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Abstract

Background: Over one-third of the population of Havelock North, New Zealand, approximately 5500 people, were estimated
to have been affected by campylobacteriosis in a large waterborne outbreak. Cases reported through the notifiable disease
surveillance system (notified case reports) are inevitably delayed by several days, resulting in slowed outbreak recognition and
delayed control measures. Early outbreak detection and magnitude prediction are critical to outbreak control. It is therefore
important to consider alternative surveillance data sources and evaluate their potential for recognizing outbreaks at the earliest
possible time.

Objective: The first objective of this study is to compare and validate the selection of alternative data sources (general practice
consultations, consumer helpline, Google Trends, Twitter microblogs, and school absenteeism) for their temporal predictive
strength for Campylobacter cases during the Havelock North outbreak. The second objective is to examine spatiotemporal
clustering of data from alternative sources to assess the size and geographic extent of the outbreak and to support efforts to attribute
its source.

Methods: We combined measures derived from alternative data sources during the 2016 Havelock North campylobacteriosis
outbreak with notified case report counts to predict suspected daily Campylobacter case counts up to 5 days before cases reported
in the disease surveillance system. Spatiotemporal clustering of the data was analyzed using Local Moran’s I statistics to investigate
the extent of the outbreak in both space and time within the affected area.

Results: Models that combined consumer helpline data with autoregressive notified case counts had the best out-of-sample
predictive accuracy for 1 and 2 days ahead of notified case reports. Models using Google Trends and Twitter typically performed
the best 3 and 4 days before case notifications. Spatiotemporal clusters showed spikes in school absenteeism and consumer
helpline inquiries that preceded the notified cases in the city primarily affected by the outbreak.

Conclusions: Alternative data sources can provide earlier indications of a large gastroenteritis outbreak compared with
conventional case notifications. Spatiotemporal analysis can assist in refining the geographical focus of an outbreak and can
potentially support public health source attribution efforts. Further work is required to assess the location of such surveillance
data sources and methods in routine public health practice.
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Introduction

Background
In August 2016, Havelock North, one of the 5 cities in the
Hawke’s Bay region, New Zealand, was the site of a large
waterborne outbreak of Campylobacter infection. This outbreak
began on August 8, but a large number of cases were not known
to the national notifiable disease surveillance system until
August 14. By that time, more than a third of Havelock North
residents had been infected with Campylobacter. This event led
to serious interruption of daily life in the area and large
economic costs [1,2].

The surveillance for notifiable diseases in New Zealand is
predominantly passive, with laboratories and physicians
notifying their local public health service through submission
to the national notifiable disease surveillance system, EpiSurv
[3]. There are inevitable delays from when people are exposed
to an outbreak source (in this outbreak, the source was
contaminated drinking water) to when they become ill, seek
medical care, are diagnosed, and then notified to health
authorities. There are usually further delays before an outbreak
is recognized, investigated, and controlled. Therefore, notifiable
disease reports are after the fact, and the information is typically
delayed due to systematic information flow through traditional
channels, for example, from physicians and laboratories.

Interest in considering alternative data sources for early
prediction of such outbreaks was motivated by previously
published work reporting on the use of data from internet search
engines [4-7], crowd-sourced participatory disease surveillance
systems [8,9], Twitter microblogs [5,10,11], news stories [12],
school absenteeism reports [13,14], general practice (GP)
consultations [15], consumer helpline calls [16,17], bank
transactions [18], and numerous other sources. Location-aware
applications have also been exploited for public and

environmental health surveillance and crisis management [19,20]
or to provide situational awareness and forecasting for disease
outbreaks at the local level [20].

Objectives
This study revisits the Havelock North Campylobacter outbreak
to examine signals present in data sources that were not available
to the public health team during the response. By analyzing
temporal and spatiotemporal patterns in these alternative data
sources, the study assesses the relative effectiveness and
sensitivity of different data sources in detecting the outbreak
earlier. First, we aim to assess the temporal predictive strength
of modeled combinations of measures from the following daily
alternative data sources: GP consultations, consumer health
helpline calls, Google Trends, Twitter microblogs, and school
absenteeism records. These models will be measured by the
time gained (up to 5 days ahead) compared with the cases
notified in the existing disease surveillance system, using
multiple evaluation metrics. Second, we will examine city-level
spatiotemporal patterns in measures from alternative data
sources relative to notified case counts to identify clusters and
outliers in both space and time over the outbreak period.

Methods

Ethics
The study protocol was approved by the Health and Disability
Ethics Committee, New Zealand, under the protocol number
NZ/1/6350114. The Twitter data used in this study were
obtained under the Twitter terms and conditions and in
agreement with its public privacy settings.

Data Collection and Management
For the greater area affected by the outbreak (Hawkes Bay), we
collected daily data for the entire 2016 calendar year from the
data sources described in Table 1.
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Table 1. Description of data sources used in analysis.

