
Original Paper

Flucast: A Real-Time Tool to Predict Severity of an Influenza
Season

Aye Moa1, PhD; David Muscatello2, PhD; Abrar Chughtai2, PhD; Xin Chen1, MPH; C Raina MacIntyre1,3, PhD
1Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
2School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
3College of Health Solutions and College of Public Service & Community Solutions, Arizona State University, Tempe, AZ, United States

Corresponding Author:
Aye Moa, PhD
Biosecurity Program
The Kirby Institute
University of New South Wales
Gate 9, High Street
Sydney, NSW 2052
Australia
Phone: 61 02 93850938
Email: a.moa@unsw.edu.au

Abstract

Background: Influenza causes serious illness requiring annual health system surge capacity, yet annual seasonal variation
makes it difficult to forecast and plan for the severity of an upcoming season. Research shows that hospital and health system
stakeholders indicate a preference for forecasting tools that are easy to use and understand to assist with surge capacity planning
for influenza.

Objective: This study aimed to develop a simple risk prediction tool, Flucast, to predict the severity of an emerging influenza
season.

Methods: Study data were obtained from the National Notifiable Diseases Surveillance System and Australian Influenza
Surveillance Reports from the Department of Health, Australia. We tested Flucast using retrospective seasonal data for 11
Australian influenza seasons. We compared five different models using parameters known early in the season that may be
associated with the severity of the season. To calibrate the tool, the resulting estimates of seasonal severity were validated against
independent reports of influenza-attributable morbidity and mortality. The model with the highest predictive accuracy against
retrospective seasonal activity was chosen as a best-fit model to develop the Flucast tool. The tool was prospectively tested against
the 2018 and the emerging 2019 influenza season.

Results: The Flucast tool predicted the severity of all retrospectively studied years correctly for influenza seasonal activity in
Australia. With the use of real-time data, the tool provided a reasonable early prediction of a low to moderate season for the 2018
and severe seasonal activity for the upcoming 2019 season. The tool meets stakeholder preferences for simplicity and ease of use
to assist with surge capacity planning.

Conclusions: The Flucast tool may be useful to inform future health system influenza preparedness planning, surge capacity,
and intervention programs in real time, and can be adapted for different settings and geographic locations.

(JMIR Public Health Surveill 2019;5(3):e11780) doi: 10.2196/11780
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Introduction

Influenza is an epidemic infection that affects millions of people
around the world with varying severity. It infects approximately
10% to 15% of adults and 20% to 30% of children annually [1].

In aged care facilities and within the community, estimated
attack rates can be 25% or higher [2,3].

Traditionally, influenza activity is monitored through a range
of national and global surveillance networks in each country
and globally. The data sources include laboratories, hospitals
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and sentinel general practices, morbidity and mortality data
from health departments, and online self-reported community
surveillance such as Flu Tracking [4-7]. These data, however,
are typically retrospective and have inherent time lags. They
are not generally used to forecast the severity of an emerging
season and may not provide early warning for facilitating
preparedness and surge capacity planning. Increased hospital
and health system demand during the influenza season [8-10]
is a high priority for health managers because influenza
epidemics result in a surge of emergency department and
hospital admissions [11-13].

Various predictive tools and methods for forecasting influenza
epidemics and timing of seasonal peaks for influenza have been
developed [14-16]. The Centers for Disease Control and
Prevention (CDC) and other institutions in the United States
have developed influenza assessment tools that are made
available for local-level seasonal prediction [17]. In 2016, the
CDC launched FluSight on the Epidemic Prediction Initiative
website to forecast weekly influenza activity [18]. Research
teams submit weekly flu forecasts to FluSight, which then
provides information on influenza onset week, peak week, and
peak intensity as well as influenza-like illness activity during
the season [19].

Using the CDC FluAid 2.0 modeling tool [17], one Australian
study reported a favorable forecasting value for decision making
and planning of health care services during the 2009 influenza
pandemic [20]. The study found that the model predictions were
comparable to actual reports from hospitals regarding hospital
and intensive care admissions in the study. It was evident that
timely use of modeling tools could help to inform and manage
resources and surge capacity requirements at hospitals during
severe seasons and pandemics [20]. Although these advanced
modeling tools are useful to forecast the situation in real time,
they involve complex mathematical modeling approaches that
are not easily understood by health system stakeholders and
may not be adaptable to other settings.

