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Abstract

Background: Many public health departments use record linkage between surveillance data and external data sources to inform
public health interventions. However, little guidance is available to inform these activities, and many health departments rely on
deterministic algorithms that may miss many true matches. In the context of public health action, these missed matches lead to
missed opportunities to deliver interventions and may exacerbate existing health inequities.

Objective: This study aimed to compare the performance of record linkage algorithms commonly used in public health practice.

Methods: We compared five deterministic (exact, Stenger, Ocampo 1, Ocampo 2, and Bosh) and two probabilistic record
linkage algorithms (fastLink and beta record linkage [BRL]) using simulations and a real-world scenario. We simulated pairs of
datasets with varying numbers of errors per record and the number of matching records between the two datasets (ie, overlap).
We matched the datasets using each algorithm and calculated their recall (ie, sensitivity, the proportion of true matches identified
by the algorithm) and precision (ie, positive predictive value, the proportion of matches identified by the algorithm that were true
matches). We estimated the average computation time by performing a match with each algorithm 20 times while varying the
size of the datasets being matched. In a real-world scenario, HIV and sexually transmitted disease surveillance data from King
County, Washington, were matched to identify people living with HIV who had a syphilis diagnosis in 2017. We calculated the
recall and precision of each algorithm compared with a composite standard based on the agreement in matching decisions across
all the algorithms and manual review.

Results: In simulations, BRL and fastLink maintained a high recall at nearly all data quality levels, while being comparable
with deterministic algorithms in terms of precision. Deterministic algorithms typically failed to identify matches in scenarios
with low data quality. All the deterministic algorithms had a shorter average computation time than the probabilistic algorithms.
BRL had the slowest overall computation time (14 min when both datasets contained 2000 records). In the real-world scenario,
BRL had the lowest trade-off between recall (309/309, 100.0%) and precision (309/312, 99.0%).

Conclusions: Probabilistic record linkage algorithms maximize the number of true matches identified, reducing gaps in the
coverage of interventions and maximizing the reach of public health action.

(JMIR Public Health Surveill 2020;6(2):e15917) doi: 10.2196/15917
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Introduction

Background
A central goal of public health surveillance is to provide
continuous and systematically collected health-related data to
inform public health practice and guide interventions to improve
individual and population health [1]. For example, health
departments in the United States use HIV surveillance data [2-5]
to identify people living with HIV (PLWH) who are not engaged
in HIV care to provide assistance and services to facilitate care
engagement—a strategy known as Data to Care [6-12]. In this
way, surveillance data are used to improve both HIV care and
prevention as well as to reduce inequities in access and
utilization of HIV care resources to improve the well-being of
vulnerable populations with HIV.

When used in isolation from other sources of information, public
health surveillance can be inefficient and ineffective. In the case
of Data to Care, many PLWH who appear to be out of care in
HIV surveillance data because they have not had a recent HIV
viral load or CD4 test have actually moved out of the jurisdiction
and engaged in HIV care elsewhere [4,13,14]. Thus, Data to
Care strategies that rely entirely on HIV surveillance data
involve time-consuming individual case investigations to
determine whether persons are truly out of care, although that
information is often readily available in other data sources, such
as Ryan White–funded care programs, sexually transmitted
disease (STD) surveillance, electronic health records, or HIV
surveillance systems in other jurisdictions. The Centers for
Disease Control and Prevention (CDC) is supporting efforts to
match surveillance data between jurisdictions through programs
such as the black box system, in which HIV surveillance data
from multiple jurisdictions are matched to identify PLWH who
have moved from one jurisdiction to another [15,16]. In addition,
several health departments are seeking to improve real-time
record linkage between HIV and STD surveillance to provide
HIV care relinkage services as part of STD partner services
[12,17].