ReferencesCountsData level used in analysisFields of interestSource

Ministry of
Health New
Zealand [3]

1345Aggregated by notification date and city
of residence in Hawkes Bay

Date of onset, testing, and notification
for confirmed and probable cases of
campylobacteriosis

Notified case count (New
Zealand surveillance
database EpiSurv)

Cumming J and
Gribben B [21]

772Individual with visit date, age, and sex,
for entire Hawkes Bay District Health
Board area only

Visits for gastrointestinal complaintsGeneral practice consulta-
tions (HealthStat)

St George IM
and Cullen MJ
[22]

1196Individual with call date, age, sex, and
residential city in Hawkes Bay

Consumer calls concerning gastrointesti-
nal complaints

Consumer helpline (Health-
Line) calls

Google Trends
[23]

Not applicableNormalized counts aggregated by date,
query keyword, and Google Trends nor-
malized count for entire Hawkes Bay
District Health Board area only

User queries with keywords for gastroin-
testinal complaints

Google Trends

Gnip [24]191Individual tweets geocoded to cities in
Hawkes Bay

Tweets with keywords for gastrointesti-
nal complaints

Twitter microblogs (from
Gnip Historical PowerTrack
service)

Ministry of Edu-
cation, New
Zealand [25]

23,836Aggregated by schools for the 5 schools
providing data, areas represented: Have-
lock North, Napier, and Hastings

Absence owing to illness or any valid
reason

School absenteeism records
(from individual schools)

Notified Case Count
We extracted confirmed and suspected cases of
campylobacteriosis in Hawkes Bay from EpiSurv [3] and
aggregated them by report date and city-level locations. EpiSurv
is the core surveillance system used for monitoring the
occurrence of notifiable infectious diseases such as
campylobacteriosis and detecting increases that may indicate
an outbreak in New Zealand [26]. We refer to these data as
notified case counts and use them as the main comparator for
assessing the potential value of alternative surveillance data
sources.

GP Consultations
Daily data on consultations with GPs were collected through
HealthStat. This system automatically monitors the number of
people who consult primary care medical practitioners based
on automated extracts of GP-coded data from computerized
practice management systems [21]. The data we used were the
daily counts of those who consulted for gastroenteritis.

Consumer Helpline Calls
Consumer helpline data were collected from HealthLine, which
is a free national 24-hour 0800 telephone health advice service
funded by the New Zealand Ministry of Health [22]. Calls made
to HealthLine are triaged using electronic clinical decision
support software. The data collected are a daily count and the
city-level location of all phone calls made to HealthLine by
people reporting symptoms of gastrointestinal illness. A list of
the symptoms used is included in Multimedia Appendix 1.

Google Trends
Google Trends provides a time series index of the volume of
queries users enter into Google in a given geographic area [23].
We collected daily Google Trends data for a range of keywords
that could be used to search for information regarding any
gastrointestinal illness (see Multimedia Appendix 2 for a list of

keywords). These Google Trends data were downloaded within
a single day, as Google varies the signal display over time.
Google Trends data for the selected keywords were assessed
for correlation and cross correlation with the notified case counts
for up to 10 previous days, and those keywords with correlations
over 0.03 were chosen for the further analysis: “campylobacter,”
“diarrhoea,” “diarrhea,” “gastro,” “gastroenteritis,” “puke,” and
“vomiting.” Pearson correlation and cross correlation (same
day and lagged) of these keywords in Google Trends with
notified case counts of campylobacteriosis (January 2016 to
July 2016) are presented in Multimedia Appendix 3.

Twitter Microblogs
Twitter is a free social networking and microblogging service
that enables millions of users to send and read each other's
tweets, or short, 140-character messages. Registered users
collectively send more than 200 million tweets a day. Twitter
accounts are by default public and visible to all (even to
unregistered visitors using the Twitter website). Users can
restrict their account settings to private, in which case their
contents can only be visible to approved followers.

In a previous study, we obtained Twitter data from Gnip, their
licensed data provider, through their Historical PowerTrack
service [24]. In contrast to the publicly available Twitter data
stream (Twitter application programing interface), which
provides approximately 1% of all real-time tweets, the Historical
PowerTrack provides search access to 100% of all publicly
available tweets as well as metadata associated with each tweet.
Tweets generated between April 2012 and March 2017 were
collected from PowerTrack. They contained one or more
gastrointestinal-related keywords and were assigned a country
code of New Zealand in the Tweet or in the user profile location.
The Gnip Query to collect Twitter data is included in
Multimedia Appendix 4. A total of 131,843 records were
obtained. These data were first geocoded using the latitude and
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longitude of the tweet. If the tweet location was missing, the
profile latitude and longitude were used.

Twitter feeds were classified by developing a supervised
machine learning classifier using the Naïve Bayes algorithm in
Python. A total of 10,000 random tweets were manually labeled
as (1) gastrointestinal illness, (2) other infectious illness, and
(3) irrelevant tweets. A tweet was labeled “gastrointestinal
illness” when its content described a recent account of infectious
gastrointestinal illness, “infectious illness” for tweets that
described a recent account of other infectious illnesses, and
“irrelevant” for tweets that did not fit in the other 2 categories.
This training set was used to train the machine learning
classifier, which was then used to classify the complete Twitter
data. This classifier was evaluated on 1000 randomly selected
and manually labeled tweets that were not included in the
training set. Precision, recall, and F1 scores were calculated to
evaluate the performance of the classifier. Precision is the ratio
of observations judged relevant to the total observations
predicted as relevant, recall is the ratio of observations judged
relevant out of total relevant observations, and F1 is the
weighted average of precision and recall [27]. The classification
method obtained a precision of 0.813, recall of 0.803, and F1
score of 0.804. We applied this developed supervised classifier
to the data from the Hawkes Bay region for the period of January
1, 2016, to December 31, 2016.

