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Abstract

Background: The time lag in detecting disease outbreaks remains a threat to global health security. The advancement of
technology has made health-related data and other indicator activities easily accessible for syndromic surveillance of various
datasets. At the heart of disease surveillance lies the clustering algorithm, which groups data with similar characteristics (spatial,
temporal, or both) to uncover significant disease outbreak. Despite these developments, there is a lack of updated reviews of
trends and modelling options in cluster detection algorithms.

Objective: Our purpose was to systematically review practically implemented disease surveillance clustering algorithms relating
to temporal, spatial, and spatiotemporal clustering mechanisms for their usage and performance efficacies, and to develop an
efficient cluster detection mechanism framework.

Methods: We conducted a systematic review exploring Google Scholar, ScienceDirect, PubMed, IEEE Xplore, ACM Digital
Library, and Scopus. Between January and March 2018, we conducted the literature search for articles published to date in English
in peer-reviewed journals. The main eligibility criteria were studies that (1) examined a practically implemented syndromic
surveillance system with cluster detection mechanisms, including over-the-counter medication, school and work absenteeism,
and disease surveillance relating to the presymptomatic stage; and (2) focused on surveillance of infectious diseases. We identified
relevant articles using the title, keywords, and abstracts as a preliminary filter with the inclusion criteria, and then conducted a
full-text review of the relevant articles. We then developed a framework for cluster detection mechanisms for various syndromic
surveillance systems based on the review.

Results: The search identified a total of 5936 articles. Removal of duplicates resulted in 5839 articles. After an initial review
of the titles, we excluded 4165 articles, with 1674 remaining. Reading of abstracts and keywords eliminated 1549 further records.
An in-depth assessment of the remaining 125 articles resulted in a total of 27 articles for inclusion in the review. The result
indicated that various clustering and aberration detection algorithms have been empirically implemented or assessed with real
data and tested. Based on the findings of the review, we subsequently developed a framework to include data processing, clustering
and aberration detection, visualization, and alerts and alarms.

Conclusions: The review identified various algorithms that have been practically implemented and tested. These results might
foster the development of effective and efficient cluster detection mechanisms in empirical syndromic surveillance systems
relating to a broad spectrum of space, time, or space-time.

(JMIR Public Health Surveill 2020;6(2):e11512) doi: 10.2196/11512
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Introduction

Background
Late detection of disease outbreaks has long been a threat to
global health security, costing the world many lives, resources,
fear, and panic. Case-fatality rates of pandemic diseases are still
rising, the most recent being Ebola virus disease in Liberia,
West Africa, the Democratic Republic of the Congo, and Uganda
[1]. Apart from global fear and panic, Ebola virus disease caused
over 11,000 deaths, with national case-fatality rates of about
70% and local economic losses of US $3 to 4 billion [2,3].

Traditional surveillance systems are mostly passive and rely on
laboratory confirmations to detect disease outbreaks. These
have been enhanced by syndromic surveillance systems [4],
which largely depend on visible signs and symptoms and data
sources including emergency department records [5], school
absenteeism, work absenteeism, disease reporting systems, and
over-the-counter medication sales [6,7]. Nevertheless, the
existing syndromic surveillance systems cannot detect the
disease outbreak early enough, and their data sources and
processes exclude the incubation phase of the infection [7].
Disease outbreaks are mostly detected after the infected person
is ill or after the terminal stage, thereby increasing the disease
burden.

Clustering Approach and Outbreak Detection
Generally, outbreaks of infectious or communicable diseases
are more likely to present in cluster form either in space, time,
or both [8,9]. Clustering methods to detect disease outbreaks
help identify environmental factors and spreading patterns linked
to certain diseases [10]. This was realized many years ago by
John Snow, who observed a correlation between cholera disease
and a public water source [11]. Barker et al reviewed the
dispersal, persistence, and control of some common viruses in
the domestic home and in community facilities and concluded
that “there is growing evidence that person-to-person
transmission via the hands and contaminated fomites plays a
key role in the spread of viral infections” [12].

Clustering approaches can be roughly categorized as temporal,
spatial, and spatiotemporal. Spatial clustering uses
multidimensional vectors with longitudinal and latitudinal
coordinates. There are variety of related algorithms, such as
density-based spatial clustering of applications with noise
(DBSCAN) [8,9,13]. Temporal clustering deals with data points
associated with time [14,15]. It includes various algorithms
such as cumulative summation (CUSUM) and considers what
is strange about a recent event [16-18]. Spatiotemporal clustering
involves a time dimension (temporal information) and space
dimension (spatial information) [8,9,13]. There are a variety of
strategies, including different distance functions [19,20],
importing time to the spatial data, transforming spatiotemporal
data to the new objects, progressive clustering, and
spatiotemporal pattern discovery [8,13]. Aberration detection
is mainly performed through thresholding mechanisms,
including various forms such as the number of standard
deviations from the mean (z score), generalized likelihood ratio,
recurrence interval, and confidence intervals [21,22].

