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Abstract

Background: Agencies such as the Centers for Disease Control and Prevention (CDC) currently release influenza-like illness
incidence data, along with descriptive summaries of simple spatio-temporal patterns and trends. However, public health researchers,
government agencies, as well as the general public, are often interested in deeper patterns and insights into how the disease is
spreading, with additional context. Analysis by domain experts is needed for deriving such insights from incidence data.

Objective: Our goal was to develop an automated approach for finding interesting spatio-temporal patterns in the spread of a
disease over a large region, such as regions which have specific characteristics (eg, high incidence in a particular week, those
which showed a sudden change in incidence) or regions which have significantly different incidence compared to earlier seasons.

Methods: We developed techniques from the area of transactional data mining for characterizing and finding interesting
spatio-temporal patterns in disease spread in an automated manner. A key part of our approach involved using the principle of
minimum description length for representing a given target set in terms of combinations of attributes (referred to as clauses); we
considered both positive and negative clauses, relaxed descriptions which approximately represent the set, and used integer
programming to find such descriptions. Finally, we designed an automated approach, which examines a large space of sets
corresponding to different spatio-temporal patterns, and ranks them based on the ratio of their size to their description length
(referred to as the compression ratio).

Results: We applied our methods using minimum description length to find spatio-temporal patterns in the spread of seasonal
influenza in the United States using state level influenza-like illness activity indicator data from the CDC. We observed that the
compression ratios were over 2.5 for 50% of the chosen sets, when approximate descriptions and negative clauses were allowed.
Sets with high compression ratios (eg, over 2.5) corresponded to interesting patterns in the spatio-temporal dynamics of
influenza-like illness. Our approach also outperformed description by solution in terms of the compression ratio.

Conclusions: Our approach, which is an unsupervised machine learning method, can provide new insights into patterns and
trends in the disease spread in an automated manner. Our results show that the description complexity is an effective approach
for characterizing sets of interest, which can be easily extended to other diseases and regions beyond influenza in the US. Our
approach can also be easily adapted for automated generation of narratives.

(JMIR Public Health Surveill 2020;6(3):e12842) doi: 10.2196/12842
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Introduction

Large-scale spatio-temporal analyses and forecasts are becoming
increasingly common for several diseases, such as influenza
[1-4]. There is a lot of public interest in analysis of
spatio-temporal trends relating to how these diseases are
spreading across the United States—this includes statements
about whether the season has officially started, a listing of
regions which have differing levels of activity, and the contrast
between the current season and earlier seasons. Such analyses
have a broad readership and are popular among news media,
the general public, and government agencies, as well as public
health organizations; this is evidenced by spatio-temporal pattern
reports [5,6] about the spread of influenza from news agencies
and blogs.

Such patterns are typically identified manually by domain
experts who have significant expertise on specific diseases. Data
for such analyses often comes from public health agencies, such
as the Centers for Disease Control and Prevention (CDC) [7]
and World Health Organization. Reports generated by the CDC
contain raw surveillance data on metrics (eg, activity level from
outpatient visits and rates of hospitalization) across states in the
US. In addition, summaries of regions with specific
characteristics (eg, those which have high activity levels) are
also included in the reports [7,8]. For instance, one CDC report
[8] summarizes the states with high influenza-like illness activity
for the week ending on March 4, 2017 with the number of states
followed by a list of the state names.

Such descriptive listings are easy to construct from raw data
but are tedious to read and do not provide deeper insight into
the disease spread. In contrast, the analysis by Mashable [6] is
a succinct description of the set of states which have widespread
activity, namely, all states in the contiguous US, except Oregon.
An analysis by the New York Times [5] was also a good and
succinct description of the set of states which have reported
widespread activity for 3 consecutive weeks. In addition to
descriptions of the set of states with a particular activity level,
sets exhibiting specific temporal patterns might also be of
interest. An example is the set of states which maintained stable
high activity for 3 consecutive weeks, ending in the week of
January 27, 2018; most states had high influenza-like illness
activity level 4 weeks prior, plus the states of New Jersey, New
Mexico, Virginia, Washington, and Wyoming. Such descriptions
involve identification of features common to these states, which
provide additional insights on the outbreak.