School Absenteeism
We collected school absenteeism data from 5 schools in
Hawke’s Bay: 2 from Havelock North, 2 from Hastings, and 1
from Napier. These included 4 primary schools and 1 secondary
school. Primary school data had a reason for absence code, so

we included data for codes related to illness and/or any justified
absence. Absenteeism codes are listed in Multimedia Appendix
5. For the secondary school, all absenteeism counts were
included without any subcoding. Havelock North and Hastings
were the areas primarily affected by the outbreak, whereas the
Napier school served as a control.

A daily time series with cumulative counts from all the
previously mentioned data sources was constructed. For the
school data set, days covering the school holidays were removed
from the analysis. In all data sources, missing data values were
estimated by interpolation of observational data. These
adjustments were made to reduce the impact of missing data in
the analysis.

Statistical Analysis

Correlation and Cross Correlation
To assess whether the selected data sources could have predicted
this Campylobacter outbreak earlier, we used Pearson correlation
statistics to calculate correlations between daily counts of these
alternative surveillance measures and daily counts of notified
cases. Correlations were calculated for the notified case count
with the alternative measure on the same day as well as with
up to a 10-day negative lag for each alternative measure (ie,
correlating the notified case count on day t with the alternative
measure on day t−10, t−9, etc; Table 2). Using this method, a
significant correlation with the count on the same day indicates
that the peak occurs at the same time [28], and the cross
correlation at a specific lag of x days indicates that the peak in
the alternative measure occurs x days before the peak in notified
cases.

Table 2. Correlation and lagged transformed correlation of alternative predictors with notified case counts of campylobacteriosis.

Number of days that alternative measures are lagged before notifiable countsData source

−10 days−9 days−8 days−7 days−6 days−5 days−4 days−3 days−2 days−1 day0 days

0.010.010.040.050.090.14b0.17b0.26b0.39b0.43b0.5bGPa consultations

0.070.070.10.12b0.2b0.37b0.55b0.64b0.67b0.59b0.44bConsumer helpline

0.020.080.16b0.21b0.21b0.17b0.21b0.22b0.22b0.16b0.13bGoogle Trends

0−0.030−0.0100.070.21b0.25b0.31b0.21b0.11bTwitter microblogs

0.15b0.18b0.17b0.2b0.21b0.35b0.52b0.7b0.64b0.48b0.3bSchool absenteeism

aGP: general practice.
bStatistically significant correlation coefficient >0.1.

Models
To forecast daily suspected cases of campylobacteriosis, a
collection of multivariable autoregressive integrated moving
average (ARIMA) models were constructed. These models were
found to be a good tool for the prediction of communicable
disease incidences [5,6,29-32]. These models are denoted as
ARIMA(p,d,q), where parameters p, d, and q are non-negative
integers; p is the number of autoregressive terms, d is the degree
of differencing needed for stationarity, and q is the moving
average component of the model. Data from January 1 to July
31, 2016, were used for model development. Model

identification for ARIMA was initiated using the R statistical
function auto.arima, which uses the Bayes information criterion
to determine the orders p and q and the Phillips-Perron unit root
test for determining the order d.

These models used the negative lagged (day −1 to day −10)
daily counts for each alternative measure (Table 2) and the
nonlagged notified case counts as covariates. We computed
various permutations using different combinations of covariates
and chose the optimal combination of covariates using the root
mean square error (RMSE). The autocorrelation and partial
autocorrelation plots of the models obtained from auto.arima
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were examined to further adjust the range of ARIMA (p and q)
parameters. In addition to the models that used the
aforementioned data streams as covariates, we built baseline
models with only notified case counts for comparison and
context. We considered models that only used historical
observation of Campylobacter cases to predict cases on the
subsequent days and models that incorporated information from
the various alternative data streams to compare their predictive
abilities during the volatile peak of the outbreak.

Models were thus evaluated for their predictive performance
during the test period from July 31 to August 30, 2016. For each
model, we report 3 evaluation metrics: the Pearson correlation
(ρ), RMSE, and the relative root mean square error (rRMSE)
of the predictions. ρ is a measure of the linear dependence
between two variables during a period. RMSE is a measure of
the difference between the predicted and true values. rRMSE
is a measure of the percent difference between the predicted
and true values. The equations for these measures are given
below:

where yi denotes the observed value of the notified
Campylobacter cases at time ti, xi denotes the predicted value

by any model at time ti, denotes the mean of the observed

values, and denotes the mean of the predicted values.

