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Abstract

Background: Emergence of the coronavirus disease (COVID-19) caught the world off guard and unprepared, initiating a global
pandemic. In the absence of evidence, individual communities had to take timely action to reduce the rate of disease spread and
avoid overburdening their health care systems. Although a few predictive models have been published to guide these decisions,
most have not taken into account spatial differences and have included assumptions that do not match the local realities. Access
to reliable information that is adapted to local context is critical for policy makers to make informed decisions during a rapidly
evolving pandemic.

Objective: The goal of this study was to develop an adapted susceptible-infected-removed (SIR) model to predict the trajectory
of the COVID-19 pandemic in North Carolina and the Charlotte Metropolitan Region, and to incorporate the effect of a public
health intervention to reduce disease spread while accounting for unique regional features and imperfect detection.

Methods: Three SIR models were fit to infection prevalence data from North Carolina and the greater Charlotte Region and
then rigorously compared. One of these models (SIR-int) accounted for a stay-at-home intervention and imperfect detection of
COVID-19 cases. We computed longitudinal total estimates of the susceptible, infected, and removed compartments of both
populations, along with other pandemic characteristics such as the basic reproduction number.

Results: Prior to March 26, disease spread was rapid at the pandemic onset with the Charlotte Region doubling time of 2.56
days (95% CI 2.11-3.25) and in North Carolina 2.94 days (95% CI 2.33-4.00). Subsequently, disease spread significantly slowed
with doubling times increased in the Charlotte Region to 4.70 days (95% CI 3.77-6.22) and in North Carolina to 4.01 days (95%
CI 3.43-4.83). Reflecting spatial differences, this deceleration favored the greater Charlotte Region compared to North Carolina
as a whole. A comparison of the efficacy of intervention, defined as 1 – the hazard ratio of infection, gave 0.25 for North Carolina
and 0.43 for the Charlotte Region. In addition, early in the pandemic, the initial basic SIR model had good fit to the data; however,
as the pandemic and local conditions evolved, the SIR-int model emerged as the model with better fit.

Conclusions: Using local data and continuous attention to model adaptation, our findings have enabled policy makers, public
health officials, and health systems to proactively plan capacity and evaluate the impact of a public health intervention. Our
SIR-int model for estimated latent prevalence was reasonably flexible, highly accurate, and demonstrated efficacy of a stay-at-home
order at both the state and regional level. Our results highlight the importance of incorporating local context into pandemic forecast
modeling, as well as the need to remain vigilant and informed by the data as we enter into a critical period of the outbreak.
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Introduction

In December 2019, a novel coronavirus emerged in Wuhan,
Hubei Province, China [1]. The pathogen causes a respiratory
illness, now known as the coronavirus disease (COVID-19)
[2,3]. From its original epicenter in Wuhan, the virus spread
rapidly within 30 days to other parts of Mainland China and
exported to other countries [4-8]. As of April 10, 2020, 210
countries and territories have reported 1,673,423 confirmed
cases of COVID-19 and 101,526 deaths [9]. Due to the spread
across multiple countries and the large number of people
impacted, on March 11 the World Health Organization
recognized the novel severe acute respiratory syndrome (SARS)
coronavirus 2 as a pandemic that poses a major global public
health threat [10,11].

Although the effects of the COVID-19 pandemic are
experienced worldwide, many key health policy decisions
designed to reduce transmissions are determined at national and
regional levels. These critical policy decisions must be
implemented quickly and evaluated continuously so they can
be adapted to the local context, recognizing the clear effect that
geography, community context, density, and social determinants
of health have on COVID-19 outcomes. In North Carolina, the
first COVID-19 case was reported on March 2, 2020, and cases
increased to 3,963 total confirmed cases as of April 10 [12]. To
slow the rapidly increasing transmission rate, within a few weeks
after the first case was detected, North Carolina state officials
promoted social distancing strategies (ie, deliberately increasing
physical space), banned large social gatherings, and closed
public schools and universities. Subsequently, a stay-at-home
order, which only allows for essential travel outside the home,
was issued in the southwestern part of the state by Mecklenburg
County effective at 8 am, March 26, lasting through April 16
(since extended to April 29), while a statewide stay-at-home
order was issued effective at 5 pm, March 30, lasting to April
29.

