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Abstract

Background: The coronavirus disease (COVID-19) began to spread in mid-December 2019 from Wuhan, China, to most
provinces in China and over 200 other countries through an active travel network. Limited by the ability of the country or city to
perform tests, the officially reported number of confirmed cases is expected to be much smaller than the true number of infected
cases.

Objective: This study aims to develop a new susceptible-exposed-infected-confirmed-removed (SEICR) model for predicting
the spreading progression of COVID-19 with consideration of intercity travel and the difference between the number of confirmed
cases and actual infected cases, and to apply the model to provide a realistic prediction for the United States and Japan under
different scenarios of active intervention.

Methods: The model introduces a new state variable corresponding to the actual number of infected cases, integrates intercity
travel data to track the movement of exposed and infected individuals among cities, and allows different levels of active intervention
to be considered so that a realistic prediction of the number of infected individuals can be performed. Moreover, the model
generates future progression profiles for different levels of intervention by setting the parameters relative to the values found
from the data fitting.

Results: By fitting the model with the data of the COVID-19 infection cases and the intercity travel data for Japan (January 15
to March 20, 2020) and the United States (February 20 to March 20, 2020), model parameters were found and then used to predict
the pandemic progression in 47 regions of Japan and 50 states (plus a federal district) in the United States. The model revealed
that, as of March 19, 2020, the number of infected individuals in Japan and the United States could be 20-fold and 5-fold as many
as the number of confirmed cases, respectively. The results showed that, without tightening the implementation of active
intervention, Japan and the United States will see about 6.55% and 18.2% of the population eventually infected, respectively,
and with a drastic 10-fold elevated active intervention, the number of people eventually infected can be reduced by up to 95% in
Japan and 70% in the United States.

Conclusions: The new SEICR model has revealed the effectiveness of active intervention for controlling the spread of COVID-19.
Stepping up active intervention would be more effective for Japan, and raising the level of public vigilance in maintaining personal
hygiene and social distancing is comparatively more important for the United States.
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Introduction

Background
The global spread of the coronavirus disease (COVID-19) has
shown no sign of subsiding since its emergence in Wuhan,
China, in December 2019 [1]. As of March 21, 2020, a total of
276,472 cases of COVID-19 infection have been confirmed in
over 185 countries, with a death toll of 11,417 [2]. Different
control strategies at different levels of stringency have been
applied to slow the spread of the virus in different countries [3].
Although some countries have seen peaks of infected cases and
have observed significant reductions in the number of new
infections in the local communities [2,4], the spread has
continued in many countries, and surges in infected cases have
been observed in Europe, the United States, and Australia.
Intercity travel has been found to be a contributing factor to the
rapid spread of the virus [5,6]. Thus, effective models for
describing the pandemic progression in different cities should
take into consideration the volume of intercity travel [4,7].
Additionally, the virus spread from one country to another
through the air transportation network [8-10]. Hence, population
flow is expected to play an important role in the transmission
of COVID-19, and travel restrictions would effectively slow
the transmission of COVID-19 [11]. Furthermore, the rapid
spread of the virus in a population has often been a result of
delayed information or unawareness of the real situation in that
population, despite the wide dissemination of information related
to COVID-19 outbreaks in other parts of the world. The most
notable information latency lies in the number of confirmed
cases reported, which depends on the ability of the particular
country or city to perform tests as well as the possible
bureaucracy in the local system of reporting. Thus, the number
of confirmed cases is almost certainly not the true number of
infected individuals at any given time [12], and an improved
model for predicting the spreading progression should
incorporate the latency associated with the reporting system as
well as the possible missing cases leading to delay and loss of
i n f o r m a t i o n .  T h e  t r a d i t i o n a l
susceptible-exposed-infectious-recovered (SEIR) model [13,14]
thus has obvious shortfalls in describing the spreading dynamics
of the COVID-19 pandemic. In this work, we attempt to fill the
main gap between the number of confirmed cases and the actual
number of infected cases. Specifically, in the proposed model,
an infected individual may become a confirmed case and then
recovered or removed. Moreover, an infected individual may
also be recovered or removed without being confirmed as
infected. In other words, the basic model proposed here is a
susceptible exposed infected confirmed removed (SEICR)
model, which has an additional state corresponding to an
individual having been confirmed by the authority as being
infected.

