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Abstract

Background: The Centers for Disease Control and Prevention (CDC) tracks influenza-like illness (ILI) using information on
patient visits to health care providers through the Outpatient Influenza-like Illness Surveillance Network (ILINet). As participation
in this system is voluntary, the composition, coverage, and consistency of health care reports vary from state to state, leading to
different measures of ILI activity between regions. The degree to which these measures reflect actual differences in influenza
activity or systematic differences in the methods used to collect and aggregate the data is unclear.

Objective: The objective of our study was to qualitatively and quantitatively compare national and region-specific ILI activity
in the United States across 4 surveillance data sources—CDC ILINet, Flu Near You (FNY), athenahealth, and HealthTweets.org—to
determine whether these data sources, commonly used as input in influenza modeling efforts, show geographical patterns that
are similar to those observed in CDC ILINet’s data. We also compared the yearly percentage of FNY participants who sought
health care for ILI symptoms across geographical areas.

Methods: We compared the national and regional 2018-2019 ILI activity baselines, calculated using noninfluenza weeks from
previous years, for each surveillance data source. We also compared measures of ILI activity across geographical areas during 3
influenza seasons, 2015-2016, 2016-2017, and 2017-2018. Geographical differences in weekly ILI activity within each data
source were also assessed using relative mean differences and time series heatmaps. National and regional age-adjusted health
care–seeking percentages were calculated for each influenza season by dividing the number of FNY participants who sought
medical care for ILI symptoms by the total number of ILI reports within an influenza season. Pearson correlations were used to
assess the association between the health care–seeking percentages and baselines for each surveillance data source.

Results: We observed consistent differences in ILI activity across geographical areas for CDC ILINet and athenahealth data.
ILI activity for FNY displayed little variation across geographical areas, whereas differences in ILI activity for HealthTweets.org
were associated with the total number of tweets within a geographical area. The percentage of FNY participants who sought
health care for ILI symptoms differed slightly across geographical areas, and these percentages were positively correlated with
CDC ILINet and athenahealth baselines.

Conclusions: Our findings suggest that differences in ILI activity across geographical areas as reported by a given surveillance
system may not accurately reflect true differences in the prevalence of ILI. Instead, these differences may reflect systematic
collection and aggregation biases that are particular to each system and consistent across influenza seasons. These findings are
potentially relevant in the real-time analysis of the influenza season and in the definition of unbiased forecast models.
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Introduction

Background
Influenza epidemics are responsible for a significant public
health burden that includes an estimated 12,000 to 56,000 deaths
each year in the United States [1]. Consequently, timely and
reliable surveillance of influenza activity is essential for local,
state, and national public health officials to monitor and respond
to outbreaks. In the United States, the Centers for Disease
Control and Prevention (CDC) collects and analyzes information
on influenza activity throughout the year. As part of this national
surveillance system, patients seeking medical attention for
influenza-like illness (ILI) are tracked through the Outpatient
Influenza-like Illness Surveillance Network (ILINet). This
system contains thousands of volunteer health care specialists,
including individual providers, group practices, and
hospital-based clinics located throughout all 50 states, Puerto
Rico, the District of Columbia, and the US Virgin Islands. As
participation in ILINet is voluntary and each state is responsible
for their own recruitment of health care providers, the
composition of provider types, coverage of geographical regions,
and consistency of provider reporting vary from state to state.
This convenience sample–driven model of surveillance results
in certain parts of the population being over- or underrepresented
in the reported influenza activity [2-4].