Objectives
There have been notable efforts to bridge the gap between a
disease outbreak and its late detection. Research in syndromic
surveillance is aimed at detecting disease outbreaks at the
presymptomatic stage [7]. One of the main concerns is the
choice of reliable algorithms that can be used for empirical
implementations. Therefore, our general objective was to
systematically review reports of practically implemented disease
surveillance algorithms for their usage and performance
efficacies, and to develop an efficient cluster detection
mechanism framework. The results are targeted at people who
need to implement efficient syndromic surveillance systems for
applications such as over-the-counter medication, school and
work absenteeism, and disease surveillance relating to
presymptomatic stages, among others. The scope was to review
practically implemented state-of-the-art algorithms relating to
temporal, spatial, and spatiotemporal clustering mechanisms.
We considered various challenges such as user mobility, privacy
and confidentiality, and geographical location estimation.

Methods

Inclusion and Exclusion Criteria
We developed the inclusion and exclusion criteria based on the
objective of the study and through rigorous discussions among
the authors. For an article to be included in the review, the study
required the following criteria: (1) a study of a practically
implemented syndromic surveillance system with cluster
detection mechanisms or that was thoroughly assessed with real
data (such studies also contributed to the understanding of how
privacy and security-preserving methods could be adopted in
related studies), (2) a focus on surveillance of infectious diseases
such as influenza, cholera, severe acute respiratory syndrome,
and Ebola virus disease, (3) a focus on humans, (4) reported in
English, (5) journal articles, conference papers, or presentations.

All searches were done without restriction on time boundaries.
We excluded any article outside the above-stated scope.

Literature Search
We conducted a literature search between January and March
2018 in Google Scholar, ScienceDirect, PubMed, IEEE Xplore,
ACM Digital Library, and Scopus. We used keywords such as
“spatiotemporal clustering,” “syndromic surveillance,” “real
time,” “cell phone,” “mobile phone,” “smart phone,”
“trajectory,” “aberration detection,” and “clustering.” To
improve the search strategy, we combined keywords using the
Boolean operators AND, OR, and NOT. We considered
peer-reviewed journals and articles.

Guided by the inclusion and exclusion criteria, we conducted
a basic filtering by skimming the titles, abstracts, and keywords
to retrieve records that seemed relevant. We removed duplicates
and fully read and judged articles that seemed relevant based
on the inclusion and exclusion criteria. We retrieved other
relevant articles from the reference lists of the accepted articles.
We recorded the article selection and screening in a Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
flow diagram [23].
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Data Collection and Categorization
We developed our data collection and categorization methods
based on the objective and through literature reviews and

discussions among the authors. We defined the categories
exclusively to assess, analyzed, and evaluate study (Table 1)
[21,24,25].

Table 1. Data categories and their definitions.

DefinitionCategory

The kind of clustering and aberration detection algorithm used and implemented in the study.Clustering and aberration detection algorithm

The type of algorithm used (spatial, temporal, or spatiotemporal algorithm).Type of clustering algorithm

The type of threshold used to generate alarms and alerts in the study.Threshold

The design method used in implementing the system, such as prototype, participatory or joint application
development, or agile or waterfall model.

Design method

The criteria used to evaluate the algorithms.Evaluation criteria

The performance metrics used to evaluate the algorithms, such as sensitivity, specificity, and positive
predictive value.

Performance metrics

Locations used in clustering, including geolocation, postal codes, and counties; specifies the exact type
of location used in the system.

Type of location

Where the type of location information was obtained.Source of location

State of the location as static or dynamic.Nature of location

The type of tool used to implement the visualization aspect of the system.Visualization tool

The type of visual displays (eg, graphs, maps, time series) implemented by the various systems in the
study.

Display report

The stages and processes used in the architectural design of the syndromic surveillance system (eg, a
layout may consist of data acquisition, clustering and aberration detection, and visualization [21], or
may include privacy-preserving mechanisms, machine learning techniques in processing the data, and
other layers [24,25]).

Design layout

Literature Evaluation and Analysis
We assessed, analyzed, and evaluated eligible articles based on
the above-defined categories. We analyzed each of the categories
listed in Table 1 to evaluate the state-of-the-art approaches. We
calculated percentages of the attributes of the categories based
on the total count of each attribute. Note that some studies used
multiple categories; therefore, the counts of these categories
could exceed the total number of articles reporting on these
systems.

Framework Development
We used state-of-the-art methods from the review as input to
develop a cluster detection mechanism framework for disease
surveillance systems, including those relating to emergency

department records, school and work absenteeism,
over-the-counter drugs, and medication sales.