On the basis of an SEICR model, we developed a model
incorporating intercity travel data that accounts for any increase
or decrease in the number of exposed and infected individuals
in a city due to intercity migration. Furthermore, the level of

intervention in the form of travel restriction, regional lockdown,
or other active control measures would profoundly influence
the rapidity of the virus spread and the eventual number of
infected cases. The model should, therefore, allow the level of
active intervention to be included as a control parameter and
produce the appropriate progression profile. A specific
parameter was used to adjust the level of active intervention in
the simulation of future progression profiles, which corresponds
quantitatively to the increase in the number of individuals
eventually infected due to an additional infected individual at
any given time. In this work, we apply the model to study the
COVID-19 spreading progression in Japan and the United States.
Data of confirmed and recovered cases in 47 Japanese
prefectures or regions (January 15 to March 20, 2020) and 50
US states plus Washington, DC (February 20 to March 20, 2020)
were used for fitting with the model and retrieval of parameter
values. The parameters found were then adjusted to produce
future progression trajectories corresponding to the
implementation of different levels of active intervention.

Data
The World Health Organization has currently set the alert level
of COVID-19 to the highest and has made data related to the
pandemic available to the public in a series of situation reports
as well as other formats [15]. Our data include the number of
confirmed infected cases, the cumulative number of confirmed
infected cases, the number of recovered cases, and death tolls
for 47 individual prefectures and regions in Japan, from January
15 to March 20, 2020, and for 50 states and a federal district
(Washington, DC) in the United States from February 20 to
March 20, 2020. Data organized in convenient formats are also
available elsewhere [12,16,17]. Moreover, the monthly intercity
migration data for February 2020 are available from official
statistics provided by the Japanese government [18] and are
used as indicative migration strengths between prefectures or
regions in Japan. For the United States, annual data for the
volume of interstate travelers are available from the Census
Bureau [19] and the Bureau of Transportation Statistics [20].

Methods

Migration-Data Augmented SEICR Model
In the proposed SEICR model, every individual would assume
one of five possible states at any time, namely, susceptible (S),
exposed (E), infected (I), confirmed (C), and recovered or
removed (R). Compared to the traditional SEIR model [13,14],
the new SEICR model has an additional C state, corresponding
to an individual that has been confirmed by the authority as
infected. Thus, not all infected individuals will become
confirmed, and some infected individuals will transit to the
recovered state without going through the confirmed state. For
city or region j, the number of individuals in the five states are
Sj(t), Ej(t), Ij(t), Cj(t), and Rj(t) at time t. The transitions of the
five states are illustrated in Figure 1.
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In addition, Pj(t) stands for the population of region j.
Furthermore, to account for intercity movement, we introduce
a migration strength, mij(t), which represents an indicative
volume of people moving from region i to region j at time t [4].
The augmented SEICR model is given as follows:

(1)

ΔIj(t) = Ij(t + 1) – Ij(t), ΔEj(t) = Ej(t + 1) – Ej(t), ΔSj(t) = Sj(t +
1) – Sj(t), ΔCj(t) = Cj(t + 1) – Cj(t), ΔRj(t) = Rj(t + 1) – Rj(t),

ΔNj
s(t) = Nj

s(t + 1) – Nj
s(t), and ΔPj(t) = Pj(t + 1) – Pj(t).

The meaning of each parameter is given in Textbox 1. In
addition, we assumed that the recovered and confirmed
individuals would stay in region j.

In this SEICR model, the number of individuals eventually

infected is set initially at Nj
s(t0) = δjPj (δj being constant),

implying that some effective measures have been taken by the
authorities to limit the upper bound of the susceptible
population. Moreover, in the case of inactive or less effective
intervention, or even unchecked spread, the growth in the
number of infected cases will add to the eventual infected
number. Hence, the number of eventually infected individuals
should increase for each additional infected or exposed
individual at time t. This is equivalent to adding an extra term

(the boxed term below) to ΔSj(t) and ΔNj
s(t). Furthermore, as

the number of infected cases increases and approaches a
saturating percentage kh (such as a herd-immunity condition),

the spreading is expected to slow down significantly (ie, αj and

βj will drop as Nj
s approaches khPj, where 0<kh<1). Thus, we

have:

(2)

kj
(c) is an inverse indicator of the level of active intervention

implemented, and corresponds quantitatively to an increase in
the number of eventual infected individuals for each additional
infected or exposed individual in region j, and the added term

in ΔSj(t) and ΔNj
s(t) will approach zero as Nj

s → khPj. The
meanings of other parameters are given in Textbox 1. Again,
the recovered and confirmed individuals are assumed to stay in
region j.