At both national and Health and Human Services–defined
regional levels (conglomerates of 2-8 states), the CDC routinely
reports the weekly percentage of patients presenting with ILI
to health care providers. In addition, the CDC calculates and
reports region-specific baselines , using influenza activity data
from previous seasons, to identify the beginning and end of the
influenza season and contextualize the severity of a given
region-specific outbreak. These baselines vary widely across
regions, and the degree to which the differences in baselines,
as well as the percentage of ILI visits during an influenza season,
reflect actual differences in influenza activity or systematic
differences in the methods used to collect the data is unclear.
Recent models suggest that the spatial patterns in US sentinel
ILI surveillance may be the result of socioenvironmental factors,
state-specific health policies, and sampling [3]. Identifying and
characterizing the presence of potential methodological
measurement biases in ILINet is important, as it is frequently
used as an indicator of influenza activity for decision-making
purposes and as the ground truth in mechanistic and statistical
predictive modeling efforts aimed at understanding disease
transmission dynamics and monitoring and forecasting influenza
activity [5-15]. Furthermore, because these models typically
leverage data from outside of the public health systems, such
as Google internet searches [15,16], participatory syndromic
surveillance systems [17,18], Twitter [19], and electronic health
record (EHR) [14,20], it is important to understand if input
sources show similar structural aggregation patterns.

Objectives
In this study, we qualitatively and quantitatively compared
national and region-specific baselines and ILI activity during
3 influenza seasons across 4 surveillance data sources—CDC
ILINet; Flu Near You (FNY), a crowd-sourced participatory
syndromic surveillance system; athenahealth, a provider of
cloud-based EHR services; and HealthTweets.org, a research
platform that shares health trends data from Twitter—to
determine whether these surveillance data sources, commonly
used as input in influenza modeling efforts, show regional
structural patterns that are similar to those observed in CDC
ILINet’s data. We also compared yearly self-reported health
care–seeking rates of FNY participants to determine if this factor
can better characterize the differences in ILI activity across
geographic areas.

Methods

Data

Centers for Disease Control and Prevention Outpatient
Influenza-Like Illness Surveillance Network
The CDC reports the weighted percentage of patient visits to
health care providers presenting ILI symptoms on a weekly
basis at the national and regional levels. These values are
weighted on the basis of state population and represent the
percentage of patient visits to health care providers that present
as ILI, defined as fever (temperature of 100°F [37.8°C] or
greater) plus a cough and/or a sore throat without a known cause
other than influenza.

Flu Near You
FNY is a participatory syndromic surveillance system that
allows volunteers in the United States to report health
information of the user and their family using brief weekly
surveys [21]. Through these surveys, FNY users report any
symptoms that they or any registered household members
experienced during the previous week (Monday through
Sunday). For all reported symptoms, FNY users are asked to
provide the date of symptom(s) onset and whether or not they
received medical care for the symptom(s). The national and
regional percentage of ILI symptoms reported is calculated by
dividing the number of participants reporting ILI, as defined by
reporting fever plus cough and/or sore throat, in a given week
by the total number of FNY participant reports in that same
week. FNY participants are assigned to a region based on the
zip code provided at registration. Unweighted FNY percentage
of ILI symptoms is used to maintain consistency across previous
studies and the FNY website.

athenahealth is a provider of cloud-based services and mobile
apps for medical groups and health systems. National and
regional percentage of visits for ILI is calculated by dividing
the unspecified viral or ILI visit count, which is equal to the
number of visits where the patient had an unspecified viral
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diagnosis, an influenza diagnosis, or a fever diagnosis with an
accompanying sore throat or cough diagnosis, by the total
number of visits for each week.

HealthTweets.org
This dataset is generated by a Web-based research platform
(HealthTweets.org) that shares the output of Twitter data mining
algorithms with researchers and public officials [19]. We use
weekly aggregated trends data from each state to calculate the
influenza prevalence measure for each region. Weekly national
and regional influenza prevalence measures are calculated by
normalizing the number of influenza infection tweets in the
health stream by the total number of tweets in the general stream
during the same week [22].

Statistics of Datasets

Baseline Comparison
Baselines are used as a single quantitative measure that
compares ILI activity during noninfluenza weeks across
geographical areas within each surveillance data source. The
CDC ILINet national and regional baselines for the 2018-2019
influenza season are available on the CDC website [23].