Because the COVID-19 landscape evolves rapidly due to the
confluence of locally relevant factors, appropriate modeling
using timely infection prevalence to drive decision making
around containment, treatment, and resource planning is critical.
Forecasting models are used to generate early warnings to
identify how a pandemic might evolve. During the early stages
of the COVID-19 pandemic, forecasting was frequently applied
to predict national and international infection transmission trends
[13,14]. Local communities and health systems turned to these
national and international models for their own planning;
however, the generalizability of such models to the local
situation is limited and ignores important community-level
population characteristics and transmission dynamics [3,15-17].
An objective of this study was to understand how spatial
differences impact model results and their interpretation.

In response to the need for actionable data insights in our
community and health system, investigators from the Atrium
Health Center for Outcomes Research and Evaluation developed
a series of COVID-19 forecasting models, which were used to
guide Atrium Health’s initial proactive response to ensure
sufficient capacity to treat the expected surge in patient care

demands. In this study, we present an initial
susceptible-infected-removed (SIR) epidemic model and its
evolution to the susceptible-infected-removed-social
distancing-detection rate (SIR-int) model. In this paper, we
describe and compare these models, the spatial differences in
a pandemic, the significance of observed cases versus actual
prevalence in the setting of rapidly evolving testing strategies,
the current epidemiological trends, and the potential effects of
nonpharmaceutical interventions applied locally (eg, social
distancing).

Methods

The observed cumulative case and death counts were obtained
daily at noon starting March 2, 2020, when the first COVID-19
case was reported, from the North Carolina Department of
Health and Human Services website for all 100 counties [12].
Data collection for this manuscript ended on April 7, just prior
to submission. To accurately estimate the actual latent
prevalence at time t, the cumulative case counts were adjusted
for imperfect detection by dividing them by 0.14. Although
estimates of detection probability for the coronavirus, also
known as the ascertainment rate, vary in the literature, ours is
in line with those reported [18-22]. Modeling only the observed
prevalence will give an inaccurate timeline of pandemic
behavior. Cumulative deaths were then subtracted from adjusted
cumulative cases. We also adjusted cumulative cases for
recoveries by removing cases after 20 days, the estimated
median duration of viral shedding from illness onset [23]. Daily
incremental incidence was obtained by subtracting the estimated
latent prevalence at time t – 1 from that at time t. Crucially, in
our research, we model estimated latent prevalence as
constructed here, not observed prevalence. For the sake of
brevity moving forward, we use the terms “latent prevalence”
and “prevalence” interchangeably.

In addition to North Carolina, interest also lay in the
subpopulation served by Atrium Health’s greater Charlotte
market. For convenience, we make use of a designation of a
group of counties that constitute the greater Charlotte area used
by the North Carolina Department of Health and Human
Services. Specifically, the US Centers for Disease Control and
Prevention’s Cities Readiness Initiative (CRI) is a federally
funded program designed to enhance preparedness in the
nation’s largest population centers to rapidly and effectively
respond to large public health emergencies such as an act of
bioterrorism. This also allowed us to model on a region that
harmonized with the state’s approach to disaster planning in
case statewide coordination of resources would be required.
Within North Carolina, 11 counties are grouped into a CRI
region that includes Anson, Cabarrus, Catawba, Cleveland,
Gaston, Iredell, Lincoln, Mecklenburg, Rowan, Stanly, and
Union. Collectively, we henceforth refer to these counties as
“the CRI” (Figure 1). Because the CRI closely mirrors the large
area served by Atrium Health’s greater Charlotte market, we
used this population base for our local modeling efforts. The
CRI includes over 2.5 million residents (24% of the North
Carolina population) and ranges from rural settings like Anson
County to Mecklenburg County, which contains North
Carolina’s largest city, Charlotte [24]. To understand how spatial
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differences impact model results and their interpretation, we
compared the CRI to North Carolina throughout the early phases
of this pandemic.

