM susceptible-infected-removed model
predictions to observed prevalence data for North Carolina and
the United States, and used EpiModel to simulate interventions
by altering the probability of infection. They reported that a
model incorporating parameters that simulated a stay-at-home
intervention increasingly produced a better fit to the observed
data as the epidemic progressed and emphasized the value of
flexible, continuously iterated models for informing local
responses.

Conclusions
COVOID allows rapid modeling of many potential intervention
scenarios, can be tailored to diverse settings, and requires only
standard computing infrastructure. It replicates the epidemic
response patterns produced by other models that require highly
detailed population-level data, and its predicted epidemic curve
was similar in form to that observed in Sydney, Australia. In
answer to the call for transparency and reproducibility in
COVID-19 models [22], it is freely available as a tool to support
public health decision makers in the current COVID-19 crisis.
Our team and collaborators are currently developing an extended
open-source COVOID package comprising of a suite of tools
to explore intervention scenarios using several categories of
models.
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