Spatiotemporal Clustering
Sources that included city-level locations (notified cases, school
absenteeism, consumer helpline, and Twitter feeds) were used
for spatiotemporal analysis. To understand the spatial and
temporal trends of the event data, we broke them up into a series
of time snapshots, using the space-time cube method [33]. We
applied this method to the data for August 2016 from Havelock
North and Hastings, the two largely affected cities in the
outbreak.

We used a Local Outlier Analysis tool in ArcGIS (Esri) to
identify locations that were statistically different from their
neighbors in both space and time. This tool generates Anselin

Local Moran’s I [34] statistics for each space-time window.
These statistics have been used for spatial outlier detection in
domains such as emergency management [35,36], epidemiology
[37], and economics [38]. A Local Moran’s I with a negative
value (representing high-low or low-high autocorrelation)
suggests dissimilarity with neighbors; hence, an outlier, with a
positive value (representing high-high or low-low
autocorrelation) suggests similarity and a zero value suggests
randomness. A P value less than .05 indicates that the cluster
or outlier is statistically significant [39]. Twitter was found to
be insufficient in terms of spatialized city-level data (with no
tweet from Havelock North and only 4 from Hastings during
the outbreak period) to generate Local Moran’s I statistics and
hence was excluded from this analysis. The analysis was
performed using ArcGIS Pro version 2.1.

Results

Relationship Between Notified Cases and Alternative
Data
All alternative surveillance measures correlated significantly
with notified Campylobacter cases on the same day. Many of
these alternative surveillance measures also demonstrated strong
correlations when lagged 1 to 8 days before notified cases.
Indeed, the correlation ranged from 0.14 to 0.43 for up to 5 days
of lag for GP consultations, 0.12 to 0.67 for up to 7 days of lag
for consumer helpline inquiries, 0.16 to 0.22 for up to 8 days
of lag for Google Trends, 0.21 to 0.31 for up to 4 days of lag
for Twitter, and 0.15 to 0.7 for up to 10 days of lag for school
absenteeism (Table 2).

ARIMA Models
The final ARIMA models and the covariates of alternative data
sources with their in-sample error measure of RMSE are
summarized in Table 3. We found multiple models suitable for
prediction: school absenteeism performed best (average RMSE:
1.00) with ARIMA (5,1,3) for forecasting 1 to 2 days ahead and
ARIMA (5,0,2) for forecasting 3 to 5 days ahead, followed by
Google Trends (average RMSE: 1.07) with ARIMA (2,0,0) for
forecasting up to 5 days ahead. GP consultation was found to
have an average RMSE of 1.04, with ARIMA (3,0,1) for
forecasting for the following day and ARIMA (2,0,0) for
forecasting 2-5 days ahead. Twitter had an average RMSE of
1.08 and HealthLine had an average RMSE of 1.084 when used
as the covariates in the models for predicting notified case
counts.

JMIR Public Health Surveill 2020 | vol. 6 | iss. 3 | e18281 | p. 5http://publichealth.jmir.org/2020/3/e18281/
(page number not for citation purposes)

Adnan et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Autoregressive integrated moving average models with time-lagged covariates used with alternative data sources for forecasting 1 to 5 days
ahead.

RMSEdARIMAb ordercTime-lagged covariates, daysaAlternative data source and forecast step

GPe consultations

1.013,0,11 to 101 day

1.042,0,02 to 102 days

1.042,0,03 to 103 days

1.052,0,04 to 104 days

1.062,0,05 to 105 days

Consumer helpline

1.083,0,21, 2, 3, 4, 5, 6, 7, 8, 101 day

1.083,0,22, 3, 5, 6, 7, 8, 102 days

1.083,0,23, 4, 5, 6, 7, 8, 103 days

1.093,0,24, 6, 7, 8, 9, 104 days

1.093,0,26, 7, 8, 9, 105 days

Google Trends

1.072,0,01 to 101 day

1.082,0,02 to 102 days

1.082,0,03 to 103 days

1.082,0,04 to 104 days

1.082,0,05 to 105 days

Twitter

1.074,0,11 to 101 day

1.085,0,22 to 102 days

1.083,0,23 to 103 days

1.092,0,24 to 104 days

1.092,0,25 to 105 days

School absenteeism

0.945,1,31 to 101 day

0.945,1,32 to 102 days

0.945,1,33 to 103 days

1.095,0,24 to 104 days

1.095,0,25 to 105 days

aLagged covariates refer to the time-lagged independent variables of alternative data source.
bARIMA: autoregressive integrated moving average.
cARIMA order (p,d,q) refers to the number of autoregressive terms, degree of differencing, and moving average components of the model.
dRMSE: root mean square error.
eGP: general practice.

We produced predictions for 1 to 5 days ahead during the
outbreak (ie, the testing period) using the models in Table 3 and
with the baseline models that used only autoregressive notified
case counts. The daily estimations of the models with
autoregressive (AR) information of notified case counts, AR

with Google Trends (AR+GT), AR with consumer helpline
(AR+CHL), AR with GP consultations (AR+GP), AR with
school absenteeism (AR+ABS), and AR with Twitter
(AR+Twitter) are presented in Figure 1.
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Figure 1. Actual notified case counts and prediction results 1 to 5 days ahead for all developed models, with their prediction errors based on relative
root mean square error. The best model performance with the lowest prediction error (relative root mean square error) in each time series is shown as
a bold line. ABS: abseentism; AR: autoregressive; CHL: consumer helpline; GP: general practice; GT: Google Trends.