Despite the widespread use of record linkage techniques
throughout public health, little information is available to guide
this process from the perspective of algorithm accuracy and the
implications of missing true matches and identifying false
matches. There are two primary approaches to record linkage:
deterministic algorithms and probabilistic algorithms [18-20].
Deterministic algorithms use exact matching on specific
variables or a set of matching rules to identify matched record
pairs [18]. In contrast, probabilistic algorithms use statistical
methods to identify the optimal set of matches, which often
involves estimating and thresholding the probability that two
records are a match [18,21,22]. Probabilistic algorithms typically
have higher recall than deterministic algorithms, especially
when linking databases that have high rates of data quality errors
[23,24]. However, probabilistic algorithms also tend to be more
computationally complex than deterministic algorithms and

may require more computing resources to implement in practice
[18,20].

Recent studies of record linkage involving health department
HIV/STD surveillance data have presented deterministic
algorithms to link HIV surveillance data with other data sources,
improve the quality of HIV surveillance data, and facilitate Data
to Care investigations [16,25]. These algorithms are enticing
because they are not computationally complex and can be
executed quickly [18-20]. As they are rule based, deterministic
algorithms are intuitive to understand, easy to implement, and
easy to modify. In addition (and perhaps more importantly),
deterministic algorithms typically have low rates of
false-positive matches. As a major concern of working with
HIV data is inadvertent disclosure of HIV status, minimizing
false matches is crucial to preserving individual privacy.
However, although deterministic algorithms may be highly
specific, they may be overly conservative in identifying matches,
leading to large numbers of missed matches. Missed matches
represent missed opportunities to deliver public health
interventions to individuals who need them, and depending on
their population distribution, missed matches could magnify
health inequities. Probabilistic algorithms could potentially offer
increased sensitivity compared with deterministic algorithms,
while still identifying a small number of false matches.

Objectives
The performance of deterministic algorithms compared with
probabilistic algorithms in the context of public health record
linkage is unknown. The goal of this study was to compare the
recall, precision, and computation time of record linkage
algorithms often used in HIV/STD programs to better define
the trade-offs between these algorithms in a variety of record
linkage scenarios.

Methods

Study Design
We compared deterministic and probabilistic record linkage
algorithms using two approaches. First, we compared the recall,
precision, and computation time of different algorithms using
paired simulated datasets, varying the quality of the data and
overlap between datasets (ie, the proportion of true matches in
each pair of datasets). Second, we conducted a real-world
matching scenario involving public health surveillance data
from Public Health—Seattle & King County (PHSKC) to assess
whether our simulation findings were generalizable to record
linkage involving real datasets, where the exact error rate and
overlap are difficult to assess.

This study received a human subjects research exemption from
the University of Washington Institutional Review Board
because it involves the use of simulated data and public health
surveillance data used to inform and improve existing
operational public health department activities.
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Matching Algorithms
We compared seven algorithms used to conduct record linkage
involving public health surveillance data: exact matching, four
deterministic, and two probabilistic algorithms (Table 1). The
exact matching algorithm identifies the matched pairs of records
between two datasets using an exact match on first name, last
name, and year of birth. This was chosen as a base case
algorithm because it uses the simplest rule set to match two
datasets. The four deterministic algorithms (Stenger, Ocampo
1, Ocampo 2, and Bosh) define rule sets for identifying a match
using patient-identifying information, such as first name, last
name, date of birth, gender, and race (Table 1) [16,25]. The
Ocampo and Bosh algorithms also include matching criteria
that require social security numbers (SSNs), which were omitted
from our study because we did not have SSNs in the datasets
used. In addition, the original Ocampo and Bosh algorithms
used sex at birth, whereas we have used current gender. These
modifications to these algorithms are noted in Table 1. These
algorithms were chosen because they have been recently cited
as matching algorithms used to conduct record linkage involving
HIV surveillance data. Notably, the Ocampo algorithms have
been used by the CDC to match interstate HIV surveillance data

[15]. The Stenger algorithm was obtained directly from the
PHSKC HIV/STD program, where it has been implemented for
several record linkage projects involving HIV surveillance data.
This algorithm was also recently used by the Mississippi State
Department of Health to link their HIV and STD surveillance
databases to integrate HIV care relinkage services into STD
partner services [17].