Results

Relevant Articles
Our search of the various online databases found a total of 5936
records. Removal of 97 duplicates resulted in 5839 records. An
initial reading of titles excluded 4165 articles. We excluded a
total of 1549 through skimming of abstracts and keywords. An
in-depth full-text analysis of the resulting 125 articles, guided
by the inclusion and exclusion criteria, excluded 98 articles.
Thus, we included a total of 27 articles in the qualitative
synthesis (Figure 1).

JMIR Public Health Surveill 2020 | vol. 6 | iss. 2 | e11512 | p. 3http://publichealth.jmir.org/2020/2/e11512/
(page number not for citation purposes)

Yeng et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of the literature review process.

Literature Evaluation and Analysis
We assessed, analyzed, and evaluated the 27 articles based on
the above-defined categories. The following sections describe
the findings.

Articles Reviewed
Table 2 [16,21,22,24-47] lists the articles reviewed with their
respective targeted diseases, input source, and where and when
they were used. Most of the input sources were chief complaints
and symptoms reported at the emergency department.

Types of Clustering Algorithms
Among the 3 types, namely spatial, temporal, and
spatiotemporal, of clustering algorithms, the spatiotemporal
algorithm (19/50, 38%) was the most preferred approach,
followed by spatial (16/50, 32%) and temporal algorithms
(15/50, 30%).

Clustering and Aberration Detection Algorithms
A variety of clustering and aberration detection algorithms were
implemented in the reviewed articles. Space-time permutation
scan statistic (STPSS) and CUSUM algorithms were most
widely used, followed by space-time scan statistic and space
scan statistic (Table 3).
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Table 2. Summary of articles reviewed.

Input sourcePeriodPlaceTarget diseaseReference (first author, year)

Chief complaints from emergen-
cy departments

20022002, OlympicsBioterrorismGesteland, 2003 [26]

Symptoms of patients from
health facilities, medication

2012Rural ChinaInfectious diseasesYan, 2013 [27]

sales from pharmacies, and pri-
mary school absenteeism

Symptoms in emergency depart-
ments

2009-2010Indiana State Department of
Health

Detection of public health emergen-
cies

Maciejewski, 2009 [28]

Twitter and GP In Hours
weekly bulletin

2014United KingdomGeneralized disease nowcastingThapen, 2016 [29]

Twitter2014England and WalesInfectious diseases, eg, hay fever and
flu

Thapen, 2016 [30]

TwitterN/AaObservatório da Dengue
website (www.observatorio.in-
web.org.br/dengue/)

DengueGomide, 2011 [31]

Movement trajectorySpring 2011University campusInfluenza infectionQi, 2013 [32]

Emergency department visits
with infectious diseases such as

Since 2001New York CityInfectious diseasesMathes, 2017 [33]

cough, sore throat, and fever
for influenzalike illness

Ambulatory care encounters2007-2008Greater Boston area, Greater
Twin Cities area, Austin and

Acute illness for bioterrorism eventYih, 2010 [34]

Travis County, San Mateo
County

Ambulatory care encountersN/ABoston areaLower respiratory tract infectionKleinman, 2005 [16]

Symptoms in emergency depart-
ment

2002-2003Athens, 2004 Olympic GamesEmergency department dataDafni, 2004 [35]

Chief-complaint data1999Utah, Atlantic CityInfectious diseaseWagner, 2004 [36]

School-based syndromes2010/2011TaipeiEnterovirus and influenzaWeng, 2015 [37]

Infectious disease2007State of IndianaRespiratory illnessMaciejewski, 2010 [38]

Tuberculosis1991-2002San Francisco homelessComprehensive tuberculosis dataHiggs, 2007 [39]

Chief complaints from emergen-
cy departments

2011-2015PakistanInfectious diseaseAli, 2016 [24]

Respiratory tract infection,
hepatitis, and encephali-
tis/meningitis

2014/2015NetherlandsInfectious diseaseGroeneveld, 2017 [25]

Monitor health impact2015Los Angeles County Depart-
ment of Public Health, 2015
Special Olympic Games

Emergency department dataKajita, 2017 [22]

Febrile patients2005Hong KongInfectious diseaseChoi, 2010 [40]

Infectious disease, eg, respirato-
ry, fever, diarrhea, and vomit-
ing

2001-2002New York City Department
of Health and Mental Hygiene

Emergency department chief com-
plaint

Heffernan, 2004 [41]

Daily syndromic surveillance
data

2005MassachusettsInfectious diseaseTakahashi, 2008 [42]

School absenteeism data2001-2002New York CityInfectious diseaseBesculides, 2005 [43]

Reporting of acute flaccid
paralysis cases and laboratory
confirmation

2003-2012N/APoliomyelitis outbreaksBlake, 2016 [44]

Data streams from electronic
medical records

2009Kaiser Permanente Northern
California

Gastrointestinal disease outbreak de-
tection

Greene, 2012 [45]
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Input sourcePeriodPlaceTarget diseaseReference (first author, year)

Emergency department visits2013-2014French Institute for Public
Health Surveillance, Reunion
Island

Infectious diseaseVilain, 2016 [46]

Emergency department syn-
dromic data

2003-2004Los Angeles CountyInfectious diseaseSharip, 2006 [21]

Chief complaint symptoms2016-2017N/AInfectious diseaseDuangchaemkarn, 2017 [47]

aN/A: not available.