From a previous study of Australian epidemic planning and
preparedness, we found that stakeholders do not apply epidemic
modeling tools in routine public health practice, and they have
skepticism and distrust of modeling tools. They indicated a
preference for simple tools, which are easy to apply and
understand. In addition, the stakeholders stated that their highest
priority was surge and workforce capacity planning during the
influenza season [21].

To forecast the influenza epidemic in real time and assist with
surge capacity planning, we aimed to develop a simple
assessment tool for early prediction of seasonal influenza
severity using the surveillance data in the study.

Methods

Overview
The Australian influenza season generally falls between May
and October, with the peak occurring between July and
September [22]. Laboratory-confirmed influenza infection is a
notifiable disease in Australia, and cases are reported to state
and territory health authorities. National data are published by

the Australian Government Department of Health. During the
influenza season, the Australian Influenza Surveillance Reports
provide biweekly descriptive reports of influenza activity at a
national level, including updates on international influenza
activity [7]. In this study, a tool was developed by fitting an
algorithm to 11 years of retrospective influenza data and then
testing it prospectively against the 2018 and the emerging 2019
influenza season in Australia.

Data Sources and Parameters
Data were obtained from the following sources: (1)
laboratory-confirmed influenza notifications from the National
Notifiable Diseases Surveillance System (NNDSS) [5] and (2)
published Australian Influenza Surveillance Reports [7] in 2016
and 2017. The National Australian Influenza Surveillance
Scheme, the Australian Government, Department of Health
reports and provides information regarding seasonal influenza
activity, circulating viruses, and influenza vaccine information
for the years studied.

When developing the models, a range of variables was
considered to include in the forecast model to predict the
severity of seasonal activity. These included total number of
notified cases in the season using a different month (such as
April, May, or June) to determine early or late season starts as
well as the magnitude, viral subtypes in circulation, pediatric
influenza-related deaths, reported number of influenza-related
hospitalizations, intensive care admissions at a single time point,
and reported influenza-associated deaths in the season. However,
in early testing of more than nine variations with inclusion and
exclusion of the different variables mentioned previously in
models with at least three to six parameters (data not shown),
several of these variables and models were excluded in the
forecast model because they did not contribute to or assist in
predicting seasonal influenza severity. We then selected the
parameters that were associated with or contributed to the
severity of influenza during the season, such as timing of season,
magnitude or number of notified cases, viral strain, and
influenza-associated hospitalizations or deaths in the season.
In the final selections, we selected five parameters and five
different models that might contribute to or assist in predicting
the season’s severity to test the best-fit model for the tool. The
data applied were for the Australian influenza season in the
study; therefore, month 1 was defined as May (the first month
of the beginning of influenza season) and month 2 as June in
the models. The five parameters considered are discussed
subsequently.

Timing of Seasonal Onset
This was used to define the onset of a season (being an early or
late onset to see any impact on seasonal severity) using
notifications in month 1 or month 2 for a given year. For this
parameter, data were retrieved from the NNDSS [5].

Relative Magnitude of Influenza Activity
The relative magnitude was the relative rate of influenza
notifications in month 1 or month 2 compared with the past five
years’ average. Data were obtained from the NNDSS [5].
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Dominant Strain in Circulation
This was defined as the viral strain that was 50% or more of
the circulating strains or the highest proportion strain circulating
during the season. Severity and scoring criteria were assigned
based on reported studies [10,23,24]. Data were obtained from
the Australian Influenza Surveillance Report from the
Department of Health [7]. A novel strain (categorized as the
most severe strain) and A(H1N1)pdm09 in 2009 were treated
as a novel or pandemic strain for that year, followed by influenza
A(H3N2), influenza B, and influenza A(H1N1). Due to the
inclusion of prepandemic years (2007 and 2008), the influenza
A(H1N1) subtype was included in the study, although it has not
been circulated widely since 2009.