National and regional baselines for FNY, athenahealth, and
HealthTweets.org are estimated following the CDC’s baseline
definition. A baseline is defined as the mean percentage of ILI
activity during noninfluenza weeks, for the previous 3 seasons,
plus 2 SDs. Noninfluenza weeks during these seasons are the
same for all 3 systems and are delineated, by the CDC, as
periods of 2 or more consecutive weeks in which each week
accounted for less than 2% of the season’s total number of
specimens that tested positive for influenza in public health
laboratories. We used region-specific noninfluenza weeks.
Descriptive statistics of baselines are presented as median
(interquartile range, IQR).

Influenza-Like Illness Activity Comparison
Differences in ILI activity during noninfluenza as well as
influenza weeks across geographical areas within each
surveillance data source are assessed using data from the start
of the 2015-2016 influenza season (week of October 5, 2015)
to the end of the 2017-2018 influenza season (week of October
1, 2018). Weekly ILI activity across geographical areas within
each data source is quantitatively compared by dividing the
difference in ILI activity between 2 areas by the maximum
within each week, defined by Figure 1.

Figure 1. Equation for the mean relative difference.

Mean relative differences within each surveillance data source
are summarized using heatmaps, where the geographical areas
along the rows are represented by i in the equation and the
geographical areas along the columns are represented by j.
Geographical areas that have consistently higher weekly ILI
activity compared with other geographical areas have positive
mean relative differences, indicated by red shades across the
row in the heatmap, whereas geographical areas that have
consistently lower weekly ILI activity have negative mean
relative differences, indicated by blue shades across the row.
Time series heatmaps are also presented to qualitatively compare
weekly ILI activity across geographical areas for each
surveillance data source.

Health Care–Seeking Behavior
National and regional health care–seeking percentages are
calculated for each influenza season by dividing the number of
FNY participants who sought medical care for ILI symptoms,
as defined above, by the total number of ILI reports within an
influenza season. As health care–seeking behavior varies by
age [24], health care–seeking percentages are adjusted by age
group (<18 years, 18-49 years, 50-64 years, and ≥65 years)
using population data from the 2010 US census [25]. We use

Pearson correlation to assess the association between the
adjusted health care–seeking percentages and baselines for each
surveillance data source. All analyses are performed using R
version 3.3.2. [26].

Results

Centers for Disease Control and Prevention Outpatient
Influenza-Like Illness Surveillance Network
Table 1 and Figure 2 provide the ILI activity baselines for each
surveillance data source across geographical areas. The national
baseline for CDC ILINet during the 2018-2019 influenza season
is 2.2, and the median CDC ILINet regional baseline is 2.1 (IQR
1.8-2.3). Region 10 has the smallest baseline, 1.1, whereas
region 6 has the largest baseline, 4.0. As shown in Figure 3
regions 2 and 6 have consistently higher weekly percentage of
ILI visits compared with other regions, indicated by the red
shades across the row, whereas regions 1, 8, and 10 have
consistently lower weekly percentage of ILI visits, indicated
by the blue shades across the row. This pattern is also shown
qualitatively in both Figure 4 and Multimedia Appendix 1,
where darker shades of red, as seen for regions 2, 6, and 9,
correspond to higher percentage of ILI visits.
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Table 1. Regional and national influenza-like illness activity baselines for the 2018-2019 influenza season for Centers for Disease Control and Prevention
Outpatient Influenza-like Illness Surveillance Network, Flu Near You, athenahealth, and HealthTweets.org.