Table 3. Frequency of clustering and aberration detection algorithms (n=66).

Usage, n (%)Algorithm

10 (15)Cumulative summation

10 (15)Space-time permutation scan statistic

5 (8)Space-time scan statistic

4 (6)Space scan statistic

3 (5)Kernel density

3 (5)Moving average

2 (3)Log-linear regression

2 (3)Density-based spatial clustering of applications with noise

2 (3)Recursive least square

2 (3)Statistical process control

2 (3)Autoregressive integrated moving average

1 (2)Risk-adjusted support vector clustering

1 (2)Bayesian spatial scan statistic

1 (2)Exponentially weighted moving average

1 (2)Flexible space-time scan statistic

1 (2)k-means clustering

1 (2)K-nearest neighbor with Haversine distance

1 (2)Shewhart chart

1 (2)Pulsar method

1 (2)Risk-adjusted nearest neighbor hierarchical clustering

1 (2)Small area regression and testing

1 (2)Spatiotemporal density-based spatial clustering of applications with noise

1 (2)What is strange about recent event

1 (2)Bayesian space-time regression

1 (2)Generalized linear mixed model

1 (2)Generalized linear model

1 (2)Holt-Winters exponential smoother

1 (2)Temporal scan statistic

1 (2)Modified Early Aberration Reporting System C2

1 (2)Temporal aberration detection

Threshold Detection Mechanisms
An aberration is detected mainly using thresholding mechanisms
and, in this regard, various types of approaches were
implemented in the reviewed articles. Recurrence interval

(10/17, 37%) and z score (10/17, 37%) were the most widely
used, followed by generalized likelihood ratio (5/17, 18%),
confidence interval (1/17, 4%), and incidence ratio (1/17, 4%).
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Design, Evaluation Methods, and Performance Metrics
The most widely used performance metrics were sensitivity
(11/25, 44%) and specificity (9/25, 36%), followed by timeliness
(2/25, 8%), and consistency, correlation, and positive predictive
value (each 1/25, 4%). The reviewed studies used various
evaluation strategies, among which simulation with historical
data (12/15, 80%) was the most widely used approach, followed

by comparison with known outbreak (2/15, 13%) and power of
cluster detection test (1/15, 7%).

At specificities and sensitivities ranging from 82% to 99.5%,
spatial and spatiotemporal algorithms detected on average more
cases (Figure 2, Table 4). Prototype and participatory design
were used in the studies. Of 5 systems that disclosed their design
methods, 4 used a participatory approach.

Figure 2. Sensitivity and specificity of the evaluated algorithms.

Table 4. Evaluation metrics of some algorithms.

Detected cases (n)Sensitivity (%)Specificity (%)Algorithms

268382Space-time permutation scan statistic

2238597Pulsar method

2129295Cumulative summation

7908995Space scan statistic

39299Space-time scan statistic

499.582Flexible space-time scan statistic

Location Type and Nature, and Source of Location
The studies used a variety of location type, nature, and source.
The majority of studies used static location (22/26, 79%) and
the rest used a dynamic location (6/26, 21%). The studies used
various address: geocode (14/37, 50%), zip code (13/37, 46%),
and county (1/37, 4%). Various sources of locations were used:
patient health record (18/27, 64%), mobile device (4/27, 14%),
Transport Control Protocol/Internet Protocol (3/27, 11%), county
(1/27, 4%), and school address (1/27, 4%).

Visualization Tools and Visual Displays
Clustering and aberration detection mechanisms in disease
outbreaks need to be supported by excellent visualization tools
and display to facilitate a quick response from the concerned
bodies on the exact timing and place. In this regard, the reviewed
articles used various kinds of tools: ArcGIS (3/9, 24%), Google
Maps (2/9, 22%), Twilio (2/9, 22%), OpenStreetMap (1/9, 11%),
and JFreeChart (1/9, 11%) were the most widely used. For
displaying mechanisms, a map (14/30, 47%) was the most
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widely used, followed by time series (7/30, 27%), graphs (8/30,
23%), and color indicators (1/30, 3%).