The overall objective of our work was to automate the process
of identifying interesting spatio-temporal patterns from disease
surveillance data and generating succinct descriptions for them.
In order to do this, we encoded the incidence data as binary
matrices (presence or absence of a feature) and used techniques
from pattern mining [9,10] in transactional data to find insights
into epidemic spread; we demonstrated its utility using seasonal
influenza in the US as a case study.

Methods

Data
We used the state level influenza-like illness activity indicator
data available from the CDC [11]. In the data set, each state for
each week during a given influenza season is assigned an
activity level from 1 to 10 based on the severity of influenza
prevalence in that week (measured using the percentage of
outpatient visits that show influenza-like symptoms) [12]. These
activity levels are also grouped by coarser labels such as
minimal (1-3), low (4-5), moderate (6-7), or high (8-10) [13].
We also incorporated the geographic spread index as published
by CDC in [14], which categorizes the states based on the
internal spatial spread of influenza. We used a number of
features associated with each state which are defined by the
CDC and can be categorized as follows:

1. Geographical or spatial which included features such as Great
Lakes, southeast, mid-Atlantic;

2. Temporal which included features such as activity level (eg,
high, moderate, and low) in the tth week before the current (at
that time) week, geographical spread (eg, widespread or local)
in the tth week prior, whether the number of infections has
crossed a threshold, whether the peak has been reached, and
similarity with past season. In the description below, these
features are denoted by was1_high (states with high
influenza-like illness activity 1 week prior), was2_moderate
(states with moderate influenza-like illness activity 2 weeks
prior), was52_high (states with high activity 52 weeks prior),
and so on. These features capture the spatial, temporal, and
severity aspects of the reported cases. A full list of attributes
and their description is presented in Multimedia Appendix 1.

We used data corresponding to weeks from 2014 to 2017. To
generate narratives for a particular week, we use data from these
reports for that week, the previous 3 weeks, and the data from
52 weeks prior to generate the temporal data for each state. This
was expressed as a data matrix D containing the characteristics
number of regions as rows (n=51 representing 50 states and the
District of Columbia) and number of features as columns (m=42
spatial, temporal, or severity features). Therefore, the data matrix
for a given week had m×n=2142 entries.

Problem Formulation
Let Dn×m be the data matrix, where each row corresponds to a
state and each column to a feature, and Dij=1 if state i has feature
j. Let U={e1,..., en} be the universe of elements, in our case, the
set of all states. Let Dj={i: Dij=1} denote the set of elements

having feature j. Let S(j1,..., jk)=  ∩...∩ denote the set of
elements that have features (j1,..., jk) (denoted by j), referred to
as a conjunctive clause. The clause S(j) has length k, meaning
that it is formed by the intersection of k features.

Given a target set T ⊆ U, we consider expressions of T in terms
of unions and differences, ie,

, (1)

with an associated cost
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, (2)

where and α and β are the constant parameters associated with
positive,

, (3)

and negative clauses,

, (4)

respectively, and

, (5)

denotes the number of features involved in a clause

. (6)

The negative clauses describe the elements which need to be
removed from the set of positive clauses, in order to exactly
cover the elements of T.

Given a subset T ⊆ U (referred to as a target set), and a data set
D, the minimum description length problem involves finding a

set of tuples j1,..., js, such that T is represented in terms of unions
and differences and the associated cost (represented by equation
2) is minimized.

In order to make the descriptions interpretable, we will restrict

the sizes of these clauses (ie, the number of columns whose

intersection is allowed); herein, we will focus on ≤2, though
our approach extends to any k.

Our main idea for finding patterns of interest was to explore
the space of all target sets and identify those which have low
cost descriptions. This was motivated by the minimum
description length principle, that forms the basis of many
machine learning methods to find such descriptions; we refer
to [15,16] for details on this topic.