HealthTweets.orgathenahealthFlu Near YouCenters for Disease Control and
Prevention Outpatient Influenza-like
Illness Surveillance Network

Geographical area

0.81.32.11.8Region 1a

0.41.72.43.1Region 2b

0.51.52.42.0Region 3c

0.61.42.72.2Region 4d

0.51.12.61.8Region 5e

0.71.92.64.0Region 6f

0.71.02.51.6Region 7g

0.81.02.92.2Region 8h

0.61.72.52.3Region 9i

0.70.62.51.1Region 10j

0.51.42.32.2National

aRegion 1 includes Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont.
bRegion 2 includes New Jersey, New York, Puerto Rico, and US Virgin Islands.
cRegion 3 includes Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia.
dRegion 4 includes Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee.
eRegion 5 includes Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin.
fRegion 6 includes Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
gRegion 7 includes Iowa, Kansas, Missouri, and Nebraska.
hRegion 8 includes Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming.
iRegion 9 includes Arizona, California, Guam, Hawaii, and Nevada.
jRegion 10 includes Alaska, Idaho, Oregon, and Washington.
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Figure 2. Spatial heatmaps of US regional baseline influenza-like illness activity for the 2018-2019 influenza season for (A) Centers for Disease Control
and Prevention Influenza-like Illness Surveillance Network, (B) Flu Near You, (C) athenahealth, and (D) HealthTweets.org. CDC: Centers for Disease
Control and Prevention; FNY: Flu Near You; ILINet: Influenza-like Illness Surveillance Network.

Flu Near You
For FNY, the national baseline is 2.3, and the median regional
baseline is 2.5 (IQR 2.4-2.6). The minimum baseline is 2.1,
region 1, and the maximum baseline is 2.9, region 8. Compared
with other data sources, the mean relative differences for FNY
in Figure 3 show less heterogeneity and no consistent patterns
in the percentage of ILI across geographical areas. Although
the timing of peaks in the percentage of ILI varies between
regions, the relative percentage of ILI is consistent across

geographical areas and seasons (Figure 4 and Multimedia
Appendix 2).

The national baseline for athenahealth is 1.4, and the median
regional baseline is 1.3 (IQR 1.0-1.6). Region 10 has the
minimum baseline of 0.6, and region 6 has the maximum
baseline of 1.9. Similar to CDC ILINet, regions 2, 6, and 9 have
consistently higher weekly percentage of ILI visits compared
with other regions, and regions 7, 8, and 10 have consistently
lower weekly percentage of ILI visits. This pattern is reflected
in Figure 4 and Multimedia Appendix 3, as regions 2, 6, and 9
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have consistently higher percentage of ILI visits across all
seasons.

HealthTweets.org
The national baseline is 0.5, the median baseline is 0.6 (IQR
0.5-0.7), the minimum baseline is 0.4 (region 2), and the
maximum baseline is 0.8 (region 8). Unlike CDC ILINet and

athenahealth, HealthTweets.org shows higher ILI activity in
regions 1, 7, 8, and 10 (Figure 3). These regions have mean
normalizing constants that are less than half the mean
normalizing constants of other regions (Table 2). As shown in
Figure 4 and Multimedia Appendix 4, this pattern is consistent
across seasons.

Figure 3. Heatmaps of the mean relative difference of influenza-like illness activity across geographical areas for (A) Centers for Disease Control and
Prevention Influenza-like Illness Surveillance Network, (B) Flu Near You, (C) athenahealth, and (D) HealthTweets.org. CDC: Centers for Disease
Control and Prevention; FNY: Flu Near You; ILINet: Influenza-like Illness Surveillance Network.
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Figure 4. Time series heatmaps of influenza-like illness activity across geographical areas for (A) Centers for Disease Control and Prevention
Influenza-like Illness Surveillance Network, (B) Flu Near You, (C) athenahealth, and (D) HealthTweets.org. CDC: Centers for Disease Control and
Prevention; FNY: Flu Near You; ILI: influenza-like illness ILINet: Influenza-like Illness Surveillance Network.
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Table 2. Descriptive statistics of the HealthTweets.org normalizing constant at the national and regional levels.