The model given in (1) and (2) is general in the sense that it
applies to populations with varied effectiveness levels of active
intervention during the outbreak. To further facilitate the
assessment of control measures implemented in region j, we
defined the level of active intervention as:

(3)

Thus, if ψj>1, the control measures are effective and the

progression is limited such that kj
(c)<1. The total number of

eventually infected individuals is equal to .
However, in the case of less effective or ineffective control (ie,
ψj<1), infected and exposed individuals continue to spread the
disease, and for each additional infected individual, there will

be kj
(c) more eventual infected individuals, and the pandemic

progresses until the number of infected cases reaches khPj.

Figure 1. State transition flow chart. C: confirmed; E: exposed; I: infected; R: removed; S: susceptible.
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Textbox 1. Parameters of the migration-data augmented susceptible-exposed-infected-confirmed-removed model.

αj

Rate of infecting a susceptible individual by an exposed individual in region j

βj

rate of infecting a susceptible individual by an infected individual in region j

ρj

rate of infecting a susceptible individual by a confirmed individual in region j

λj

confirmed rate of infected individuals in region j

κj

rate of an exposed individual becoming infected

γj
(I)

recovery rate of an infected but not confirmed individual in region j

γj
(C)

recovery rate of a confirmed individual in region j

k I

possibility of an infected individual moving from one region to another

kj
(c)

increase in number of individuals eventually infected for each additional infected or exposed individual in region j

ψj

level of active intervention, ψj = 1/kj
(c)

kh

proportion of population infected achieving no further spreading (ie, absolute upper bound for Nj
s for all j)

δj

initial percentage of eventual infected individuals in region j

Ij 0

initial number of infected individuals in region j

Ej 0

initial number of individuals in region j

Cj 0

initial number of confirmed infected individuals in region j

Parameter Identification
The model represented by (1) and (2) describes the dynamics
of the pandemic propagation with consideration of human
migration dynamics and the reality of insufficient testing that
leads to confirmed infected cases being fewer than the actual
infected cases. The parameters in (1) and (2) are unknown and
to be estimated from historical data of C and R. We solve this
parameter identification problem via constrained nonlinear
programming with the objective of finding an estimated growth
trajectory that fits the data. An estimated number of infected
cases of each city can be generated from (1) and (2) with
unknown set θj given by:

θj = {αj, βj, γj, δj, λj, γj
(I), γj

(C), kj
(c), Ij,0, Ej,0}

(4)

Ij,0(t) = Ij(t0) and Ej,0(t) = Ej(t0) are the initial numbers of infected

and exposed individuals in region j, and {αj, βj, γj, δj, λj, γj
(I),

γj
(C), kj

(c)} are the model parameters of region j. Here, we assume
that all confirmed cases are either quarantined or hospitalized
and, hence, not infectious (ie, ρj=0). The unknown set is then
Θ = {θ1, θ2, …, θK, κ, kI, kh}, which essentially has 8K + 3
unknowns, where K is the number of regions in the entire
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population under study. The identification of unknown
parameters would require a considerable effort of computation.

Specifically, the parameter estimation problem can be
formulated as the following constrained nonlinear optimization
problem:

(5)

F(.) represents the model given by (1) and (2), ωj
(C) and ωj

(R)

a r e  t h e  w e i g h t i n g  c o e f f i c i e n t s ,  a n d

 is the set of estimated
variables, with unknown set Θ being bounded between ΘL and
ΘU. In this work, an inverse approach is taken to find the
unknown parameters and states by solving (5).

Prediction
The model parameters characterize the spreading dynamics,
and once the set of parameters has been identified using the
previously mentioned optimization procedure, we may generate
future progression profiles by using the same set of parameters.
Moreover, we may also adjust some of the parameters to
examine different possible scenarios, corresponding to varying

levels of active intervention ψj = 1/kj
(c), including travel

restriction, mandatory quarantine, and other control measures.
If the level of active intervention stays with the status quo, we

will use the same value of kj
(c) for generating future progression

profiles. Future paths under more active intervention can be

predicted by reducing the value of kj
(c). In our study, by

extending each simulation run to the forthcoming 200 days, we
obtain a set of predicted progression profiles for each region in
Japan and the United States. Moreover, different levels of active

intervention can be assessed by adjusting parameter kj
(c) relative

to the values found in each candidate set. For instance, by

reducing kj
(c) and rerunning the simulation, we may assess the

effect of tightening the control measures. In particular, we will
consider three levels of active intervention: (1) staying with the

status quo, corresponding to the same value of ψj or kj
(c); (2)