We introduce the SIR deterministic compartmental model
originally described by Kermack and McKendrick [25] and
depict it in Figure 2.

Figure 1. Map of North Carolina showing the Cities Readiness Initiative region.

Figure 2. Susceptible-infected-removed model diagram showing compartments and flow. I: infected; R: removed; S: susceptible.

S is the number of individuals that are susceptible to infection
in the population; I is the number of individuals that are infected;
R is the number of individuals that are removed from the
population via recovery and subsequent immunity or death from
infection. This mutually exclusive and exhaustive partition is
such that S + I + R = N, where N is the closed population size.
We further assume all uninfected individuals are susceptible to
infection. The transition flow is described by the arrows in the
figure labeled with two rates. The parameter β is the infection
rate and can be further decomposed as the product of the
probability of transmission per contact and the rate of contact
per person per unit time. γ is the removal rate.

More formally, the SIR model is a system of three ordinary
differential equations (ODEs) involving two unknown
parameters.

Note that all of S, I, and R, and their derivatives are functions
of time t, such as S = S(t), although we do not denote this
notationally here. By how the model is constructed, the first
equation in the system returns a number less than or equal to

zero, the second equation returns any real number, and the third
equation returns a number greater than or equal to zero.

All data analysis was done using R statistical software, version
3.6.2 (R Foundation for Statistical Computing). As described
in Churches [26], we used the ode() default solver from the
desolve package to solve the system of ODEs defining the SIR
model. Next, we used a quasi-Newton method with constraints
to find the optimal values for β and γ on (0, 1) by minimizing
the square root of the sum of the squared differences between
I, which is our prevalence, and its prediction Î over all time t
[27]. To establish initial conditions for model fitting, we estimate
the population size of North Carolina and the CRI to be
10,488,084 and 2,544,041, respectively, using information taken

from census estimates [24]. After obtaining the estimates 

and , to help assess model goodness-of-fit, we define the
following statistic:

Time is indexed from i 1, ... , n, and n is the number of
prevalences in the sample. Note that Ī is the average of the Ii’s.

To compare different scenarios for both North Carolina and the
CRI, we define an SIR model (SIR-pre) fit to the data from the
time of the outbreak until the time of the March 26, 2020,
Mecklenburg County stay-at-home order. Since Mecklenburg
County is the state’s second largest county, this could have a
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strong effect on the pandemic trajectory, both in the CRI and
the state; therefore, we have used this date to delineate the date
of the significant public health intervention. We further define
an SIR model (SIR-post) fit to the data from the time of the
outbreak until the end of data collection.

Given the major public health intervention implemented on
March 26, 2020, we modified the SIR model for both the CRI
and North Carolina to accommodate this (denoted SIR-int). SIR
models with interventions can be simulated using the EpiModel
package. This package provides tools for building, simulating,
and analyzing several classes of models for the population
dynamics of infectious disease transmission in epidemics. These
include not only deterministic compartmental models, but
stochastic individual contact models and network models. We
first fitted the SIR model as before to the data up until March
26 and extracted the estimates of β and γ. After March 26, we
retained the removal rate but modified the infection rate. We
set the preintervention probability of transmission equal to
0.015, which is consistent with other viral infectious diseases
like SARS and AIDS [28,29]. We then set the rate of contact
so that the probability of transmission multiplied by the rate of

contact equaled . To simulate the observed intervention, using
the default fourth-order Runge-Kutta Method (RK4) ODE
solver, we affected the probability of transmission by iteratively
decreasing the hazard ratio of infection, given exposure to the
intervention (step size of 0.0001) compared to no exposure,

until the fitted infection curve yielded a maximum .