Normalizing constant, mean (SD)Geographical area

210.82 (114.917)Region 1a

627.69 (330.270)Region 2b

599.53 (293.320)Region 3c

1103.78 (553.374)Region 4d

798.25 (387.266)Region 5e

845.30 (414.785)Region 6f

171.05 (82.077)Region 7g

121.96 (63.936)Region 8h

5848.54 (3775.923)Region 9i

181.33 (97.756)Region 10j

6352.25 (3351.390)National

aRegion 1 includes Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont.
bRegion 2 includes New Jersey, New York, Puerto Rico, and US Virgin Islands.
cRegion 3 includes Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia.
dRegion 4 includes Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee.
eRegion 5 includes Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin.
fRegion 6 includes Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
gRegion 7 includes Iowa, Kansas, Missouri, and Nebraska.
hRegion 8 includes Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming.
iRegion 9 includes Arizona, California, Guam, Hawaii, and Nevada.
jRegion 10 includes Alaska, Idaho, Oregon, and Washington.

Health Care–Seeking Behavior
The age-adjusted estimates of the percentage of FNY
participants who sought health care for ILI symptoms are shown
by season and across all seasons in Table 3 and Figure 5. At the
national level, a higher age-adjusted percentage of participants
sought health care for ILI symptoms during the 2016-2017
season, 35.1%, compared with the 2015-2016 and 2017-2018
seasons, 21.7% and 29.2%, respectively. Within each season,
regions 2, 4, and 6 have the highest age-adjusted percentages
of participants who sought health care, whereas regions 1, 5, 9,

and 10 have the smallest age-adjusted percentages of participants
who sought health care.

As shown in Figure 6, the age-adjusted estimates of the
percentage of individuals who sought health care for ILI
symptoms is significantly correlated with the baselines for CDC
ILINet (P=.03) and is borderline significant for athenahealth
(P=.08). There is no evidence of an association between the
age-adjusted estimates of the percentage of individuals who
sought health care and the baselines for FNY (P=.68) and
HealthTweets.org (P=.76).
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Table 3. Age-adjusted regional and national estimates of the percentage of Flu Near You participants who sought health care for influenza-like illness
symptoms.

2017-20182016-20172015-2016All seasonsGeographical area

27.7733.2920.8225.98Region 1a

31.7936.0326.0529.97Region 2b

31.7337.0322.0728.66Region 3c

34.7743.2325.4732.61Region 4d

26.7334.5921.5326.43Region 5e

37.4744.8328.5835.17Region 6f

32.0941.9523.7930.93Region 7g

26.1630.8622.7425.50Region 8h

24.6927.7719.0622.49Region 9i

22.3323.3917.0320.03Region 10j

29.2335.0621.7327.12National

aRegion 1 includes Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont.
bRegion 2 includes New Jersey, New York, Puerto Rico, and US Virgin Islands.
cRegion 3 includes Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia.
dRegion 4 includes Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee.
eRegion 5 includes Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin.
fRegion 6 includes Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
gRegion 7 includes Iowa, Kansas, Missouri, and Nebraska.
hRegion 8 includes Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming.
iRegion 9 includes Arizona, California, Guam, Hawaii, and Nevada.
jRegion 10 includes Alaska, Idaho, Oregon, and Washington.

Figure 5. Spatial heatmap of age-adjusted regional percentage of Flu Near You participants who sought health care for ILI symptoms across all seasons.
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Figure 6. Scatterplot of the age-adjusted percentage of individuals who sought health care for influenza-like illness symptoms versus baseline
influenza-like illness activity for (A) Centers for Disease Control and Prevention Influenza-like Illness Surveillance Network, (B) Flu Near You, (C)
athenahealth, and (D) HealthTweets.org. CDC: Centers for Disease Control and Prevention; FNY: Flu Near You; ILINet: Influenza-like Illness
Surveillance Network.

Discussion

Principal Findings
Our findings show that differences in ILI activity across regions,
as reported by a given surveillance system, are not consistent
across surveillance platforms. In other words, regions that show
larger baselines (and thus higher overall historical ILI activity)
in one surveillance system appear to be different from their
counterparts in other surveillance systems. The heterogeneity
of recruitment practices of health care providers for each system,
the composition of provider types, and the variability and
consistency of coverage of geographical regions have the
potential to contribute substantially to these systematic
differences in baselines [3]. As such, our findings suggest that

these structural differences reflect methodological collection
practices rather than actual differences in influenza activity
across regions. The observed structural patterns within each
surveillance system are consistent across individual influenza
seasons (Multimedia Appendix 5), which implies that the
differences are not reflecting a specific time-period
heterogeneity.