2-fold step-up of active intervention, corresponding to 2ψj or

0.5kj
(c); and (3) 4-fold step-up of active intervention,

corresponding to 4ψj or 0.25kj
(c)

The pandemic progression profiles of 47 Japanese prefectures
or regions were examined. We perform data fitting of the model,
described by (1) and (2), using historical daily data of confirmed
and recovered cases. For the United States, the pandemic
progression profiles of 50 states and a federal district were
examined. We again performed data fitting of the model using
historical daily data of confirmed and recovered cases from
February 20 to March 20, 2020, and obtained 100 candidate
sets of parameters that satisfy the fitting criteria.

The level of public vigilance in exercising personal protective
measures can also be incorporated in our model through
adjusting infection rates αj and βj. We can, therefore, assess the
combined effectiveness of active intervention and practicing
protective measures in controlling the pandemic. Here, we varied

αj, βj, and kj
(c) from 10% to 100% of the originally identified

values in 10 intervals, corresponding to 10 different levels of
public vigilance and active intervention by the authorities. In

particular, we assess αj and βj as one property and kj
(c) as another

(ie, varying αj and βj in synchrony). Specifically, for each
candidate parameter set, we perform 100 simulation runs for

each combination of αj, βj, and kj
(c), where αj, βj, and kj

(c) vary
from 10% to 100% of the original values in 10 steps. We then
investigate the percentage of the population eventually infected
in Japan and the United States.

Results

Parameters and Prediction for Japan
A typical candidate set of parameter values that fit well with
the data from January 15, 2020, to March 20, 2020, is as follows:

1.3941<kj
(c)<1.5979; 0.0982<αj<0.1158; 0.3895 βj<0.5163;

0.0098<γj
(I)<0.0128; 0.0027<γj

(C)<0.0047; 0.0019<λj<0.0052;
κ=0.1861; kh=0.6514. This set of parameters reflects an
inadequate level of control to slow the spread of the disease, as

indicated by the value of kj
(c) being larger than 1. Specifically,

for each additional infected or exposed individual, the number
of eventual infected individuals would increase by around 1.5
on average. The number of individuals eventually infected will
approach a saturating percentage kh.

We have identified 100 candidate sets of parameters that satisfy
the fitting criteria, and for each set of parameters, we perform
a separate simulation run. Figure 2 shows one particular
simulation run of a well-fitted candidate set of parameters for
8 selected prefectures in Japan. The averaged results of all
simulation runs are consolidated in the charts shown in Figure
2. Based on the data up to March 20, 2020, our model estimates
that less than 3% of the infected cases are confirmed, with
Hokkaido having the highest percentage (6.9%) and Hyogo-ken
the least (1.5%), as shown in Figure 3(a). In other words, the
actual number of infected individuals could be 20 times as many
as the official confirmed number. Statistics of percentages for
the population of confirmed and infected with the disease up to
March 20, 2020, are shown in Figure 3(b).

We examine three cases corresponding to the level of active
intervention being unchanged, 2-fold elevated, and 4-fold

elevated. First, staying with the status quo (kj
(c) unchanged), if

there is no further tightening of control aiming to slow the
spread, all parameters of the candidate sets will remain
unchanged. The total number of individuals eventually infected
until September 23, 2020, in each region is shown in Figure
3(c). In this case, the number of infected individuals in Osaka-fu
and Tokyo-to will reach about 2,300,000 and 600,000 (12%
and 4.2% of the population), respectively, while most other
regions will have around 5% of the population eventually
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infected by September 23, 2020, as shown in Figure 3(d). In
total, about 6.55% of the population in Japan will be infected.

Second, with two-fold elevated active intervention (kj
(c) →

0.5kj
(c)), if active intervention is stepped up to twice the current

level (ie, the value of kj
(c) is set to half of the original value in

each simulation run), we observe a significant drop in the
number of individuals eventually infected, as given in Figure
3(c). Specifically, the percentage of the population eventually
infected by September 23, 2020, in Osaka-fu and Tokyo-to
would drop to about 6.8% and 2.3%, respectively, while most
other regions would drop to less than 2%, as shown in Figure
3(d). In total, about 4.14% of the population in Japan will be
infected.