In some cases, the target set T does not have a small description,
but we can find a set T’ which is close to T and has a smaller
description than T. We model this as finding a representation
for a subset T’ such that T’≈T, which is formalized as the
minimum approximate description length problem. Given a
target set T ⊆ U, a data set D, and constant parameters α, β, γ,
the minimum approximate description length problem involves

finding a set of tuples j1,..., js, for representation of T’ as unions
and differences, such that the symmetric difference of T and T’
is of size at most γ|T|, and the associated cost is minimized.
Since minimum approximate description length is a
generalization of minimum description length, we only consider
the minimum approximate description length problem in the
rest of the paper. The minimum description length and minimum
approximate description length problems are both NP-complete,

even when =1, which corresponds to the set cover problem
(refer to [17] for discussion on this topic).

Approach and Implementation
We used an integer programming approach described in
Multimedia Appendix 1, which is able to scale well for the

problems of interest in epidemic analysis. We used Gurobi
optimization software [18] to solve the resulting integer
program. The size of the instances encountered results in
programs that can be solved very efficiently.

Generate Set Descriptions.
We considered the set of states with a high activity level in a
given week, as a target set T and prepared the data matrix D.
These states had value 1 in the column named high in the matrix.
Then, we used our method to compute the succinct descriptions
for the target set T for the parameters (α, β, γ)=(2, 2, 0). From
the minimum description length principle, a set T was likely to
be an interesting pattern if it had a high compression ratio.

We also studied the impact of the parameter γ on the description
length. Recall that the parameter controls how accurately we
attempt to describe the target set. A larger γ would mean greater
error but should lead to a more succinct description. The target
set T was the set of states with high activity in a given week.
We ran our method for the given week with target set T and,
for each value of γ ∈ (0.1, 0.2, 0.3).

Ranking Set Descriptions
It was not known a priori which target sets would give
interesting patterns. We searched from a large space of possible
target sets corresponding to all clauses with up to k terms (ie,
sets formed by intersections of up to k columns), computed their
minimum description length scores, and ranked them based on
their compression ratio, and other characteristics.

Baselines and Evaluation Measures
The work of Xiang et al [19] is directly related to our approach
and can be considered as a special case of minimum description
length, where only positive clauses are allowed. We referred to
this as description by solution. We used the number of clauses
used by description by solution and minimum approximate
description length for comparison.

We used the compression ratio as a metric for evaluating the
performance of our method. The number of clauses used for
minimum approximate description length for a target set T was
s. The compression ratio provided by minimum approximate
description length was defined as the ratio of the target set size
|T| to the number of clauses used in the solution to minimum
approximate description length, compression ratio=|T|/s.

We also provided a scoring system to determine the
interestingness of a target set. Sets consisting of states with high
activity level were likely to be more interesting than those with
moderate, low or minimal activity levels; therefore, these were
assigned scores of 4, 3, 2, and 1 for high, moderate, low, and
minimal activity level, respectively. Next, states exhibiting a
sudden change in activity level (eg, from low to high, or vice
versa) were considered more interesting than those having no
change in activity levels; therefore, we assigned a score of 5 for
the former type and 2 for the latter. Then, a set of states with
high activity that week and minimal activity 1 week prior had
a score of 9, while a set of states with minimal activity that week
and minimal activity 1 week prior had a score of 3. This process
is described in detail in Multimedia Appendix 1. The score
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assigned to each target set or description measured its
interestingness.

Results

Generate Set Descriptions
The text descriptions (manually generated), in Table 1
correspond to solutions computed using our method. The mean
compression ratio was 2.63. This showed that our method could
easily find succinct descriptions for different kinds of target
sets.

Qualitatively, some descriptions (Table 1) involved large target
sets (eg, February 18, 2017 and January 3, 2015 which
correspond to 27 and 29 states, respectively). The CDC
descriptions for these weeks were long lists, which were unlikely
to give useful insights or identify any patterns. The description
for the week of January 3, 2015 was succinct. Almost all the
states with high or moderate activity level in the previous week
had high activity in that week, 3 new states that were not
experiencing high or moderate activity in the previous week
had high activity, and Florida and Georgia experienced a sharp
decline in activity levels within the week.