Specifically, baselines from CDC ILINet vary across different
geographical areas, and the geographical areas with the largest
baselines also have a consistently larger percentage of ILI visits
during the influenza season. Conversely, FNY’s baselines and
the percentage of ILI were similar across geographical areas.
This similarity is captured by the homogeneity in the mean
relative differences. One potential contributing factor to the
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observed differences in patterns between these surveillance
systems is the activity being measured. CDC ILINet measures
the number of visits with ILI out of the total number of patient
visits, whereas FNY measures the number of ILI reports out of
enrolled persons who submitted a report. Furthermore, the
population under surveillance also differs as FNY includes
individuals who may not seek medical attention and FNY has
a different demographic profile compared with CDC ILINet.
For example, females and middle-aged participants are
overrepresented in FNY [27].

Although not identical, athenahealth shows similar patterns in
both baseline measures as well as the percentage of ILI visits
to CDC ILINet across geographical areas. Both CDC ILINet
and athenahealth use data from individuals seeking medical
care. However, athenahealth has only a partially overlapping
coverage of health care providers, and the proportion of visit
settings differs slightly between the 2 systems. Most of
athenahealth’s providers see patients in office-based settings.
Other settings, such as emergency room and nursing facilities,
are underrepresented compared with CDC ILINet [28].

Unlike FNY, patterns across geographical areas within
HealthTweets.org ILI activity appear to be the opposite of the
patterns shown by CDC ILINet and athenahealth, as areas with
consistently lower HealthTweets.org ILI activity have a
consistently higher percentage of ILI visits for CDC ILINet and
athenahealth, and vice versa. One potential reason for the
differences in patterns in ILI activity across data sources is the
difference in the activity being measured. As mentioned above,
both CDC ILINet and athenahealth measure the number of ILI
visits out of total visits, whereas HealthTweets.org normalizes
the number of influenza infection tweets by the total number
of tweets in the general stream. In addition, the groups most
susceptible to influenza illness, young children and the elderly,
may be underrepresented on Twitter. Furthermore, we found
that smaller normalizing constants correspond to higher values
of ILI activity.

Comparison With Previous Work
Despite the differences in patterns of ILI activity within systems,
current research shows that these alternative data sources track
CDC ILINet at both the national and regional levels. At the
national level, the correlation between CDC ILINet and
athenahealth is 0.97, and regional correlations range from 0.90
to 0.97 [29]. The correlation between CDC ILINet and FNY at
the national level is 0.81, and regional correlations range from
0.64 to 0.81 [29]. Twitter-based influenza prevalence measures
show a correlation of 0.93 with CDC ILINet at the national
level and a correlation of 0.88 with New York City’s weekly
emergency department visits for ILI [22].

Compared with other recent publications, the percentage of
FNY participants who sought medical care for ILI is less than
reported estimates. A recent meta-analysis that used estimates
from multiple countries across different influenza seasons
estimated an overall pooled health care–seeking rate of 0.52
(95% CI 0.46-0.59) [30]. In the United States, national reported
health care–seeking percentages for children were 56% and
57% during the 2009-2010 and 2010-2011 influenza seasons,
respectively. Among adults, 40% reported that they sought

health care during the 2009-2010 influenza season and 45%
reported that they sought health care during the 2009-2010
influenza season [24,31]. Interestingly, the percentage of FNY
participants who sought health care for ILI symptoms differs
slightly across geographical areas. These differences may
contribute to the differences in CDC ILINet and athenahealth
baseline activity, as health care–seeking percentages are
positively correlated with both CDC ILINet and athenahealth
baselines.