Third, with 4-fold elevated active intervention (kj
(c) → 0.25kj

(c)),
if active intervention is stepped up to four times the current

level (ie, the value of kj
(c) set to a quarter of the original value

in each simulation run), we observe a drastic drop in the number
of individuals eventually infected, as given in Figure 3(c).
Specifically, the percentage of the population eventually infected
by September 23, 2020, in Osaka-fu and Tokyo-to would drop
to about 4.1% and 2.3%, respectively, while most other regions
would drop to less than 1%, as shown in Figure 3(d). In total,
about 1.54% of the population in Japan will be infected.

In addition, our model estimates that the number of infected
individuals could be 20 times as many as the currently confirmed
number due to various reasons such as insufficient testing. Based
on the data collected so far and assuming no further tightening
of control, our model estimates about 6.65% of the population
will be eventually infected, and a 4-fold elevation in control
efforts may bring it down to 1.54% (about a 75% reduction)
and end the pandemic sooner.

JMIR Public Health Surveill 2020 | vol. 6 | iss. 3 | e18880 | p. 6https://publichealth.jmir.org/2020/3/e18880
(page number not for citation purposes)

Zhan et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Official and estimated number of infected individuals in 8 selected prefectures in Japan (upper), the estimated number of infected individuals
(not confirmed; middle), and the estimated number of exposed individuals (lower).
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Figure 3. Statistics of data and predicted results for Japan. (a) Proportion of infected cases that are confirmed as of March 20, 2020; (b) number of
confirmed cases and estimated number of infected cases as of March 20, 2020; (c) number of individuals eventually infected under three levels of active
intervention; (d) proportion of population eventually infected under three levels of active intervention.

Parameters and Prediction for United States
We present here the results for eight selected states having
significant numbers of infected individuals as of March 20,
2020. Figure 4 shows one typical simulation run, showing the
number of confirmed cases, the estimated number of infected
individuals (not confirmed), and the estimated number of
exposed individuals. 

As of March 19, 2020, our model showed that less than 20%
of the infected cases are confirmed, with Washington, DC
having the highest percentage (36%) and Michigan state the
least (0.7%), as shown in Figure 5(a). In other words, the actual
number of infected individuals in the United States could be 5
times as many as the confirmed number. Statistics of percentages
for the population of confirmed and infected with the disease
up to March 19, 2020, are shown in Figure 5(b).

The key results for the three cases corresponding to three
different levels of active intervention are as follows. First,

staying with the status quo (kj
(c) unchanged), if there is no further

tightening of control aiming to slow the spread, all parameters

of the candidate sets will remain unchanged. The total number
of individuals eventually infected until September 23, 2020, in
each state is shown in Figure 5(c). In this case, the number of
infected individuals in California and New York State will reach
about 5,800,000 and 7,300,000 (15% and 37.5% of population),
respectively, while most other states will have less than 20%
of the population eventually infected by September 23, 2020,
as shown in Figure 5(d). In total, about 18.2% of the population
in the United States will be infected.

Second, with 2-fold elevated active intervention (kj
(c) → 0.5kj

(c)),
if active intervention is stepped up to twice the current level (ie,

the value of kj
(c) set to half of the original value in each

simulation run), we observe a significant drop in the number of
individuals eventually infected, as given in Figure 5(c).
Specifically, the percentage of the population eventually infected
by September 23, 2020, in California and New York State would
drop to about 4.5% and 29.5%, respectively, while most other
states would drop to less than 10%, as shown in Figure 5(d). In
total, about 14% of the population in the United States will be
infected.
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Third, with 4-fold elevated active intervention (kj
(c) → 0.5kj

(c)),
if active intervention is stepped up to four times the current

level (ie, the value of kj
(c) set to a quarter of the original value

in each simulation run), we observe further reduction in the
number of individuals eventually infected, as given in Figure
5(c). Specifically, the percentage of the population eventually
infected by September 23, 2020, in California and New York
State would drop to about 2.5% and 23%, respectively, while

most other states would drop to less than 3%, as shown in Figure
5(d). In total, about 9.32% of the population in the United States
will be infected.

The results of assessing the combined effectiveness of active
intervention and practicing protective measures in controlling

the pandemic through adjusting parameters αj, βj, and kj
(c) are

shown in Figure 6(a) and 6(b).