We also noted that some of the descriptions may not be
insightful. For instance, the description for the week of April
8, 2017 was simply a list of 2 states; it is possible that there
were no common characteristics between the 2 states, so this
was the most succinct. The description for the week of February
18, 2017 was quite complicated. It combined 3 sets of states
with different activity levels in different times in the past. Figure
1 shows that a set of 10 states with high influenza-like illness
for the week of January 21, 2017 was represented using 6
clauses. The compression ratio achieved was 1.67 as we only
use 6 clauses instead of listing 10 state names. However,
automated generation of such descriptions will allow a human
expert to filter and select appropriate descriptions, instead of
creating them from scratch.

The compression ratio increased as we increased the relaxation
factor (Table 2) γ. Figure 2 shows that a set of 29 states with
high influenza-like illness for week January 3, 2015 can be
represented using only 3 sets per clauses; although 8 out of the
29 states are omitted from the description (shown in the light
blue region), as the relaxation parameter is set to 0.3.

Table 1. Description for the set of states with high activity levels.

Compression
ratio

|T|Target setNumber of
clauses

Descriptions of states with high influenza-
like illness activity in the week

Week

1.6710Alabama, Georgia, Kansas, Kentucky,
Missouri, New Jersey, New York, Okla-
homa, South Carolina, Washington

6Kansas, New York, Washington, and states
with high activity 2 weeks back excluding
Oregon and Utah

January 21, 2017

3.8627Alabama, Alaska, Arkansas, Connecticut,
Georgia, Illinois, Indiana, Kansas, Ken-
tucky, Louisiana, Maryland, Michigan,
Minnesota, Mississippi, Missouri, New
Jersey, New Mexico, New York, North
Carolina, Oklahoma, Pennsylvania, Rhode
Island, South Carolina, South Dakota, Ten-
nessee, Texas, Virginia

7Alaska, Illinois, Maryland, Minnesota,
states with high activity a week prior, states
with low activity 2 weeks prior, and states
with minimal activity 3 weeks prior exclud-
ing Wyoming

February 18, 2017

2.5010Alabama, Arkansas, Georgia, Kansas,
Kentucky, North Carolina, Oklahoma, South
Carolina, Tennessee, Virginia

4States with high activity for last 2 weeks,
excluding Louisiana, Mississippi and Texas

March 25, 2017

1.002Kentucky, South Carolina2Kentucky, South CarolinaApril 8, 2017

4.1429Alabama, Arkansas, California, Colorado,
Hawaii, Idaho, Illinois, Indiana, Kansas,
Kentucky, Louisiana, Maryland, Minnesota,
Mississippi, Missouri, Nevada, New Mexi-
co, New York, North Carolina, Ohio, Okla-
homa, Pennsylvania, South Carolina, Ten-
nessee, Texas, Utah, Virginia, West Vir-
ginia, Wisconsin

7California, Nevada, New York, and states
with high or moderate activity levels a week
prior excluding Florida and Georgia

January 3, 2015
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Figure 1. The set representation of the description for week of January 21, 2017. Each circle is a set and the states in the set are listed with their
respective abbreviations. The states in the blue region correspond to the target set T. Oregon and Utah are the singleton subsets (in dark blue) with high
influenza-like illness activity two weeks prior but not in that week. AL: Alabama; GA: Georgia; ILI: influenza-like illness; KY: Kentucky; KS; Kansas;
MO: Missouri; NJ: New Jersey; NY: New York; OK: Oklahoma; OR: Oregon; SC: South Carolina; UT: Utah; WA: Washington.

Table 2. Impact of varying relaxation factor γ on the description and compression ratio using 2 examples.