The two probabilistic algorithms are fastLink and beta record
linkage (BRL). fastLink is an implementation of the traditional
Fellegi-Sunter approach to record linkage [21,26]. This approach
uses comparisons of the shared fields between two datasets (ie,
first name, last name, year of birth, month of birth, day of birth,
gender, and race) to compute the conditional probability that
each record pair is a match. Record pairs are classified as
matches or nonmatches based on thresholding these conditional
probabilities. BRL is similar to the Fellegi-Sunter approach but
uses a Bayesian implementation to explore the space of plausible
matching configurations between the datafiles [22]. By using
a Bayesian approach, BRL allows for quantifying uncertainty
on the matching decisions and finds the optimal set of matches
by minimizing the expected misclassification errors based on
a loss function.
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Table 1. Record linkage algorithms.

SourceMatch criteriaAlgorithm

Not applicableExact match on first name, last name, AND year of birthExact match

Public Health Seattle King
County and Avoundjian et al
[17]

Best record pairs with a score of 50+ based on the following criteria:Stenger

• +20 points: first 3 letters of the last name and 2 letters of the first name
• +15 points: exact match on the full name
• +15 points: match on birth year (±2 years)
• +5 points: exact match on the year of birth
• +10 points: exact match on the month of birth
• +5 points: exact match on the day of birth

Ocampo et al [16]Record pairs that met the following criteria:Ocampo 1

• Exacta: last name, first name, date of birth, race, genderb, AND SSNc OR
• Very higha: (last name, first name, date of birth, AND genderb) OR SSN OR
• High: last name, first name, date of birth, AND (genderb OR race)

Ocampo et al [16]Record pairs that matched in Ocampo 1 OR met the following criteria:Ocampo 2

• Medium high: last name, first name (Soundex), date of birth, or genderb

Bosh et al [25]Records that met any of the following matching keys:Bosh

• Full last name+first 6 letters of first name+full date of birth
• First letter of the last name+letters 3 to 10 of the last name+letters 2 to 9 of the first name+full

date of birth
• Letters 2 to 7 of the last name+first 6 letters of the last name+full date of birth
• First 2 letters of the last name+first 3 letters of the first name+full SSN+full date of birthd

• Full last name+first 3 letters of the first name+full date of birth
• Letters 3 to 5 of the last name+first 3 letters of the first name+full date of birth
• First 4 letters of the last name+first 4 letters of the first name+full date of birth
• First letter of the last name+letters 3 to 10 of the last name+letters 2 to 9 of the first

name+month and year of birthe

• First letter of the last name+letters 3 to 10 of the last name+letters 2 to 9 of the first name+day

and year of birthe

• Full SSNd,e

• First 5 letters of the last name+first 4 letters of the first name+month and year of birthe

• First letter of the last name+letters 3 to 10 of the last name+letters 2 to 9 of the first

name+(day OR month of birth)+year of birth, switching the first and last names in 1 datasete

• First 5 letters of the last name+first 4 letters of the first name+month and year of birth,

switching the first and last names in 1 datasete

Enamorado et al [26]Calculates match/nonmatch weights using an expectation maximization algorithm and computes
a match probability for each record pair. Pairs are classified as a match if their match probability
is above 0.85. The following fields are used to estimate the match probability:

fastLink (Fellegi-
Sunter)

• First name and last name: partial match using Jaro Winkler string distance, with 3 agreement

levelsf

• Year of birth, month of birth, day of birth, gender and race: exact match

Sadinle [22]Uses a Gibbs sampler to sample plausible matching configurations and uses a loss function to
identify the optimal set of matching pairs. The following fields are used by the algorithm:

Beta Record Link-
age

• First name and last name: partial match using Levenshtein string distance, with 4 agreement

levelsg

• Year of birth, month of birth, day of birth, gender, and race: exact match

aWe omitted social security number from the exact and very high match tiers because of lack of social security number data.
bOriginal algorithm used birth sex instead of gender.
cSSN: social security number.
dKey was not implemented because of lack of social security number data.
eThese keys require the following additional criteria to be met to be considered a match: exact match on gender OR full date of birth AND first name
in the HIV dataset not among the 20 most common names in the HIV dataset AND last name in the HIV dataset not among the 20 most common names
in the HIV dataset. Note: the original algorithm used birth sex instead of gender in these criteria. In addition, the original criteria also required a match
on digits 1 to 4 and 6 to 9 of social security number, which was not implemented because of lack of social security number data.
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fFastLink’s default agreement levels for partially matched fields: 0 to 0.87: not a match, 0.88 to 0.91: partial match, and 0.92+: exact match.
gBeta record linkage’s default agreement levels for partially matched fields: 0 to 0.49: not a match, 0.5 to 0.74: probable nonmatch, 0.76 to 0.998:
probable match, and 0.99+: exact match.

Hypothetical Matching Scenario
To compare record linkage algorithm performance in the context
of public health action, we considered the scenario of linking
records between HIV and STD surveillance data to identify
syphilis cases reported in the past year among PLWH. Such
record linkage is conducted by many health departments in the
United States as a way to integrate HIV care engagement
activities into syphilis partner services. We assumed that both
HIV and STD surveillance data contain the following shared
fields that can be used for record linkage: first name, last name,
date of birth (year, month, and day), gender, and race.

Simulation Study
Simulations were used to compare the accuracy of the selected
record linkage algorithms in scenarios with varying dataset size,
overlap, and measurement error. GeCo (Australia National
University, Canberra, Australia), a Python-based program that
creates realistic datasets of personal information, was used to
generate pairs of datasets based on STD surveillance data from
PHSKC’s partner services data system, known as Public Health
Information Management System (PHIMS) [27]. In each
simulation, we generated two datasets containing records of
2000 individuals each. A number of individuals were included
in both datasets, which we refer to as the overlap between the
datasets. We considered scenarios where 5%, 10%, 25%, and
50% of individuals overlapped. To generate each pair of
datasets, we used the distribution of values for each field from
PHIMS. Using PHIMS, we created frequency tables for first
and last names, year of birth, gender (male, female, transgender
male, and transgender female), and race/ethnicity (Asian, black,
Hispanic/Latinx, Native American/Alaska Native, Native
Hawaiian/other Pacific Islander, white, other, and multiple race).
We created a joint frequency table for month and day of birth,
giving an equal sampling weight for each day of the year. For
each individual, a value was sampled from each frequency table
to generate a number of clean records, which were then
corrupted to create the datasets. For each pair of datasets, the
first dataset consisted of clean records, and the second dataset
consisted of corrupted records. Each corrupted record has a
fixed number of erroneous fields that are selected at random.
For each dataset size and overlap scenario, we generated datasets
containing 1, 2, 3, 4, and 5 erroneous fields per record. The
types of errors introduced into each field were selected at
random from a set of possibilities that vary from field to field
(Multimedia Appendix 1). The types of errors are edits
(insertions, deletions, substitutions, and transpositions of
characters in a string), keyboard (typing errors based on a
QWERTY keyboard layout), phonetic (using a list of predefined
phonetic rules), value swap (an entire value is swapped with
another value selected from a predefined list of possible values),
and missing values. The probability of missing values was
determined by the frequency of missing values for each field
in PHSKC’s STD surveillance data. The probabilities of the
remaining error types were defined based on the default
probabilities provided by GeCo.

We matched each pair of datasets using each record linkage
algorithm. After simulated data were created, we did not further
modify the data (eg, modifying date values with missing date
parts) before inputting them into any of the algorithms. We
measured each algorithm’s recall (ie, sensitivity, the proportion
of true matches identified by the algorithm) and precision (ie,
positive predictive value, the proportion of algorithm matches
that were true matches). Each matching scenario was simulated
100 times, and we calculated the mean and standard deviation
of recall and precision for each algorithm across these replicates.
In addition, we measured the computational performance of
each algorithm in terms of their average runtime. We ran each
matching algorithm 20 times while fixing the overlap between
the two datasets (50% of the individuals in the second dataset
overlap with those in the first dataset) and the number of
erroneous fields (one erroneous field per record) and varying
the size of the second dataset (10%, 25%, 50%, and 100% of
the first dataset). We then calculated the mean and standard
deviation of computation time for each algorithm.