From a predictive modeling perspective, our findings may
explain why certain approaches designed to predict CDC ILINet
values for the Predict the Influenza season challenge, weeks
ahead of the publication of official CDC reports, may work
better than others. As discussed in the 2 existing reports that
document the performance of different methodologies to predict
influenza activity, models that rely on local statistical approaches
that exploit region-specific autoregressive information and
historically observed ILI activity from previous seasons, as well
as external predictors (such as humidity data, Google searches,
and Wikipedia) [9,11], outperform mechanistic agent-based
stochastic susceptible-infected-recovered (SIR) models that aim
at modeling individual humans’ behavior to infer epidemic
activity across spatial resolutions [7,8,10]. The former modeling
approaches are trained to track ILI levels in a region-specific
fashion (frequently ignoring inconsistency across spatial
resolutions), whereas the latter agent-based stochastic SIR
models aim to predict the whole national epidemic outbreak
across geographic areas. In other words, if the ILI activity report
varies depending on how data are aggregated, then even a very
accurate agent-based model may not be able to capture influenza
activity correctly for every geographic area.

Limitations
Our study has several limitations. During the beginning of the
2015-2016 season, there were errors in FNY data collection,
resulting in an underestimation in the weekly percentage of ILI
reports. We did not adjust the estimates of these weeks. There
was also an issue in data collection during the week of August
28, 2017. We adjusted the estimates for this week by taking the
average percentage of ILI reports of the previous and subsequent
weeks. In addition, there were a few weeks during the summer
of 2017 during which there were no reports of ILI activity for
HealthTweets.org. We did not input or estimate these missing
weeks. As the overall patterns of ILI activity were similar across
seasons (Multimedia Appendix 5), we do not suspect that these
data issues affected our overall conclusions.

In addition, FNY relies on self-reported data that are subject to
recall and social desirability bias. FNY participant reporting is
also not consistent throughout the influenza season. Although
previous students have used various methods, including
restricting analyses to cohorts of users that report regularly
[32-34], dropping the first report of all users, and applying a
spike detector [21], we did not adjust for these potential
reporting biases because reporting habits are consistent across
regions [27]. Finally, because each system has a different
measure of ILI activity, we cannot directly compare measures
across systems.
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Conclusions
Although ILI activity differs across geographical areas and data
sources, the general region-specific seasonal trends are similar

and provide valuable information about changes in influenza
activity. Together, these platforms offer a more comprehensive
view of influenza surveillance that helps public health offices
monitor and respond to seasonal influenza epidemics.
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Multimedia Appendix 1
Time series plots of weekly percentage of influenza-like illness visits from Centers for Disease Control and Prevention Influenza-like
Illness Surveillance Network across 3 influenza seasons (2015-2016, 2016-2017, and 2017-2018) with baselines. Geographical
areas on the columns are presented in black, and geographical areas on the rows are presented in blue.
[PNG File 426 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Time series plots of weekly percentage of influenza-like illness from Flu Near You across 3 influenza seasons (2015-2016,
2016-2017, and 2017-2018) with baselines. Geographical areas on the columns are presented in black, and geographical areas
on the rows are presented in red.
[PNG File 462 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Time series plots of weekly percentage of influenza-like illness visits from athenahealth across 3 influenza seasons (2015-2016,
2016-2017, and 2017-2018) with baselines. Geographical areas on the columns are presented in black, and geographical areas
on the rows are presented in blue.
[PNG File 396 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Time series plots of weekly influenza-like illness activity from HealthTweets.org across 3 influenza seasons (2015-2016, 2016-2017,
and 2017-2018) with baselines. Geographical areas on the columns are presented in black, and geographical areas on the rows
are presented in green.
[PNG File 386 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Heatmaps of the mean relative difference of ILI activity across geographical areas for (A) Centers for Disease Control and
Prevention Influenza-like Illness Surveillance Network, (B) Flu Near You, (C) athenahealth, and (D) HealthTweets.org for each
influenza season.
[PNG File 113 KB-Multimedia Appendix 5]
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