Design Layout
Table 5 lists the design layouts identified in the studies and their
frequencies of use. Space scan statistic, which is a spatial
algorithm, was also able to detect an average of 790 cases.

Framework on Cluster Detection Mechanism
We developed a conceptualized framework on cluster detection
mechanisms (Figure 3) with input from the principal findings
of the systematic review on cluster detection methods. We
discuss the various components of the framework below.

Table 5. Design layouts and their frequencies (n=22).

Usage, n (%)DescriptionDesign layout

12 (55)This layout consists of obtaining data first. Then clustering and aberration detec-
tion are done, followed by generating alarms to create alerts of aberrations [16].

Data clustering and aberration detection, alarms
and alerts (DCADAA)

1 (5)A visualizing module is built in addition to processes defined in DCADAA [24].Data clustering and aberration detection, visual-
ization, alarms and alerts (DCAVAA)

3 (14)In addition to the DCAVAA layer, this layer has data cleaning and transformation
features.

Data cleaning and transformation, clustering and
aberration detection visualization, alarms and
alerts

2 (9)In addition to DCADAA, this layout filters data or categorizes the data into some
defined groups, either manually or by employing machine learning techniques.

Data clustering, filtering or categorizing, aberra-
tion detection, alarms and alerts

2 (9)In addition to DCAVAA, this layout has privacy-preserving mechanisms, such
as anonymization and pseudonymization [27,48].

Data clustering and aberration detection, privacy-
preserving mechanism (DPVCAAA)

1 (5)On top of the DPVCAAA layout, there is an additional module for real-time
data processing [24,48].

Real time, privacy-preserving mechanism, data
clustering and aberration detection, alerts and
alarms

1 (5)In addition to DCAVAA, this layout tracks the user’s movement to obtain data.
This is followed by validating the data before clustering and aberration detection
[24,25].

User tracking, data clustering, aberration detec-
tion, visualization, alarms and alerts

Figure 3. Cluster detection mechanism framework.

Input Data
Generally, syndromic surveillance systems require input data
varying from structured to semistructured data such as
comma-separated values, xml, or JavaScript Object Notation
(JSON) formats (Figure 3). Ultimately, some key data input
elements are highly required for these algorithms. These data
elements include the data points with their associated
geolocations, date, and time of occurrences [47]. The data points
would also have unique nonpersonal identifications and would
be associated with their corresponding date, time, and
geolocation of occurrences. The data could be in a certain format
such as xml, which can be accessed online.

Preprocessing Phase
The preprocessing phase is to ensure that the input data is in
the right format for the cluster and aberration detection phase
to use. Therefore, the framework provides for data conversion.
For instance, online data in xml format can be converted to
JSON format. Missing data would also be handled in various
ways. In most instances, missing data were excluded from the
analysis [29]. This and other methods would be used.

Another provision is to ensure that privacy-preserving
mechanisms are in place. This framework has a provision in
the data preprocessing section to ensure that the input data are
devoid of personal data. This would be done by following layout
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standards and regulations such as the General Data Protection
Regulation established by the European Union [48,49].
According to Data are considered nonpersonal if
pseudonymization and anonymization methods of
privacy-preserving mechanisms are used [50]. Such techniques
mitigate risk and assist the data processors in meeting their data
compliance requirement. Pseudonymization replaces the most
identifying fields within a data record with artificial identifiers
or pseudonyms, but it does not replace all personal identifiable
information from the data. It basically reduces the linkage of a
dataset with the original identity of an individual.
Pseudonymization methods use techniques including encryption
schemes. With anonymization, a variety of methods are
available, and the choice will depend on the degree of risk and
the intended use of the data. Some of the methods are direct
replacement, scramble, masking, and blurring.

Cluster and Aberration Detection Phase
The heart and brain of this framework is the cluster and
aberration detection phase. In this layout, clusters and
aberrations would be detected by considering the clustering and
aberration detection algorithms found in the review. STPSS is
very outstanding, since it does not require population-at-risk
data to draw the expected baseline value. Rather, it uses the
detected cases to determine the expected count [51]. This
approach provides significant trend-of-baseline data while
avoiding inclusion of historical data that is irrelevant to the
current period.

Visualization, Alert, and Alarms
The main output of the framework is timely alerts through
alarms and visualizations of detected aberrations. In the studies,
various visualization tools and output displays were used.
Guided by the results and discussion sections of this review,
ArcGIS or Google Maps can be used to implement the
visualization module. This visual display would mainly be a
map with other displays such as a time series and graph. The

maps would indicate where and when clustering and aberrations
occur. Also, alerts would be triggered through alarms and
messaging.