Real-World Matching Scenario
In our real-world matching scenario, we linked PHSKC HIV
(Electronic HIV/AIDS Reporting System [eHARS]) and STD
(PHIMS) surveillance data to identify PLWH who had a syphilis
diagnosis in 2017. In 2017, there were 885 case-patients with
a syphilis infection reported in King County. There were 17,415
PLWH in eHARS, which includes all persons living with
diagnosed HIV in Washington state. As there is no shared unique
identifier between PHIMS and eHARS, we did not have a gold
standard against which we could compare each matching
algorithm’s performance. Thus, we defined true matches and
true nonmatches using a composite of the matching decisions
made by each of the algorithms (composite standard). If all the
algorithms identified a pair of records as a match, we considered
it a true match. If none of the algorithms identified a pair of
records as a match, it was considered a true nonmatch. When
there was a lack of consensus between the record pairs, we
manually reviewed the records to determine whether they were
a true match or nonmatch. As in the simulations described
above, we made no modifications to any date values with
missing date parts before inputting them into the algorithms
(<0.1% of records had missing date parts). We calculated the
precision and recall of each algorithm. In addition, we measured
the value and error added by each algorithm beyond exact
matching, which we considered as the baseline algorithm. We
measured value added as the number of additional true matches
and error added as the additional false matches identified by
each algorithm over and beyond exact matching.

Dataset generation and corruption were done using GeCo and
Python 2.7. All other analyses were done using R version 3.5.2.
Python and R programs used to perform simulations, perform
the real-world match, and measure computational performance
are provided as supplemental material (Multimedia Appendix
2).
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Results

Simulations
The selected deterministic algorithms had a lower recall than
the selected probabilistic algorithms, regardless of the overlap
or the number of erroneous fields per record (Figure 1 and
Multimedia Appendix 1). The exact algorithm had a recall of
between 56% (5% overlap) and 57% (50% overlap) when there
was one erroneous field per record, and its recall decreased as
the number of erroneous fields per record increased. The exact
matching algorithm’s precision was between 99% and 100%
when there were three or fewer erroneous fields per record
(Multimedia Appendix 1). The Stenger, Ocampo 1, and Ocampo
2 algorithms had similar recall and precision but had lower

recall than the exact match. When there was only one erroneous
field, both the Stenger and Ocampo 1 algorithms had a recall
of 30%, whereas the Ocampo 2 algorithm had a recall of 39%,
regardless of the dataset size and overlap. The precision for all
three algorithms was 100% when there was only one erroneous
field per record. All three algorithms failed to identify any
matches when there were at least three erroneous fields. The
Bosh algorithm had the highest recall of the five deterministic
algorithms. When there was one erroneous field per record, the
Bosh algorithm’s recall ranged between 74% (5% overlap) and
75% (50% overlap). However, its recall decreased to less than
20% in scenarios with at least three erroneous fields per record.
The precision for the Bosh algorithm was high across all
scenarios (between 88% and 100%).

Figure 1. Simulations: record linkage algorithm recall/precision.

fastLink and BRL had better recall than the deterministic
algorithms. In the one erroneous field per record scenario, both
fastLink and BRL had about 100% recall, regardless of the
dataset overlap. In the three erroneous field scenario, fastLink’s
recall ranged between 73% (5% overlap) and 85% (50%
overlap), whereas BRL’s recall ranged between 94% and 99%.
In the five erroneous field scenario, fastLink’s recall was
between 8% and 27%, whereas BRL’s recall was between 74%
and 92%. The precision of both algorithms was high across all
scenarios (fastLink: 97%-100% and BRL: 85%-100%).