Figure 4. Official and estimated number of infected individuals in 8 selected states in the United States (upper), the estimated number of infected
individuals (not confirmed; middle), and the estimated number of exposed individuals (lower).
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Figure 5. Statistics of data and predicted results for the United States. (a) Proportion of infected cases that are confirmed as of March 19, 2020; (b)
number of confirmed cases and estimated number of infected cases as of March 19, 2020; (c) number of individuals eventually infected under three
levels of active intervention; (d) proportion of population eventually infected under three levels of active intervention.
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Figure 6. The proportion of the population eventually infected under different levels of the active intervention indicated by kj(c) (smaller the stronger)
and maintaining personal hygiene and exercising protective measures indicated by αj, βj (smaller the stronger). (a) Japan; (b) the United States.

Discussion

Principal Findings
A significant step-up in the level of active intervention is
necessary to slow the spread of the virus, especially for the
United States. Based on the data collected up to March 20, 2020,
and assuming no further tightening of the governments’control,
our model estimates that about 6.55% and 18.2% of the

population would eventually be infected in Japan and the United
States, respectively, and a drastic 10-fold elevated active control
may bring it down further to 0.24% and 5.24% for Japan and
the United States, respectively.

Our results have highlighted the ability of the model in assessing
the impact of active intervention through adjusting one of the

parameters, namely, ψj = 1/kj
(c). Moreover, it has been widely
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disseminated that maintaining personal hygiene is equally
important in curbing the spread of the virus. The World Health
Organization recommends several specific protective measures
to be practiced by the public including frequent hand washing;
maintaining social distancing, avoiding touching one’s eyes,
nose, and mouth; and practicing respiratory hygiene [21]. Recent
studies have also shown that wearing surgical masks would help
in some cases [22,23]. The level of public vigilance in exercising
personal protective measures can also be incorporated in our
model through adjusting infection rates αj and βj. We can,
therefore, assess the combined effectiveness of active
intervention and practicing protective measures in controlling

the pandemic. Here, we varied αj, βj, and kj
(c) from 10% to 100%

of the originally identified values in 10 intervals, corresponding
to 10 different levels of public vigilance and active intervention
by the authorities. In particular, we assess αj and βj as one

property and kj
(c) as another (ie, varying αj and βj in synchrony).

Specifically, for each candidate parameter set, we performed

100 simulation runs for each combination of αj, βj, and kj
(c),

where αj, βj, and kj
(c) varied from 10% to 100% of the original

values in 10 steps. We then investigated the percentage of the
population eventually infected in Japan and the United States.
The results are shown in Figure 6(a) and (b).

The mean percentage of the population eventually infected under
different combinations of parameter values for Japan and the
United States are given in the charts shown in Figure 6(a) and
(b), respectively. For instance, suppose the level of public
vigilance has dramatically raised and the level of active
intervention has been stepped up, resulting in a 90% reduction

in the infected rates and a 90% reduction in kj
(c) (ie, parameters

changed to 0.1αj, 0.1βj, and 0.1kj
(c)). Referring to Figure 6(a)

and (b), the percentage of the population eventually infected
can be dramatically reduced to 0.23% for Japan and 2.7% for
the United States. Similar interpretations can be taken for any
other combination of public vigilance levels and active
intervention. 

Our results have highlighted an interesting difference between
the effectiveness of government’s active intervention and
maintaining personal hygiene by the public for Japan and the
United States. For Japan, we observed a 27-fold reduction (from
6.55% to 0.24%) in the percentage of individuals eventually
infected upon a drastic 10-fold step-up of active intervention

(kj
(c) changed to 0.1kj

(c)), whereas less than 3-fold reduction
(from 6.55% to 2.16%) is observed in the percentage of
individuals eventually infected upon the same 10-fold
improvement in personal hygiene (values of αj and βj reduced
by a factor of 0.1). Thus, government’s active intervention seems
to be more important for Japan. Moreover, for the United States,
we see the opposite. Specifically, only about 4-fold reduction
in the percentage of individuals eventually infected is observed
upon a drastic 10-fold step-up of active intervention, whereas
a 6-fold reduction is observed upon a 10-fold improvement in
maintaining personal hygiene by the public. Thus, raising the
level of public vigilance in exercising personal protective
measures is comparatively more important for the United States.