Discussion

Overview
The general objective of this study was to systematically review
practically implemented disease surveillance algorithms for
their usage and performance efficacies and to develop an
efficient cluster detection mechanism framework. The results
were targeted at individuals and organizations who want to
implement efficient syndromic surveillance systems for
applications such as over-the-counter medication, school and
work absenteeism, and disease surveillance relating to
presymptomatic stages, among others. The scope was to review
the practically implemented state-of-the-art algorithms relating
to temporal, spatial, and spatiotemporal clustering mechanisms.
We proposed a framework based on the results of the review
and considered various challenges, such as user mobility,
privacy and confidentiality, and geographical location
estimation. In exploring suitable algorithms, we included in the
review studies that assessed syndromic surveillance systems
with real data. In addition to thoroughly assessing these
algorithms, such studies also contributed to the understanding
of how privacy- and security-preserving methods could be
adopted in related studies. This is also very important in this
field, since personal data need to be handled properly in related
studies to preserve security and privacy. For instance, in a
related study [16], a privacy agreement with the health plan that
provided the data required the researchers to use the exact
locations only to get the grouped data.

Principal Findings
Table 6 summarizes the principal findings of the review. Below,
we discuss the algorithms and other dimensions of the findings.

Table 6. Summary of the most used categories.

Most usedCategory

Space-time permutation scan statisticClustering algorithm

Spatiotemporal typeType of clustering

Recurrence intervalThreshold

Participatory designDesign method

Simulation with historical dataEvaluation method

SensitivityPerformance metric

GeocodeType of location

Patient health recordSource of location

StaticNature of location source

ArcGISVisualization tool used

MapsDisplayed output

Data clustering and aberration detection, alarms and alertsLayout

JMIR Public Health Surveill 2020 | vol. 6 | iss. 2 | e11512 | p. 9http://publichealth.jmir.org/2020/2/e11512/
(page number not for citation purposes)

Yeng et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Spatiotemporal Methods
The review identified various spatiotemporal algorithms used
for disease surveillance systems, including STPSS, space-time
scan statistic, generalized linear mixed model, Bayesian
space-time regression, and flexible space-time scan statistic.
Spatiotemporal methods generally aimed at detecting disease
outbreaks in both spatial and temporal patterns.

STPSS, which was used in many of the studies, was developed
to detect hot spots of space-time interaction within space and
time pattern occurrences of diseases [52]. Space and time of
potential disease outbreak detection is a very efficient method,
since health management services can plan for potential
outbreaks, knowing where and when to allocate resources to
potential outbreak areas. Another reason for its high usage count
could be that the algorithm does not require data on the
population at risk to draw the expected baseline value, but rather
dwells on the detected cases to determine the expected count
[51]. This approach provides a significant trend-of-baseline data
while avoiding inclusion of historical data that is irrelevant to
the current period. STPSS, unlike most of the algorithms, does
not draw its baseline data (expected cases) from inaccurate
population-at-risk, a control group, or other data that provide
information about the geographical and temporal distribution
of the underlying population at risk. Such baseline data are
inaccurate because there is significant geographical variation
in health care utilization data due to differences in disease
prevalence, health care access, and consumer behavior [51].
Because of its popularity, Malizia evaluated STPSS for its
efficiency and deemed it to be accurate [52].

On the other hand, STPSS is more accurate when used for
outbreaks that start locally [51]. Chen et al, who studied spatial
and temporal aberration detection methods for disease outbreaks
in syndromic surveillance systems, observed that spatial scan
methods only detect clusters in basic regular shapes such as
cylindrical, circular, or spherical [18]. The spatial scan algorithm
does not also consider prior knowledge such as the impact of
the infection rate, or size or shape of the outbreak, and it is
computationally expensive, as local cluster search requires
searching over a large geographical region. These suggest that
STPSS is not suitable for detecting disease outbreaks that occur
simultaneously in the entire surveillance area. For instance,
disease outbreaks that occur through exposure to an infectious
agent implies that infected people might be living in different
neighborhood. Thus, STPSS will not detect disease outbreaks
with very few cases, such as 1 case of smallpox or 3 cases of
anthrax in the anthrax bioterrorism that occurred in 2001 [51].
STPSS is only efficient on disease outbreaks with a higher rate
of early symptoms [51]. An evaluation using syndromic
surveillance data spiked with simulated injections revealed low
detection in the spatial and spaciotemporal algorithms [33]. For
instance, in an evaluation exercise, at a specificity of 95%, the
STPSS detected none [33]. This was due to the geographically
disaggregated data, which resulted in a loss of power of
detection by the STPSS algorithm [33]. Syndromic surveillance
systems are optimally effective when both spatial and temporal
cluster detection methods work in unison to track emerging
infectious diseases at an early stage over the surveillance area
[18,53].