Compression ratioClauses, numberDescriptionWeek, γ

January 21, 2017

1.676Kansas, New York, Washington, and states with high activity 2 weeks
prior, excluding Oregon and Utah

0

25Kansas, Washington, and states with high activity 2 weeks prior, ex-
cluding Oregon and Utah

0.1

2.54New York and states with high activity 2 weeks back, excluding
Oregon and Utah

0.2

3.333States with high activity 2 weeks back, excluding Oregon and Utah0.3

January 3, 2015

4.147California, Nevada, New York, and states with high or moderate ac-
tivity levels a week prior, excluding Florida and Georgia

0

5.85New York, and states with high or moderate activity levels a week
prior, excluding Florida and Georgia

0.1

7.254States with high or moderate activity levels a week prior, excluding
Florida and Georgia

0.2

9.673States with high activity level a week prior, excluding Florida and
Georgia

0.3
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Figure 2. The set representation of description of set of states with high influenza-like illness activity on January 3, 2015. The blue set corresponds to
the states with high activity 1 week prior. The dark blue colored singletons Florida and Georgia are subsets of the blue set but do not have high activity
in the current week. The light blue colored set consists of the states omitted from the description due to relaxation. AL: Alabama; AR: Arkansas; CA:
California; CO: Colorado; HI: Hawaii; ID: Idaho; IL: Illinois; IN: Indiana; KS: Kansas; KY: Kentucky; LA: Louisiana; MD: Maryland; MN: Minnesota;
MS: Mississippi; MO: Missouri; NV: Nevada; NM: New Mexico; NY: New York; NC: North Carolina; OH: Ohio; OK: Oklahoma; PA: Pennsylvania;
SC: South Carolina; TN: Tennessee; TX: Texas; UT: Utah; VA: Virginia; WV: West Virginia; WI: Wisconsin.

Ranking Set Descriptions
We found that the top scoring narratives were generally trends.
An example of trend found by our method was a gradual
increase in activity levels over consecutive weeks; the states
Alabama, Georgia, Mississippi, and Tennessee had high activity
in the week of March 12, 2016, had moderate activity the
previous week, and had minimal activity 2 weeks prior. Another
trend was stable high activity for consecutive weeks; in the
week ending January 27, 2018, New Jersey, New Mexico,
Virginia, Washington, and Wyoming, and states with high
activity 4 weeks earlier, excluding Nebraska and Tennessee,

had high activity levels for 3 consecutive weeks. Another trend
was a gradual decrease in influenza-like illness activity over
consecutive weeks; for the week of February 1, 2014, the
activity levels in North Carolina decreased from high to
moderate to low in 3 consecutive weeks.

Examples of surprise events identified by our methods were (1)
the activity level in North Carolina, New Mexico, South Dakota,
and Wyoming jumped from low to high within 1 week, for the
week ending February 4, 2017 and (2) the activity level in New
Hampshire and Tennessee changed from high to low within 1
week, for the week ending February 2, 2013.

Table 3. Interestingness scores.

ScoreDescriptionTarget set or patternα, β, γWeek

14Hawaii, Maryland, North Carolina,
Ohio

States with high activity the specified week, low activity 2 weeks
prior, and moderate activity 3 weeks prior

(0, 2, 2)January 27, 2018

13North DakotaStates with moderate activity 1 week prior, minimal activity 2
weeks prior, and low activity 3 weeks prior

7Maryland, North Carolina, OhioStates with low activity 2 weeks prior, moderate activity 3 weeks
prior, and minimal activity 4 weeks prior

14IowaStates with high activity 1 week prior, low activity 2 weeks prior,
and moderate activity 3 weeks prior

(0.3, 2, 4)February 25, 2017

8Massachusetts, Ohio, WisconsinStates that had moderate activity levels 1 week prior, minimal
activity levels 3 weeks prior, and minimal activity levels 4 weeks
prior

Comparison With Baselines
Minimum approximate description length provided summaries
at less cost than those provided by description by solution for

the weeks of January 21, 2017; February 18, 2017; and March
3, 2017 (Figure 3). For the remaining weeks, minimum
approximate description length provided summaries at a cost
equivalent to those provided by description by solution.
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Figure 3. Solution comparison: minimum approximate description length versus description by solution.