Vaccine Mismatch
A documented mismatch of a vaccine strain is a change in the
amino acid in the hemagglutinin or neuraminidase surface
proteins of dominant strains of influenza viruses in circulation
and the southern hemisphere influenza vaccine strains
recommended by the World Health Organization (WHO) for a
given season. Reports of a vaccine mismatch were retrieved
from the Australian Influenza Surveillance Report-WHO
Collaborating Centre for Reference and Research on Influenza
[7]. The vaccine mismatch information is available at the earliest
around month 1 (May) or month 2 (June) if there is delayed
reporting during the season.

Early Season Deaths
Data on early season deaths (rate of notified influenza-associated
deaths early in the season per 100,000 population) were obtained
from the report of influenza-associated deaths notified to the
NNDSS at the end of July in the current influenza season from
the Australian Influenza Surveillance Report [7]. Data from
July were used to account for delayed reporting of deaths in the
administrative system in general. Population data were obtained
from the Australian Bureau of Statistics from the Australian
Government [25]. Morbidity and mortality burden could
demonstrate the severity of influenza infection; thus, we applied
mortality (deaths data) to predict seasonal severity in the models.

Severity prediction of influenza is complex and multifocal in
nature, and more than one factor would have been attributed to
the severity in the season. In our models, we assumed that each
parameter contributed equally to the prediction of seasonal
severity. Each model contained either four or five parameters
as listed in Table 1. Model 1 was chosen as a reference model,
and the other models (models 2-5) resulted from the removal
or replacement of a parameter from the reference model (model
1).

The five models tested were:

1. Model 1: consisted of all five parameters (parameters 1-5
as shown in Table 1) and was used as a reference model in
the study.

2. Model 2: consisted of four parameters (parameters 2-5),
with removal of the seasonal onset column from the
reference model.

3. Model 3: consisted of four parameters (parameters 1-4),
with removal of notified influenza-associated deaths from
the reference model.

4. Model 4: consisted of all five parameters (parameters 1-5)
as in Model 1; however, a different scoring method was
used to score the dominant strain in the model.

5. Model 5: consisted of all five parameters (parameters 1-5).
In this model, for a designated month, month 2 was used
instead of month 1 to calculate the ratio of notifications for
both parameters 1 and 2 in the model.

Then, we considered predefined criteria to score parameters in
the model. A simple, discrete linear scoring method, with 0
being the lowest and 4 being the highest score, was used to
score each parameter (Table 1).

A score of 0 was regarded as no impact, and a higher score
indicated a stronger prediction of severity for the season. For
any given year, each parameter was given a score based on its
value. The score increased with a higher risk value of the
parameter. The scores for each parameter were summed to give
a total score for each year in the model. The maximum possible
score given in the model ranged from 16 to 20, depending on
the number of parameters included in the model. For example,
in model 1, the maximum possible score would be the sum of
the highest score of 4 for each parameter multiplied by 5
parameters, which equals 20.

Scoring of Models and Selection of the Best-Fit Model
In developing the Flucast tool, data available each year from
the influenza surveillance reports and laboratory-confirmed
influenza notifications from the NNDSS were compiled to
predict and categorize annual influenza seasonal severity in the
models [5,7]. The historical data from the past 11 consecutive
years (2007-2017 including the pandemic in 2009) were applied.
We trained the model using data from 2007 to 2017
retrospectively and tested it with 2018 data in real time as the
2018 influenza season was emerging at the time of the study.

As per the scoring criteria in Table 1, data were scored and total
scores were calculated for an individual year in the five models.
Then, the severity index percentage was calculated for each
year. The formula for calculating the severity index for any
given year in the model was:

severity index (%) = (total score obtained from the
parameters / maximum score in the model) * 100

Lastly, we calibrated the severity index against seasonal severity
(with reference to historical data from the surveillance reports,
knowing which past seasons were mild, moderate, or severe in
Australia). We considered the bottom 30% as mild, middle 30%
as moderate, the next 30% as severe, and the final 10% as very
severe, and severity index was categorized as a mild season
(<30%), moderate (30% to 59%), severe (60% to 89%), or very
severe season (≥90%). The severity index resulting from the
model outputs were then applied accordingly to calibrate the
seasonal severity.
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Table 1. Parameters and scoring criteria of the influenza prediction models (Australian Influenza Surveillance Reports [7] and NNDSS [5]).