For exploratory data analysis, we generated time plots for
prevalence, incidence, and both daily and cumulative deaths.
The basic reproduction number R0 is the average number of
secondary cases of disease caused by a single infected individual
over his or her infectious period in a population where all
individuals are susceptible to infection. To estimate R0, we
compute:

and are estimates taken from the model fit. Since the SIR
model is fully parameterized by β and γ, we also obtain

predictions and over all time t. The percentage of infected
at peak prevalence was computed by dividing the maximum Î
by the population size N, while the final percentage of infected

was computed as the limit 1 − (∞)/N. To estimate doubling
time and compute a 95% confidence interval, we modeled
incidence growth by fitting a loglinear model as a function of
time t using the incidence package.

Results

Figure 3 shows time plots of prevalence, cumulative deaths,
incidence, and daily deaths for North Carolina from the start of
the outbreak on March 2 up to and including April 7, 2020. The
first death was recorded in North Carolina on March 24.

Figure 4 shows time plots of prevalence, cumulative deaths,
incidence, and daily deaths for the CRI from the start of the
outbreak on March 11 up to and including April 7, 2020. The
first death was recorded in the CRI on March 25.

Notably, the prevalence and cumulative death curves for both
figures look exponential. Although both incidence curves are
increasing, the incidence curves become volatile after the
stay-at-home order went into effect. Prior to March 26, 2020,
doubling time was estimated to be 2.56 days in the CRI (95%
CI 2.11-3.25) and 2.94 days in North Carolina (95% CI
2.33-4.00). Once data after March 26 were included, the
doubling times increased and were estimated to be 4.70 days
in the CRI (95% CI 3.77-6.22) and 4.01 days in North Carolina
(95% CI 3.43-4.83).
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Figure 3. Time plots for NC. COVID-19: coronavirus disease; NC: North Carolina.
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Figure 4. Time plots for the CRI. COVID-19: coronavirus disease; CRI: Cities Readiness Initiative.

Tables 1 and 2 gives a synopsis of the model fits for each
location and model type. The estimated R0 of 2.36 for the CRI
prior to March 26, 2020, is more typical of the range of R0 values
given in the literature for COVID-19, while the value of 1.79
for North Carolina is substantially lower [5,30]. After the
intervention, the estimated R0 values for both locations drop to
a similar value, although this result was affected by a reduced
model fit. A comparison of the efficacy of intervention, defined

as 1 – the hazard ratio of infection, gives 0.25 for North Carolina
and 0.43 for the CRI. Using these hazard ratios to compute

estimates of R0 from March 26 onward ( 0, post), we derive
1.34 and 1.33 for North Carolina and the CRI, respectively.
This suggests that the COVID-19 outbreak is rapidly
decelerating in North Carolina and the CRI after the aggressive
public health intervention.

Table 1. Summary table of model fit for SIR-pre and SIR-post models in NC and the CRI.

0
ModelLocation

0.991.790.35850.6415SIRb-preNCa

0.841.610.38350.6165SIR-postNC

0.942.360.29800.7020SIR-preCRIc

0.651.760.36190.6381SIR-postCRI

aNC: North Carolina.
bSIR: susceptible-infected-removed.
cCRI: Cities Readiness Initiative.
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Table 2. Summary table of model fit for susceptible-infected-removed–int model in NC and the CRI.

0, post
Hazard ratioLocation

1.340.990.75NCa

1.330.990.57CRIb

aNC: North Carolina.
bCRI: Cities Readiness Initiative.

Figures 5 and 6 show plots of the three fitted models’ infection
curves for North Carolina and the CRI, respectively, out to April
7, 2020. The behavior in the two plots is the same. The SIR-post
model clearly demonstrates a lack-of-fit to the data. For the

SIR-int model, we noted the hinge point induces a change of
behavior from March 26 onward. The dotted orange line
represents the SIR-pre forecast projections from March 26
onward. They are much larger than the actual data.

Figure 5. Infection prevalence prediction curves for NC up to April 7, 2020. COVID-19: coronavirus disease; NC: North Carolina; SIR:
susceptible-infected-removed.
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Figure 6. Infection prevalence prediction curves for the CRI up to April 7, 2020. COVID-19: coronavirus disease; CRI: Cities Readiness Initiative;
SIR: susceptible-infected-removed.