The reason for the difference between Japan and the United
States is that the United States has higher infection rates

compared to Japan. Reducing kj
(c) for the US case is thus less

effective at such high infection rates (ie, a smaller eventual
infected number per additional infected individual would not
help too much). In contrast, the parameter sets for Japan already
have relatively lower infection rates, and further improvement
by reducing the infection rates would be limited. As a final
remark, combining a very high level of pubic vigilance in
exercising strict protective measures and a drastic step-up of
government intervention, the percentage of the population
getting infected can be reduced to 0.23% in Japan and 2.7% in
the United States.

As this study was conducted during the early phase of the
pandemic for Japan and the United States, the amount of data
used was moderate, though adequate in generating sets of
parameter values that fit the data with sufficiently small errors.
With more data available, the accuracy of the parameters
obtained is expected to improve, and the prediction henceforth
would also be more accurate. However, in predicting the
pandemic progression, especially during the early phase of an
outbreak, we are often confronted with limited data, and the
results in this study did demonstrate the application of the
proposed model and data fitting method in offering highly
consistent prediction of the extent of the pandemic (eg,
percentage of the population infected) for Japan and the United
States.

Several limitations of the model presented here are worth noting.
First, we observed that the actual epidemic trajectory deviates
above or below the estimated trajectory due to the varying levels
of public health measures applied at particular times, which

cause parameters kj
(c), αj, and βj to vary with time. Thus, if a

city or region has implemented highly successful public health

measures, then the actual values of kj
(c), αj, and βj would be less

than their estimated values. The number of confirmed cases
would be less than that estimated by the model and vice versa.
Furthermore, the number of confirmed cases is highly related
to the number of patients who have been tested [23,24]. The
value of λj is thus also time varying as the test capacity varies
in time. In our model, we take the parameters as constants for
simplicity. Using constant parameters, the model can only give
an average profile prediction. Second, expanding the parameter
set would improve the ability of the model to isolate the different
causes that contribute to the pandemic progression profile. For
instance, we may introduce a parameter corresponding to the
testing capacity of a city or region instead of integrating it with
λj, which may blur the key factor affecting λj. However, with
more parameters, the parameter extraction process will become
more time-consuming and computationally more intensive.
Thus, a right balance should be sought to achieve an adequate
coverage of interpretation for physical causes by the parameter
set while maintaining a reasonable computational efficiency.
Finally, the model has a large set of parameters, and the relative
importance of each parameter is not identical [25,26]. A detailed
sensitivity analysis can be performed to identify the set of crucial
parameters so that resources can be directed to specific kinds
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of active measures to slow the pandemic progression more
effectively.

Conclusion
One of the key challenges in data-driven modelling and analysis
is the delayed and missing information that makes fitting of
models either difficult or unreliable, resulting in inconsistent
or even erroneous dynamical profiles generated by a poorly
parameterized model. The traditional SEIR model provides a
general dynamical description of the disease spread in a
population and involves a series of transitional processes that
describe how a healthy individual becomes exposed, infected,
and eventually recovered or removed from the population.
However, the data of infected and recovered cases reported by
different cities and regions have been found unreliable or
incomplete, as they are subject to the availability of test facilities
as well as other factors related to the bureaucracy of reporting
and the operation mode of the medical systems. In this paper,
we propose a new disease spreading model with consideration
of the delayed and missing data of infected cases, intercity
travel, and the level of active intervention. The model, which
estimates the actual number of infected cases after identifying
the best parameter sets, was applied to study the COVID-19
pandemic progression in Japan and the United States. Results

reveal that the actual number of infected individuals could be
up to 20-fold and 10-fold as many as the confirmed numbers
in Japan and the United States, respectively, as of March 19,
2020. Our model also allows assessment of varying levels of
active intervention implemented by the government, and the
results showed that the current level of control by the Japanese
and US governments may be inadequate, and a significant
step-up in the level of active intervention is necessary to slow
the aggressive progression trend in both countries. For Japan,
based on the data collected so far and assuming no further
tightening of control, our model estimates about 6.55% of the
population eventually infected, and a 4-fold elevation in control
efforts may bring it down to 1.54%. For the United States, our
model estimates about 18.2% of population will eventually be
infected if the government does not step up its control, and a
4-fold elevation in active intervention may bring it down to
9.32%. Finally, adjusting the infection rates permits assessing
the effectiveness of practicing protective measures and
maintaining personal hygiene. Our results show that stepping
up government’s active intervention would be more effective
for Japan, while raising the level of public vigilance in
maintaining personal hygiene and social distancing is
comparatively more important for the United States.
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