Table 4 summarizes the predictive performance of the models
during the test period for each of the 1-, 2-, 3-, 4-, and 5-day
ahead predictions, as captured by the 3 evaluation metrics
RMSE, rRMSE, and ρ. Although some model’s predictions
showed good correlation with the notified case counts, their
predictions showed large discrepancies from the true number

of cases reported, as shown by the rRMSE. The rRMSE provides
an estimate of the prediction error relative to the number of
actual cases reported in each day over the evaluation period,
and from our perspective, it provides a better measure of the
quality of model prediction given the short time span of the
outbreak.
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Table 4. Root mean square error, relative root mean square error, and Pearson correlation for 1-, 2-, 3-, 4-, and 5-day ahead predictions during the test
period (August 2016).

5 Days4 Days3 Days2 Days1 DayModel

ρrRMSERMSEρrRMSERMSEρrRMSERMSEρrRMSERMSEρcrRMSEbRMSEa

0.6520267.570.20119.238.850.82105.333.90.7672.823.730.91746.915.28ARd

0.64204.868.510.2811738.140.79123.539.740.91 f46.3 f15.1 f0.996 f8.4 f2.74 f  AR+CHLe

0.6618963.210.21121.439.590.849831.550.7572.923.770.90148.215.71AR+GPg

0.66 f186.6 f62.41 f0.21116.137.840.85 f92.8 f29.86 f0.766922.50.93339.612.9AR+GTh

0.62241.780.830.61 f82.1 f26.76 f0.81110.735.630.8069.522.670.95135.611.61AR+Twit-
ter

0.65213.871.50.2814547.260.81120.238.680.894915.970.98914.54.74AR+ABSi

aRMSE: root mean square error.
brRMSE: relative root mean square error.
cρ: Pearson correlation.
dAR: autoregressive.
eCHL: consumer helpline.
fBest performing model for a particular day on basis of the rRMSE.
gGP: general practice.
hGT: Google Trends.
iABS: school absenteeism.

As seen in the evaluation metric values in Table 4, no model
depending on a single data source performed best across all
metrics or time periods. On the basis of the rRMSE, models
that combined consumer helpline with autoregressive
information (AR+CHL) outperformed all other models for 1
day and 2 days ahead predictions (rRMSE=8.4 and 46.3,
respectively). Meanwhile, models that combined Twitter with
autoregressive information from notified cases (AR+Twitter)
performed best for 4-day ahead prediction (rRMSE=82.1), and
models that combined Google Trends with autoregressive
information (AR+GT) performed best for 3- and 5-day ahead
predictions (rRMSE=92.8 and 186.6, respectively). In all time

periods, the model using only the historical case counts
underperformed all the other models.

The out-of-sample (ie, using the data for the testing period)
prediction with the best performing models for the 1, 2, 3, 4,
and 5 days ahead time horizons and their prediction errors are
shown in Figure 2. Across models, prediction accuracy
decreased as predictions were made further days ahead, resulting
in increases in rRMSE (and RMSE) and decrease in model
correlations across time horizons. For example, for the best
models, based on Google Trends, the prediction error nearly
doubled from the 3-day to the 5-day forecast.
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Figure 2. The daily estimations of the best performing models (lowest relative root mean square error) and their prediction errors during the testing
period (August 2016). AR: autoregressive; CHL: consumer helpline; GT: Google Trends.

Clustering and Cluster Detection
The summarized cluster types in notified case counts, consumer
helpline inquiries, and school absenteeism in Hastings and
Havelock North are shown in Figure 3. Both notified case counts
and consumer helpline inquiries indicated high-low outliers in

Hastings and multiple cluster types (ie, high-high, low-low,
high-low, and low-high) in Havelock North throughout the time
period. The cluster types could not be identified in the Twitter
data because of the limited availability of daily records in all 3
cities in the time period.
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Figure 3. Cluster types in notified case counts, consumer helpline inquiries, and school’s absenteeism in Hastings and Havelock North. High-high
cluster refers to high values surrounded by high values, high-low cluster refers to high values surrounded by low values, low-high cluster refers to low
values surrounded by high values, and low-low cluster refers to low values surrounded by low values. Multiple Types refer to multiple cluster-type
designations (ie, high high, low low, high low, and low high) through the time period.

The prevalence of the designation Multiple Types did not
illuminate trends or clusters in the data set. Therefore, we
examined daily Local Moran’s I to compare the clustering
between 2 cities during the outbreak (Table 5). Comparing the
2 cities, clustering in data sources was very weak in Hastings,
compared with Havelock North. On the basis of Local Moran’s
I, outliers were found in school absenteeism and consumer
helpline (Moran’s I: −0.40 and −0.77, respectively) in Havelock
North on August 11, 2016, which continued to grow in size

until August 15, 2016. After 3 days, a stronger outlier appeared
in the notified case counts (−2.17) from Havelock North. In
Hastings, no significant cluster appeared in school absenteeism,
a relatively weak cluster appeared in notified case counts, and
a consumer helpline outlier appeared on August 14. These data
suggest that the spatiotemporal indicators in consumer helpline
and school absenteeism indicated the outbreak in Havelock
North 3 days earlier than the notified surveillance data.
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Table 5. Daily Local Moran’s I in school absenteeism, consumer helpline inquiries, and notified case counts in Havelock North and Hastings cities in
August 2016.