Figures 7 and 8 show plots of the three fitted models’ infection
curves for North Carolina and the CRI, respectively, projected
out to the beginning of August. In both plots, we see the
dramatic effect of the public health intervention; that is, the
so-called “flattening of the curve.” There are two important
differences to note between North Carolina and the CRI region.
First, the CRI visibly shows relatively more flattening. This
effect can be best observed in Table 3 in the peak infected and
final infected columns. Moving from the pre to post to int
models within a location, the drop in percentage infected is
more pronounced in the CRI. In fact, for the SIR-int model, the
percentages are virtually the same for both locations; that is,
the CRI has “slowed down” to the state as a whole. Second, the
date of peak prevalence was initially 8 days earlier for the CRI
compared to North Carolina. However, using the current SIR-int
model, although both locations showed their infection curves

shifting forward in time, the date of peak prevalence is now 3
days later in the CRI (Table 3). To put this into context, for
North Carolina, the time duration from the start of the outbreak
to the peak prevalence has gone from 49 days to 70 days (43%
increase). However, for the CRI, the time duration from the
start of the outbreak to the peak prevalence has gone from 32
days to 64 days (100% increase).

Figures 9 and 10 show plots of the three fitted models’ removal
curves for North Carolina and the CRI, respectively, projected
out to the beginning of August. These plots support what we
have observed so far. With the continued intervention, the
removal curves are beginning to collapse, which is a behavior
we would expect. For the SIR-int model, both locations show
a removal plateau being reached roughly around the beginning
of July.
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Figure 7. Infection prevalence prediction curves for NC up to August 1, 2020. COVID-19: coronavirus disease; NC: North Carolina; SIR:
susceptible-infected-removed.
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Figure 8. Infection prevalence prediction curves for the CRI up to August 1, 2020. COVID-19: coronavirus disease; CRI: Cities Readiness Initiative;
SIR: susceptible-infected-removed.

Table 3. Summary table describing infection under three different models in NC and the CRI.

Final infected, n (%)Peak Kinetics

Peak infected, %Î2020 dateModelLocation

7,639,271 (73)123,601,6251,213,1905,673,270Apr 20SIRb-preNCa (n=10,488,084)

6,776,491 (65)83,007,244866,4046,614,437Apr 28SIR-postNC (n=10,488,084)

4,798,450 (46)32,209,037366,0377,913,011May 11SIR-intNC (n=10,488,084)

2,217,696 (87)21864,690537,0311,142,320Apr 12SIR-preCRIc (n=2,544,041)

1,826,953 (72)11773,254282,2571,488,530Apr 24SIR-postCRI (n=2,544,041)

1,163,824 (46)4543,37489,3241,911,343May 14SIR-intCRI (n=2,544,041)

aNC: North Carolina.
bSIR: susceptible-infected-removed.
cCRI: Cities Readiness Initiative.
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Figure 9. Removal prevalence prediction curves for NC up to August 1, 2020. COVID-19: coronavirus disease; NC: North Carolina; SIR:
susceptible-infected-removed.
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Figure 10. Removal prevalence prediction curves for the CRI up to August 1, 2020. COVID-19: coronavirus disease; CRI: Cities Readiness Initiative;
SRI: susceptible-infected-removed.

Discussion

Principal Results
In terms of model fitting, we state several observations. The
SIR-pre model represents a “worst case” scenario, as if the
disease were allowed to run its course. Hence, early in a
pandemic like this, it serves a useful purpose to help leaders
understand the consequences of taking no action, or delayed
action on implementing public health interventions. Beyond
that, a basic SIR model, especially one that is used after being
fit only to early pandemic data, imparts no further value for
informing pandemic response planning, and indeed may provide
errant forecasts. This diminished value also holds true when a
basic SIR model is fit to contemporary data, yet ignores the
effect of a public health intervention, as demonstrated by the
SIR-post model. Eventually, both such models will provide a
poor fit to the data. Because the behavior of any epidemic is
dynamic, any model requires constant monitoring, assessment
of fit to local data, and evaluation of efficacy as new data are
collected or additional research becomes available. Our SIR-int
model provides an example where this attention to model fit
and incorporation of regional influences allows for appropriate
model adaption and careful calibration thus generating the most
accurate predictions available to guide regional decision making
at the time.