Computational Performance
The exact, Ocampo, and Stenger algorithms took an average of
about 0.01 seconds to compute, even when the datasets being

compared contained 2000 records (Figure 2). The Bosh
algorithm took between 2 seconds and 18 seconds to compute,
depending on the dataset size. The two probabilistic algorithms
took a longer time to compute than all the deterministic
algorithms. fastLink took an average of between 2.3 min and 4
min to compute. On average, BRL performed faster than
fastLink when the second dataset contained 200 records (1.5
min vs 2.3 min) but was the slowest algorithm in every other
scenario. BRL, on average, took between 3.6 min (second
dataset N=500) and 14.1 min (second dataset N=2000) in the
remaining scenarios.

JMIR Public Health Surveill 2020 | vol. 6 | iss. 2 | e15917 | p. 6http://publichealth.jmir.org/2020/2/e15917/
(page number not for citation purposes)

Avoundjian et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Record linkage algorithm matching computational performance. Average computational time after 20 replications in scenario where overlap
(50%) and number of erroneous fields per record (1) were fixed and size of second dataset was varied (10%, 25%, 50%, and 75% of first dataset
[N=2000]).

Real-World Matching Scenario
Among the 885 case-patients with any syphilis infection in King
County in 2017, a majority (760/885, 85.8%) were men who
have sex with men (MSM). Nearly half of the patients were
white (436/885, 49.3%), 12.8% (113/885) were black, and
20.5% (182/885) were Hispanic/Latinx. Among the 17,415
PLWH in PHSKC’s eHARS database, 14,887 (85.48%) were
male (12,640/17,415, 72.58% MSM), 10,293 (59.10%) were
white, 2965 (17.10%) were black, and 2376 (13.67%) were
Hispanic/Latinx.

There were 367 record pairs classified as a match by any of the
algorithms. Of these, the algorithms disagreed on 113 record
pairs, which were manually reviewed to determine their true
match status. According to our composite standard, there were
309 true matches, representing 35% of all case-patients with a
syphilis infection in 2017 and 1.8% of all PLWH in eHARS.
The exact matching algorithm identified 256 true matches and
one mismatch (Multimedia Appendix 3). Compared with this
algorithm, the Stenger and Ocampo 1 algorithms identified two
fewer true matches and did not have any mismatches. The

Ocampo 2 algorithm identified three more matches than the
exact matching algorithm and also had no mismatches. The
Bosh algorithm identified 36 additional true matches but also
identified 20 additional false matches. Both fastLink and BRL
identified 53 additional true matches. However, fastLink had
33 additional false matches, whereas BRL only had two
additional false matches.

Compared with our composite standard, all the deterministic
algorithms had lower recall than the probabilistic algorithms
(Figure 3). The recall of the exact, Stenger, Ocampo 1, and
Ocampo 2 algorithms ranged between 82% and 84%. The recall
of the Bosh algorithm was about 94%, and the recall of fastLink
and BRL was 100%. The precision of the deterministic
algorithms (except for Bosh) was overall higher than the
precision of the probabilistic algorithms. The Stenger, Ocampo
1, and Ocampo 2 algorithms had 100% precision, whereas the
exact algorithm had 99.6% precision. The precision of the Bosh
algorithm was about 93%, and the precision of fastLink was
about 90%. BRL had a precision of 99%, which was the lowest
trade-off between recall and precision.
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Figure 3. Real-world matching scenario: record linkage algorithm recall and precision. PPV: positive predictive value.

Discussion

Principal Findings
Using simulations, we found that the probabilistic algorithms
we evaluated had substantially better recall than the selected
deterministic algorithms, while the deterministic algorithms
had higher precision. However, in scenarios with three or more
erroneous fields per record, nearly all the deterministic
algorithms (except the Bosh algorithm) failed to identify any
matches, which diminishes their utility in record linkage
scenarios where data quality is poor. In contrast, both BRL and
fastLink offered high recall without sacrificing much in terms
of precision. In addition, in a real-world comparison, BRL had
the highest recall with only a minimal sacrifice in precision and
was the best performing algorithm overall.