Spatial Methods
The spatial methods we identified in this review were space
scan statistic, kernel density, Bayesian spatial scan statistic,
k-means clustering, DBSCAN, and K-nearest neighbor (K-NN).
Unlike spatiotemporal algorithms, spatial algorithms basically
concentrate on where aberrations would occur. This makes
planning difficult for health management, since it is difficult to
know when to implement health interventions, if potential
outbreak areas are known. Thus, spatial algorithms are suggested
to be implemented together with temporal algorithms [47] to
give the surveillance system spatiotemporal properties.
According to Duangchaemkarn et al, who evaluated
symptom-based data preprocessing for the detection of disease
outbreaks with time series and the K-NN algorithm [47], K-NN
algorithms potentially are an efficient method for syndromic
surveillance; they suggested that the algorithm be further
assessed with temporal methods. K-NN and CUSUM were also
statistically assessed to be feasible for analyzing nearest
neighbor statistics [54]. In such a combined approach of spatial
and temporal methods, K-NN would provide clustering patterns
of disease occurrences and CUSUM would provide the temporal
aspect. CUSUM can spot an aberration in the surveillance area
with the mean distances of emerging diseases of various points
in the surveillance area [53,54]. Kulldorff et al also supported
this opinion by emphasizing that “efficient disease surveillance
will need the parallel use of different methods, each with their
own strengths and weaknesses” [51]. A syndromic surveillance
system is optimally effective when both spatial and temporal
cluster detection methods work in unison to track emerging
infectious diseases at an early stage over the surveillance area
[18,53].

Temporal Methods
As Table 3 shows, temporal methods found in the study were
CUSUM, moving average, recursive least square, autoregressive
integrated moving average, pulsar method, temporal scan
statistic, temporal aberration detection, and small area regression
and testing. Among these methods, CUSUM was the most
commonly used temporal algorithm in our review.

CUSUM is a statistical control method that has traditionally
been used for industrial process control. It has been
predominantly used in tracking changes in average production
process levels since the 1950s [55,56]. The main role of
CUSUM in production control is to generate an alert if products
from a production process do not conform to defined limits [57].
CUSUM has also been found to be very useful in electronic
disease surveillance. The CUSUM algorithm accumulates the
variances between detected or observed cases and baseline
values over a given time [53,55]. If the CUSUM value is greater
than the baseline by a specified threshold, a likelihood aberration
is detected [55]. In disease surveillance, CUSUM has been
demonstrated to be a very sensitive, fast-reactive method of
detecting disease outbreaks and to generate fewer false-positive
alarms than more conventional methods [44,55,58]. CUSUM
is also among the most commonly used temporal algorithms
due to its powerful and straightforward design and
implementation [59]. An evaluation study comparing the
autoregressive integrated moving average, temporal aberration
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detection, CUSUM, and Pulsar methods showed temporal
aberration detection to be more timely in some syndromes,
further empirical assessments in varying datasets are required
to conclude which are the best methods [35].

Thresholding
The most used threshold for aberration detection in
spatiotemporal algorithms was the recurrence interval, possibly
as a result of the combination of recurrence interval and Monte
Carlo replication, which helps to easily determine and set the
specificity of the system [42]. The Monte Carlo simulation is
a probability module that is often used with the recurrence
interval in clusters to draw a threshold and to determine the
likelihood occurrence of a cluster by chance within a specified
period for which the analysis is repeated in a regular basis. For
instance, in a daily analysis, if the Monte Carlo replication is
set to 999 with a statistical significance of P<.001, the
recurrence interval would be 1000 days, since in disease
surveillance the recurrence interval is the inverse of the P value
[42]. This implies that, for each 1000 days, the expectation of
false alarms would be an average of 1 false signal per 1000
days, or 2.7 years, and the recurrence interval would be set to
the number of days of the baseline data [34]. The significance
level of P<.001 is the probability of accepting the occurrence
of a cluster by chance within a specified period.

In the reviewed studies, CUSUM is a temporal algorithm that
was mostly used together with special algorithms to form
spatiotemporal algorithms [60]. Its ease of use and efficiency
might have accounted for the high usage [60]. About 60% of
the algorithms were classified in the threshold-based category
[8]. This corresponded to relatively high usage of spatiotemporal
algorithms. Most of these algorithms employed cylindrical risk
regions to detect clusters. The radius formed the area of the
map, while the height represented the time. The radius and time
were varied to some upper bound thresholds.

Design and Evaluation
Participatory design was mostly used at the design stage, while
simulation with historical data was mostly used to evaluate the
clusters in most of the algorithms. Historical data were mostly
used perhaps because those records were known to have
aberrations, making it possible and easy to determine the
performance of the system. Sensitivity and specificity were the
most used performance metrics in the evaluation. This could
be because users wanted a system with reduced false-alarm
rates.