HastingsHavelock NorthDate

Notified case countConsumer helplineSchool absenteeismNotified case countConsumer helplineSchool absenteeism

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

0.08 (−0.29)0.04 (−0.23)0.03 (−0.16)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 4,
2016

0.09 (−0.32)0.07 (−0.29)0.04 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 5,
2016

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 6,
2016

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 7,
2016

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 8,
2016

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 9,
2016

0.09 (−0.29)0.03 (−0.1)0.04 (−0.19)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 10,
2016

0.08 (−0.29)0.01 (−0.1)0.03 (−0.15)0 (0.01)−0.77 (2.71)a,b−0.40 (1.74)a,bAugust 11,
2016

0.09 (−0.32)0.03 (−0.29)0.04 (−0.23)0 (−0.32)-0.77 (−0.29)−0.40 (−0.23)August 12,
2016

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 13,
2016

−0.20 (0.64)b−0.06 (0.22)b0.04 ( − 0.16)−2.17 (6.86)a,b−1.92 (6.71)a−1.62 (7.08)aAugust 14,
2016

0.56 (0.89)-0.01 (−0.04)0.03 (−0.17)−2.17 (−0.32)−1.92 (−0.29)−1.62 (−0.23)August 15,
2016

1.20 (1.37)0 (−0.04)0.03 (−0.16)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 16,
2016

1.20 (0.89)0 (0.03)0.02 (−0.15)0.10 (−0.32)0.08 (−0.29)0.05 (0.23)August 17,
2016

0.31 (0.35)0 (0.03)0.02 (−0.11)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 18,
2016

−0.11 (−0.32)−0.01 (−0.29)0.03 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 19,
2016

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 20,
2016

−0.08 (0.25)0.01 (−0.04)0.03 (−0.13)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 21,
2016

−0.05 (−0.19)0 (−0.04)0.02 (−0.17)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 22,
2016

−0.02(0.13)0 (−0.1)0.03 (−0.18)−0.11 (0.34)−0.11 (0.37)−0.10 (0.45)August 23,
2016

−0.03 (−0.23)0.02 (−0.16)0.03 (−0.16)0.12 (0.34)0.14 (0.37)0.21 (0.46)August 24,
2016

0.06 (−0.29)0.04 (−0.23)0.03 (−0.16)0.23 (0.68)0.14 (0.37)0.14 (0.3)August 25,
2016

0.09 (−0.32)0.07 (−0.29)0.04 (−0.23)−0.22 (−0.32)−0.11 (−0.29)−0.07 (−0.23)August 26,
2016
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HastingsHavelock NorthDate

Notified case countConsumer helplineSchool absenteeismNotified case countConsumer helplineSchool absenteeism

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

Moran’s I value, Z
score

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)August 27,
2016

0.03 (−0.1)0.03 (−0.1)0.04 (−0.19)−0.11 (0.34)−0.01 (0.04)−0.05 (0.2)August 28,
2016

0.03 (−0.32)0.03 (−0.29)0.04 (−0.23)−0.11 (−0.32)−0.01 (−0.29)−0.05 (−0.23)August 29,
2016

0.10 (−0.32)0.08 (−0.29)0.05 (−0.23)0.05 (−0.16)−0.11 (0.37)−0.02 (0.11)August 30,
2016

aNegative values of the Moran’s I value and corresponding Z scores greater than 1.96 indicate that there is a statistically significant spatial outlier.
bFirst day when the data source shows a spatial outlier.

Discussion

Principal Findings
The results show that alternative surveillance data sources can
be used to predict an increase in notified Campylobacter cases
up to 5 days before the outbreak would be detected via the
notifiable disease surveillance system. Importantly, models that
relied solely on available time-lagged notified case data were
found to be no better than the models based on alternative data
sources in predicting near–real-time Campylobacter cases. This
finding further underscores the need for alternative real-time
data sources such as consumer helpline and Google Trends.

Models that relied on consumer helpline calls provided 1 to 2
days of lead time before an increase in notified cases and
consistently performed well, with low error rates. This finding
suggests that consumer helpline data have potential utility for
earlier detection of outbreaks of acute gastroenteritis.
Qualitatively, this result is consistent with our expectations, as
the consumer helpline and GP consultations are well-established
services for those seeking medical attention in New Zealand
[22] and can be expected to provide good predictors of potential
cases.

The web data sources (Google Trends and Twitter) were found
to be good estimators of Campylobacter cases, even earlier than
consumer helpline data. For example, Google Trends reduced
the prediction error by less than 6% compared with the next-best
model (ie, with GP consultations) for 3-days ahead prediction,
as shown in Table 4.