Our findings suggest that although deterministic algorithms
offer a high degree of precision, they are highly sensitive to
data quality issues and may miss a substantial number of
matches even in situations where there is only one erroneous
field per record. The recall of deterministic algorithms can be
improved by implementing more matching rules (as in the case
of the Bosh algorithm [25]), but this also results in lower
precision. Furthermore, even with additional match keys,
deterministic algorithms still do not reach the level of recall
offered by probabilistic algorithms.

Surprisingly, the Bosh and fastLink algorithms had low precision
in our real-world match, despite having very high precision in
simulations. For fastLink, this may be a limitation of the
algorithm, which tends to lose precision in situations where the
overlap between datasets is small or there is a large difference
in the size of the datasets being linked [26]. The lack of SSN
may have led to the Bosh algorithm’s lower precision in the
real-world match. The false matches identified by the Bosh
algorithm were identified because they met matching keys 8 to
14, which require additional criteria to be considered a match
(Table 1). As noted in the original Bosh article, these additional

criteria were added to reduce possible false matches. Although
we implemented most of the additional criteria, they include a
partial match on SSN (ie, match on digits 1-4 and 6-9 of SSN),
which was omitted from this study. If SSN was included, we
may have eliminated the false matches identified by the less
strict matching keys, resulting in a higher observed precision
for this algorithm.

Public Health Implications
In the context of public health action, choosing a record linkage
algorithm that prioritizes the identification of true matches is
critical to preventing gaps in the provision of public health
interventions to those who are most in need of assistance.
Choosing overly conservative record linkage algorithms that
prioritize precision over recall could increase gaps among these
groups in public health prevention delivery and may amplify
disparities among marginalized populations. Previous studies
have demonstrated that imperfect record linkage algorithms
may disproportionately miss women, older individuals, and
persons of minoritized races/ethnicities and lower
socioeconomic status [28-31]. The use of probabilistic record
linkage methods (such as BRL and fastLink) or more complex
deterministic algorithms (such as the Bosh algorithm) would
result in a large increase in the reach of public health
interventions relying on the linkage of data systems, which
offsets small decreases in match precision.

A disadvantage of probabilistic algorithms is their computational
complexity. While the computational time of the deterministic
algorithms is generally under 1 second, both probabilistic
methods took minutes to compute. For applications that require
near-instant record linkage of large databases, probabilistic
algorithms may not be practical because of their slow
computation time; however, such applications may be relatively
uncommon in practice. When record linkage is done on a daily
or less frequent basis, the increased computation time of fastLink
and BRL is less problematic. Importantly, fastLink was designed
to outperform other approaches to probabilistic record linkage
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algorithms when datasets are very large [26]. In these situations,
fastLink may have even greater gains compared with slower
methods such as BRL, although it may still be slower than
deterministic algorithms. In addition, because of their increased
computational complexity, BRL and fastLink require more
memory and processing power than the deterministic algorithms.
Both BRL and fastLink required over 4 GB of RAM and a 64-bit
version of R, which may be a limitation of using these
algorithms in resource-limited settings. However, 64-bit
computing and 4 or more GB of RAM are becoming
increasingly common, suggesting that these barriers would be
less problematic in the future. As of May 2019, the estimated
minimum cost of a new business desktop with these
specifications is about US $400.

Another advantage of deterministic algorithms is that these are
easier to implement in different programming languages.
Matching rules used by the deterministic algorithms we
evaluated are relatively intuitive and translatable to multiple
programming languages. Although fastLink has thorough
documentation and support, modifications to the algorithm
require an understanding of the Fellegi-Sunter record linkage
methodology and the R programming language [26].
Modifications to BRL are particularly challenging, as there is
currently limited documentation on the method [22]. In addition,
much of the BRL algorithm is implemented in the C
programming language, an additional prerequisite to making
modifications to the algorithm. To address these barriers, we
have provided R programs for each algorithm in a Load, Clean,
Func, Do framework, a portable and flexible organizational
structure for developing R projects, to implement them in
practice (Multimedia Appendix 2) [32].