Some of the algorithms were compared based on their
performance metrics of sensitivity, specificity, timeliness, and
positive predictive value (Figure 2, Table 4) [33,61].
Considering Table 4 and Figure 2, at an average sensitivity and
specificity of 82%, STPSS detected more cases (n=26). At a
very high sensitivity and specificity up to 99.5%, the special
and spatiotemporal algorithms continued to detect high numbers
of cases. At a slightly lower sensitivity and specificity ranging
from 82% to 92%, the temporal algorithms also detected some
cases. In using spatiotemporal clustering algorithms in
syndromic surveillance, various methods such as temporal
methods and near neighbors should be considered. These

measures may augment for the sparseness of data, which could
result in a loss of power to detect areas with local excess
aberrations in spatial and spatiotemporal methods [44,58].

An evaluation that was performed through injection of spikes
of a known outbreak revealed low detection in the space and
spaciotemporal algorithms [33,44,58,61]. Space scan statistic
detected 3% of all injections, but STPSS detected none at a
specificity of 95% [33]. However, the temporal algorithms
detected higher percentages ranging from about 2% to 19% of
the injections under the same level of sensitivity [33,58,61].
The low detection rates of the spatial and spatiotemporal
algorithms could have been because the algorithms were not
adjusted to increase their power of detection when applied to
disaggregated data [33,44,58,61]. Also, the performance of the
algorithms could be enhanced with a higher number of input
cases and better coverage in spatial and spatiotemporal
algorithms [34].

In terms of location, geocodes of census tracking or hospitals
and zip codes were mostly used as location points for the
clustering algorithms. These data were mostly retrieved from
patient health records. The dynamic nature of the sources of
location caused a low count, which could have been because
they have not been comparatively assessed and due to difficulties
associated with acquiring and processing the dynamic nature
of location source data for syndromic surveillance.
Privacy-preserving polices and a high computational time
requirement prohibited the use of exact location of persons for
syndromic surveillance. Exact locations such as house numbers
and tracking of individuals were mostly used for group data at
the zip code or county level. Information on the exact place of
infection is also vital for early prevention and control of
morbidity and mortality. But these limitations often hamper the
accuracy of information on place of infection, since the
information collected often relates to the place of notification,
which is usually far from the place of infection [32,48,62]. Also,
systems that provided text space for users to indicate their
location had some limitations. Users did not indicate proper
locations or addresses, so their locations could not be geocoded.
This resulted in limited sample sizes [27,29].

Visualization and Alerting
ArcGIS was mostly used to display graphs in the studies in this
review. It is possible that maps were the most common display
type because they can be used to represent both spatial and
spatiotemporal data. This could have accounted for their high
usage of 34% and 47% in their respective categories. In the
system design layout category, most of the systems obtained
data from various sources first. Clustering and aberration
detection were done, followed by generating alarms to create
alerts of aberrations. Tracking for data, acquiring data in real
time, privacy-preserving mechanisms, filtering, and data
cleaning were some of the layout processes employed in a few
of the systems studied. The low rate of tracking persons for data
sources could be due to legal, privacy, and ethical reasons [48].
The low count of filtering and data cleaning could be due to
implementation challenges, as machine learning algorithms and
natural language processing tools are used for effectiveness
[32,48,62].
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Conclusion
Despite the numerous availabilities of disease surveillance
algorithms, their lack of efficacy in detecting disease outbreaks
remains a threat to global health security. To overcome this
problem, the main objective of this study was to systematically
review practically implemented disease surveillance algorithms
for their usage and performance efficacies, and to develop an
efficient framework. The results were targeted at individuals
and organizations who wish to implement efficient syndromic
surveillance systems in applications such as over-the-counter
medication, school and work absenteeism, and disease
surveillance relating to presymptomatic stage, among others.
The scope was to review the practically implemented
state-of-the-art algorithms relating to temporal, spatial, and
spatiotemporal clustering mechanisms. We considered various

challenges such as user mobility, privacy and confidentiality,
and geographical location estimation.

The study revealed that STPSS and CUSUM were the most
frequently implemented algorithms. These algorithms can be
used in syndromic surveillance systems that are aimed at
implementing state-of-the-art cluster detection mechanisms,
although STPSS was shown to be efficient only in a surveillance
system with a high rate of infections. Temporal and spatial
algorithms such as CUSUM and K-NN can also be combined
in an empirical study to achieve efficient results. This study
provided wide data categorization, ranging from design of the
system to the display of reports which we used in the
development of the framework. These results might foster the
development of effective and efficient cluster detection
mechanisms in empirical syndromic surveillance systems
relating to a broad spectrum of space, time, or space-time.
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Abbreviations
CUSUM: cumulative summation
DBSCAN: density-based spatial clustering of applications with noise
JSON: JavaScript Object Notation
K-NN: K-nearest neighbor
STPSS: space-time permutation scan statistic
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