Discussion

Principal Findings and Previous Work
There has been a lot of previous work [19-22] on finding
spatio-temporal patterns in different data sets. These have
typically used unsupervised machine learning methods, and we
refer the readers to [20,21] for surveys on different algorithms
and their applications to various data sets. As is the case with
other unsupervised methods, the specific technique depends on
the application. We note that mining patterns from transactional
data has been successfully used in many areas, such as analysis
of retail transaction data [23], biomedical data analysis [19,24]
and information retrieval [25]. The approach of finding patterns
based on compression and small description have been found
to be useful in many settings [22,26-28]. We found that our
description length-based approach gives useful insights into
spatio-temporal patterns in incidence of influenza-like illness,
especially when negative clauses are allowed. However, no
prior methods handle negative clauses, to the best of our
knowledge. In addition to negative clauses, we also found that
the relaxed versions can also significantly reduce the complexity
of descriptions in many cases.

Our ranking method also provides a systematic approach to
identify trends and surprises in the spread of influenza-like
illness. However, the descriptions of high score are not always
intuitive or interesting, which is often the case with unsupervised
machine learning methods. Instead, our ranking-based approach
(or other variations of it) could help provide new insights to a
domain expert, who might be able to find interesting
spatio-temporal patterns more easily. Thus, such an approach
could be a first step in processing epidemic incidence data. We
believe that including more characteristics for the data (ie, more
columns in the data matrix D) can help find more succinct
descriptions. Furthermore, the integer programming–based
approach is quite powerful, and more constraints can be easily

added to generate descriptions with specific kinds of properties.
Though the descriptions reported here were generated manually
based on the outputs, the outputs are well structured and could
conceivably be generated using natural language processing
techniques easily.

Comparing the performance of our method with 2 other pattern
detection methods in the literature, though, as mentioned earlier,
which do not consider negative clauses, the first method, called
Apriori [23] is a very popular approach for association rule
mining and pattern detection in a database containing
transactions. Each transaction is seen as a set of items called
itemset. The Apriori algorithm finds the frequent item sets in
the database, the item sets that appear frequently among the
transactions of the database. We observed that the rules
generated by Apriori using Weka [29] are trivial in nature and
are not highly informative.

The work of Xiang et al [19] (description by solution) can be
considered as a special case of minimum description length,
where only positive clauses are allowed. Xiang et al [19] give
a logarithmic approximation for the description by solution
problem for such instances. We implement an integer linear
program to solve this problem exactly. By comparing the
solutions provided by minimum approximate description length
with that of description by solution, we demonstrated the benefit
of allowing differences in generating compact descriptions. We
note that using additional attributes for the regions might allow
for more succinct descriptions.

Our methodology could be easily extended to other diseases
and applications involving spatio-temporal data, since the
method can handle very general kinds of features and clauses
formed by them. The ranking method would have to be designed
based on the specific domain. Also, we expect our method could
scale to much larger data sets easily.
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Limitations
The feature values are real numbers (eg, the similarity with a
past season can be a correlation metric) not binary. One way to
handle this issue would be to map the nonbinary values to binary
using discretization of the weights. Since we limited our focus
to only meaningful features, our current approach explores target
sets with temporal properties over small time intervals. In the
case of an increase in number of features by a few orders of
magnitude than we considered, the integer linear program may
not be able to scale well. One way to address this problem would
be to design scalable heuristics that give some theoretical or
experimental guarantees.

Conclusion
Automated generation of interesting spatio-temporal patterns
and trends is an important problem, and can be especially useful
to public health experts, as well as the general public. Our
approach, based on techniques from pattern mining, provide a
short-list of patterns in influenza-like illness data from the CDC.
We found that sets with high compression ratio tend have
common characteristics, which are often interesting. This is,
however, an unsupervised machine learning method, and needs
to be verified manually. Our ranking method is one way to select
interesting patterns in an automated manner. The techniques
developed in this paper could potentially be applied for other
diseases, and other public health domains.
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