As seen in prediction studies for other diseases [7,31], the
quality of predictions decreased as the time horizon of prediction
increased. Specifically, for 1-day ahead predictions, we found
that the model using consumer helpline combined with
autoregressive terms (the AR+CHL model) performed best. The
autoregressive terms generally help maintain predictions within
a reasonable range, whereas the alternative data sources helped
the models to respond more rapidly to sudden changes in the
dynamics, a finding that has been documented in previous
studies [7,40]. However, for 3- to 5- day ahead predictions,
models that used data from Google Trends and Twitter
performed best. Google search and Twitter activity appear to

respond more rapidly to fluctuations in the dynamics of
campylobacteriosis. Evidently, people affected by
Campylobacter begin searching for gastrointestinal-related
keywords when starting to have symptoms or when they may
suspect a risk of exposure. This suggests that monitoring search
activity may help track disease incidence.

Spatiotemporal analysis was also retrospectively able to confirm
the area impacted by the outbreak. Havelock North and Hastings
followed the same clustering in notified case counts and
consumer helpline inquiries, whereas Hastings, which was not
in the area most affected by the outbreak, had early peaks in
consumer helpline inquiries and school absenteeism but fewer
overall helpline calls and cases. Aggregating the time series
data at the city level may immediately give indications of
potential clusters, such as the one identified in Havelock North
by Local Moran’s I statistics. In particular, primary clusters in
school absenteeism and consumer helpline inquiries started on
August 11, which was 3 days before the same type of cluster
was found in notified case counts and a day earlier than actual
public health response actions were initiated. Used
prospectively, such spatiotemporal analysis could identify
clusters and outbreaks earlier in their course than notification
data [41].

Limitations
There are limitations in our approach from inherent biases in
the alternative data sources. Users of any of these services are
not representative of the general population or those at risk of
exposure to pathogens. Google search patterns and care seeking
may reflect media coverage and situational awareness rather
than the actual impact of the outbreak. Local media in regions
with a large outbreak may react differently than the regions
where these diseases are fewer in number. Thus, media attention
has the potential to dramatically influence our daily predictions
[42].

We used the correlation of keywords with notified cases to filter
Google Trends data and to classify tweets, which improved the
predictive values of these data sources. However, neither of
these data sources can distinguish people who search or tweet
because of awareness from those with infection. In addition,
the static assessment of the predictive power of the included
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keywords can impose some limitations. Self-correcting keyword
selection by dynamically reassessing the predictive power of
each input variable, as discussed by McGough et al [7], could
be used in the future to mitigate these limitations. The terms
that peak due to high media attention could thus be excluded
from the model if their relationship with case count information
has weakened.

As mentioned in the Results section, there was insufficient
Twitter data to use in the spatiotemporal analysis. However,
tweets were only queried in English. With an already low tweet
volume, capturing other languages such as Māori might be
needed to refine models in the future. Furthermore, we relied
on Twitter-generated coordinate information to capture local
data. To overcome this limitation, future work could explore
ways to geocode the data using location information in the tweet
text [43]. For temporal analysis, only limited Twitter and school
absenteeism data were available from the entire Hawke’s Bay
region, presenting a clear limitation to the power of the analysis.
It is encouraging that despite the limited school absenteeism
data, it was still found to show statistically significant
spatiotemporal clusters at the city level.

We are not advocating alternative data sources to replace
traditional methods, but rather to complement them. For
example, in the Havelock North outbreak, public health officials
still required information that suggested an outbreak source
(positive bacterial test from local water supply) to start control
activities (boil water notice and chlorination of drinking water
supply). Early signals from social media and HealthLine calls
could have triggered efforts to investigate potential outbreak
sources earlier. However, nontraditional surveillance carries
with it the workload required to interpret and respond to signals,
which can be extensive, as others have noted [44,45].

Comparison With Previous Work
This study shows a number of improvements over previous
methodologies using monthly or weekly data from alternative
sources to predict disease incidence in the community
[4-7,12,14,18], notably by using diverse daily data sources and
combining with autoregressive modeling and spatiotemporal
clustering to predict the incidence of gastrointestinal illness in
a localized outbreak. Many researchers have used internet search
queries to build prediction models in recent years. Bahk et al
[6] used internet search query data for predicting weekly
foodborne illness up to 2 months ahead of increases. Liu et al
[4] used internet queries to predict weekly dengue fever
outbreaks. Both of these analyses used Spearman r correlation
to quantify the strength of associations between disease
incidence and internet search queries. Similar to our study, Bahk
et al [6] used the seasonal autoregressive integrative moving
average (SARIMA) to develop their predictive models.
However, Liu et al [4] used regression tree models to assess the
threshold effects between the weekly disease incidence and
internet search queries. Their results are consistent with those
in this study, finding that internet search query data provided a
timely data source for predicting the incidence of disease.