Limitations
Our study has several limitations. First, in our simulations, we
assumed a uniform error rate across all records in each matching
scenario. As our probabilistic algorithms use information from
all records, this may have misrepresented how well they perform
when linking datasets that contain a wide range of erroneous
fields per record, including records that have 0 erroneous fields.
Indeed, in our real-world match scenario, in which record quality
was more variable, BRL had much higher precision than in our
simulations, suggesting that it is able to leverage information
from record pairs that have high data quality to make decisions
about record pairs that have poor data quality.

Second, both the Bosh and Ocampo algorithms include matching
keys that involve SSN, which is not available in PHSKC’s STD
surveillance database. This may have resulted in an
underestimation of the performance of these algorithms. In the
Bosh algorithm, SSN is used as additional criteria to reduce
mismatches for matching keys that are very broad, and its
inclusion may have resulted in improved precision. In the
original Bosh study, 1.7% of true matches were identified using
SSN alone, suggesting that if SSN was available, we would
have observed a very slightly improved recall of the Bosh
algorithm, although it probably would not have reached the
levels of recall observed with the probabilistic algorithms [25].
In addition, if SSN had been available, it could have also been

included in both probabilistic algorithms, which could have
possibly improved their recall and precision as well.

Third, we have only considered deterministic and probabilistic
algorithms that can be implemented in R and have excluded
algorithms that require third-party software (eg, the Link King
and CDC’s Link Plus) and novel record linkage methodologies
(eg, active, supervised, and unsupervised learning algorithms).
Third-party software for record linkage offers a point-and-click
interface for implementing probabilistic (and deterministic)
record linkage methodologies. Both the Link King and Link
Plus, two popular applications for conducting record linkage
involving public health surveillance databases, use the
Fellegi-Sunter methodology for conducting probabilistic record
linkage, which is the same methodology used by fastLink.
Supervised learning–based and active learning–based algorithms
may yield greater match quality than probabilistic or
deterministic algorithms in cases where databases are to be
linked prospectively or when training data are available (in the
case of supervised learning) [19]. These algorithms use data on
record pairs that are known to be matches or nonmatches to
develop a predictive model that is used to classify record pairs
in the databases that are being linked as matches or nonmatches.
As these algorithms require a training dataset of known matches
and nonmatches (something neither the probabilistic nor the
deterministic algorithms we evaluated required), we chose to
exclude them from our analysis. Further research is needed to
assess the performance and utility of these techniques in
conducting record linkage for public health action as well as
the feasibility of implementing them in practice.

Finally, for the probabilistic matching algorithms we evaluated,
we only considered their default parameterizations. We chose
to evaluate these algorithms using their default (or
out-of-the-box) implementations, as this would represent a
baseline level of their performance. Modifying the parameters
for fastLink and BRL, such as the string distance measure used
to match string variables or the number of partial agreement
levels, could improve their performance. Importantly, fastLink
and BRL use different default methods to match string variables
(eg, first name and last name). This may partially explain why
BRL had better recall than fastLink in our simulations and a
lower trade-off between recall and precision in our real-world
match. In addition, the use of a blocking scheme, such as
grouping record pairs on the first two letters of the first name
before they are compared by the algorithm, may have improved
both the precision and computational performance of these
algorithms. Future studies should consider evaluating the use
of blocking on algorithm performance in the public health
practice setting.

Conclusions
In conclusion, public health interventions that involve record
linkage of multiple data systems should carefully consider their
choice of record linkage algorithm. This choice should be based
not only on reducing false matches but also on maximizing
intervention coverage. Record linkage methodologies that do
not seek to maximize true matches, especially in the context of
imperfect data quality, limit the reach of public health
interventions and could exacerbate existing health disparities.
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Probabilistic algorithms, such as BRL, can maximize the number
of true matches identified without sacrificing precision and

should be considered as the first choice when using record
linkage for public health action.
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