Summarizing the effect of the intervention, the doubling time
for both locations is substantially slower after the intervention,
with the CRI doubling time estimate (4.70 days) now being
greater than North Carolina (4.01 days). The stay-at-home orders
strongly appear to be working as intended as the infection curves
for both locations are now becoming flatter (and shrinking),
with peak infection prevalence now being pushed towards
mid-May, both location’s recovery curves starting to fall, and
measurable intervention effects on the hazard ratio and R0. It is
interesting to note that our results match rigorous Monte Carlo
simulation studies we conducted weeks beforehand.

If we compare the two locations, the estimated R0 of 2.36 for
the CRI prior to March 26, 2020, is more typical of the range
of R0 values in the literature for COVID-19, while the value of
1.79 for North Carolina is substantially lower. This could be
attributed to the fact that the CRI contains the largest city in
North Carolina, and one of the United States’ busiest airports,
setting the stage for this region to have become another
COVID-19 hot spot. It is interesting to note that the North
Carolina SIR-int model showed a better fit when the changepoint
was also set to March 26, rather than March 30 when the
statewide stay-at-home order went into place. One possible
explanation for this could be that as the pandemic began in
earnest, the general population’s fear of the virus also increased,
perhaps causing most North Carolina citizens to shelter-in-place
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prior to the order going into effect. Another explanation is that
Mecklenburg County accounts for almost 11% of the North
Carolina population and so the effect of the county order directly
impacted adjoining counties in the CRI, thus influencing the
observed effect at the state level. Two additional interesting
observations highlight the critical influence of spatial variation.
First, the CRI infection curve evidences relatively more
flattening and a later peak infection date. Second, the
intervention effect in the CRI also appears stronger. The likely
explanations for these differences are the Mecklenburg County
stay-at-home policy going into effect 5 days before the state
order, the different reaction of the local population to the order
and its related messaging, and innumerable other unknown
covariates such as early canceling of religious services, public
gathering policies, and canceling of elective medical visits and
procedures.

Limitations
There are limitations to the SIR model. Some take issue with
its deterministic form, although one could fit a Bayesian SIR
model to make it stochastic. Perhaps the biggest limitation is
that β and γ could be time-varying due to different forms of
intervention (enhanced personal protective measures and social
distancing). However, as we have shown in this paper, we can
easily leverage pre-existing R functions to incorporate a
changepoint that modifies the probability of transmission to
acknowledge an important public health intervention. It is also
possible to customize the SIR model within R to define more
advanced and different transition processes, and then
parameterize and simulate those models to accommodate
insights from additional research. In this way, one can also
examine “what if” scenarios or assess model robustness through
sensitivity analysis. The SIR model is simple to understand and
easier to fit, as opposed to other deterministic compartmental
models, such as SEIR, or stochastic individual contact models
[31]. However, these more advanced models will play an
increasingly important role in forecasting and understanding
the dynamics of this evolving pandemic.

The lack of widespread COVID-19 testing, both for symptomatic
and asymptomatic individuals, presents a major limitation of
unknown scale and implications to forecasting models [32,33].
Data sources are known to undercount cases, only include
asymptomatic illness by chance, and define cases inconsistently
based on variable testing criteria between and within
geographies. Collectively, these contribute to imperfect
detection. As a result, high-level models may not comprehend
the full extent of the outbreak, creating challenges in producing
accurate forecasts. Our decision to base our modeling strategy
on estimated latent prevalence addresses this inconsistency by
adjusting observed prevalence counts. Modeling only the
observed prevalence has the effect of shifting the SIR curves
ahead in time by several days or more. Although our estimate
of the detection probability (0.14) is heuristically motivated, a
thorough search of the literature supports our use of this estimate
as reasonable. Future work will focus on refining this estimate
as new research appears and allowing it to vary as a function
of time.