In addition to internet search volumes, some studies have used
time-lagged data from Twitter to predict the incidence of
diseases such as Zika [7] and influenza-like illness [5]. As in

our study, McGough et al [7] used ARIMA and rRMSE to select
the best model and found that Google typically performed better
than Twitter for 2- and 3-week ahead predictions. However,
rather than using static keywords, this study used a dynamic
keyword selection method. Nagar et al [5] used an Englemen
Granger co-integration test to make weekly predictions of
influenza-like illness from time-lagged data sets containing
Google, Twitter, and notified case counts. However, this study
found that Twitter data produced better predictions than Google
Trends data. Both of these studies found that time-lagged
notified case data were not statistically significant in predicting
cases in real time, in line with the results found in our study. In
addition to regression models, Nagar et al [5] also used a spatial
scan technique to identify areas with relatively higher risk of
disease, comparable with the outlier analysis using Local
Moran’s I, which we used to identify spatial outliers.

Dong et al [14] used diverse data sources including
over-the-counter drug sales, search queries, and school
absenteeism to estimate the correlation of these data sources
with influenza activity. As in our study, they found that 1-week
lagged data of internet search queries and school absenteeism
showed the strongest correlation with laboratory-confirmed
cases. However, they did not attempt to estimate the activity of
disease in the community ahead of time. Widerström et al [17]
used consumer helpline data and applied SARIMA to develop
weekly predictive models for acute gastrointestinal illness and
influenza-like illness. As in our study, consumer helpline data
proved to be an important source for the early detection of
outbreaks of these conditions. Wang et al [18] suggested the
possibility of using bank transaction data with a simple moving
average to monitor post outbreak disease spread, and they gave
the Havelock North outbreak as an example; however, the use
of such data for early warning of the outbreak was not very
encouraging.

Implications and Further Research
This study has further demonstrated that alternative surveillance
data sources can identify large outbreaks of gastrointestinal
illness a few days earlier than traditional surveillance methods.
The lead time gained depends on the nontraditional surveillance
data source used, with onset of symptoms quickly stimulating
Google and Twitter activity followed soon after by calls to
consumer health helplines, days off from school, and GP
consultations.

Such alternative data sources also need to be combined with
suitable analytic methods that can be run routinely and easily
to identify potential outbreaks, so they can be further
investigated and acted on if control measures are needed. This
research has identified models with autoregressive information
as promising approaches for the analysis of a set of alternative
data sources. However, for waterborne outbreaks, as in Havelock
North, inclusion of measures from drinking water supply and
weather conditions could be included as further data sources
for disease surveillance.

This study used the traditional ARIMA models to assess the
efficiency of using alternative data sources for the early
prediction of a large Campylobacter outbreak. The development
of further machine learning models using other techniques to
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validate the results of this study will be useful. For example,
deep learning–based algorithms have been found to increase
the performance of traditional time series forecasting methods
[46,47].

The Havelock North outbreak was very large. The signal
produced in data sources was therefore easier to detect than
would be the case in a smaller outbreak where the
signal-to-noise ratio would be lower. It would be useful to repeat
the study with outbreaks of smaller magnitude and in different
settings to determine whether similar findings apply.

There are multiple operational questions that would need to be
resolved before any of the methods identified here could be
introduced for routine use by public health agencies in New
Zealand or elsewhere. In particular, it is important to identify
the range of conditions or syndromes where early detection is
important for guiding effective public health action. It is also
important to consider the volume of false positives that might
be generated and the additional resources required to investigate
and rule them out. The range of surveillance modalities also
needs to be considered. For example, specific forms of
environmental surveillance may be more effective for guiding
public health action, for example, improved surveillance of
drinking water quality and meteorological data may be more
effective in preventing disease rather than focusing on early
indicators of illness. Resource issues will also need to be
considered, which might favor systems that are already operating
on a real-time basis (eg, consumer calls to HealthLine).

Conclusions
This study presents several important conclusions. We tested
the use of data from alternative sources in predictive models
and showed that they could have provided earlier detection of
the Havelock North outbreak. Given the need for early
intervention to curb disease transmission, our model predictions
could fill a critical time gap in existing surveillance based on
notification of cases of disease. These notifications inevitably
do not appear until a few days after the occurrence of a
communicable disease outbreak. Our results show that models
that combine consumer helpline data with autoregressive
information of notified case counts performed best for
predictions 1 and 2 days ahead, whereas models using Google
and Twitter data performed best for predictions 3 and 4 days
ahead, although with lower prediction accuracy. Spatiotemporal
clusters showed an earlier spike in school absenteeism and
consumer helpline inquiries when compared with the notified
case counts in the city primarily affected by the outbreak, which
suggests that spatiotemporal modeling of alternative data sources
could help to identify and locate outbreaks earlier in their
development. The methods presented here can potentially be
expanded to other regions in the country to signal changes in
disease incidence for public health decision makers. However,
before doing that, a number of key questions will need to be
systematically investigated to establish the practical role of
these methods and how they could be most effectively integrated
into routine public health practice.
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Abbreviations
AR: autoregressive
ARIMA: autoregressive integrated moving average
CHL: consumer helpline
GP: general practice
GT: Google Trends
RMSE: root mean square error
rRMSE: relative root mean square error
SARIMA: seasonal autoregressive integrative moving average
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