Comparison With Prior Work
Although there is a plethora of models that estimate the impact
of COVID-19 in the United States, there are far fewer that give
localized projections. We note that our mid-May date for the
peak infection curve is roughly 3-4 weeks later than the
projection from the often-cited model from the Institute for
Health Metrics and Evaluation [34]. The latter uses a Bayesian
generalized nonlinear mixed model to examine cumulative death
rates and assumes a strict social distancing policy is in place.
Using data up until March 13, 2020, Columbia University
reported a mid-May peak time for North Carolina under no
control measures and a start of July peak time under some
control measures [35]. The authors caution that their
metapopulation SEIR model is designed to capture national
trends, and local projections should be viewed as broad
estimates. Other models, such as the CHIME model from the
University of Pennsylvania Health System, relied on data from
three Pennsylvania hospitals to estimate hospital capacity and
clinical demand and was not designed to capture changing
regional mitigation strategies [36].

Policy and Practice Implications
In the context of limited national policy guidelines to reduce
COVID-19 transmission, provide resources for health care
system pandemic preparedness, and mitigate health
consequences, state and local authorities must have reliable,
timely, and geographically specific models to manage the
unfolding crisis. We provided our local forecasts to health
system leaders and public health officials to help guide regional
planning. Because we regularly refit our models to local data,
these served as a flexible tool enabling first proactive
preparedness based on the initial pandemic trajectory, followed
by timely pivoting of capacity planning to match the observed
disease deceleration. Furthermore, locally accurate forecasts
enhance the relevance of forecasting’s role in public health
communication [37]. For example, the potential disease impact
on local health system capacity may help communities
understand the rationale for public health interventions, whereas
the positive effects of community mitigation may provide
reinforcement for maintaining strategies like social distancing
and enhanced hygiene.

Using regional and state data, we demonstrate how
epidemiological modeling based on local context is critically
important to informing pandemic preparedness for health
systems and policy leaders. The results highlight the importance
for such models to be created using local data, as opposed to
running a simulation that makes many assumptions about the
truth of parameter values. All models should be continuously
recalibrated and adapted to the rapid, continuously changing
situations inherent to a pandemic. A one-size-fits-all approach
to the underpinning forecasting model or reliance on data that
does not incorporate local context, sets the stage for misguided
forecasting. Additionally, our study shows that, although a
classic SIR model may perform well in the early days of the
pandemic, it begins to lose relevance with the emergence of
additional influences like social distancing and enhanced
awareness of personal hygiene.
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The SIR-int model has high predictive accuracy based on data
collected from March 2 to April 7, 2020, for both North Carolina
and the CRI and is able to demonstrate clear, compelling
evidence of the efficacy of a stay-at-home order. By modeling
estimated latent prevalence as we have done in this paper,
instead of observed prevalence, a lag delay in projecting peak
infection can be avoided, reducing the consequences to leaders
who require an accurate timeline for planning purposes (eg,
surge planning of hospital beds, supplies, and personnel).

Conclusions
All other things being equal, if residents continue to observe
the stay-at-home orders, maintain attention to social distancing,
and increase personal hygiene, then this wave of the COVID-19

outbreak would essentially be over by mid-July. It is possible
that we could see continued flattening and shrinking of the
infection curve in which case our forecast results would adapt
commensurately. It is also possible that infection prevalence
could oscillate at a low level over time, in which case more
advanced modeling and methods would be needed. Our results
highlight the importance of incorporating local context into
pandemic forecast modeling, as well as the need to remain
vigilant and informed by the data as we enter into a critical
period of the outbreak. Although there will regrettably still be
tragic loss of life and many North Carolina citizens infected by
the coronavirus, this scenario pales in comparison to what could
have been a far worse conclusion.
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Abbreviations
COVID-19: coronavirus disease
CRI: Cities Readiness Initiative
ODE: ordinary differential equations
RK4: fourth-order Runge-Kutta method
SARS: severe acute respiratory syndrome
SIR: susceptible-infected-removed
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