ScoresParameter and criteria

1. Timing of seasonal onset: Ratio of laboratory-confirmed influenza notifications in month 1 to preceding four months’ average for a given
year [models 1, 3, & 4] or ratio of laboratory-confirmed influenza notifications in month 2 to preceding four months’ average for a given
year [model 5], if…

0≤1

1>1 to 1.5

2>1.5 to 2

3>2 to 2.5

4>2.5

2. Relative magnitude of influenza activity: Ratio of laboratory-confirmed influenza notifications in month 1 for a given year compared with
last 5 years’ average for the same period [models 1, 2, 3, & 4] or ratio of laboratory-confirmed influenza notifications in month 2 for a given
year compared with last 5 years’ average for the same period [model 5], if…

0≤1

1>1 to 1.5

2>1.5 to 2

3>2 to 2.5

4>2.5

3. Dominant strain in circulation: Viral strain comprising ≥50% of circulating strains or the highest proportion circulating in the season

For scoring in models 1-3 and 5

1B or A(H1N1)

2A(H1N1)pdm09

3A(H3N2)

4Novel strain

For scoring in model 4

1A(H1N1)

2B

3A(H3N2) or A(H1N1)pdm09

4Novel strain

4. Vaccine mismatch in the season: Documented vaccine mismatch with the dominant strain in the season

1No mismatch

2Mismatch in 1 strain only

3Mismatch in >1 but not all strains

4Mismatch in all strains

5. Early season deaths: Rate of notified influenza-associated deaths per 100,000 population at the end of July in the current season

1≤0.01

2>0.01 to 0.05

3>0.05 to 0.1

4>0.1

From the five potential models, the model with the best fit
against the known severity of the past 11 seasons was selected
as the final model for the Flucast tool. Thus, the best-fit model
would be the model that would give the highest accuracy of
seasonal prediction among the five.

Independent data on morbidity and mortality were used to
classify and validate the annual seasonal impact for the years
included as very severe, severe, moderate, or mild [5,26], which

provided accuracy and classification for forecast severity.
However, the results from a recent Australian study were
available up to 2013 [26]; thus, the estimated seasonal impact
for the years 2014 to 2017 were validated using records from
the National Influenza Surveillance Reports [7]. In Australia,
the years 2008, 2010, 2011, and 2013 to 2016 had moderate or
mild seasonal activity; 2007, 2012, and 2017 were severe
seasons. In general, a pandemic can occur at any time point,
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and the 2009 pandemic year in Australia somehow coincided
with the seasonal period, but only a few months earlier than the
usual time in the country.

Using the final chosen model, we developed and implemented
the online Flucast tool, which allows users to enter information
obtained from the real-time surveillance data to predict the
severity of the current influenza season. Input data required for
parameters, the procedure for calculation, and links to the
sources of Australian data are also provided on the webpage.
Options to choose an answer for each parameter are provided
in the drop-down lists. Once all answers are filled, a severity
index percentage with estimated seasonal severity appears on
the thermometer indicator as the final output of the tool. The
Flucast tool online page is incorporated in a designated website,
and the Web link to the online site is presented in the study.

The Flucast tool was developed and validated in 2016 and 2017
in Australia using the local data. A modified version of the
Flucast tool has also been developed, which is adapted for other
settings, such as countries in the southern or northern
hemisphere with regular influenza seasonal patterns. For these

modified versions, we assumed that the influenza season falls
between May and October for the southern hemisphere countries
and November and April for countries in the northern
hemisphere.

Results

Scoring of Models and Selection of the Best-Fit Model
Using the available Australian data for past influenza seasons
and prospectively for the 2018 influenza season, all five models
were scored using the scoring criteria and forecasted the seasonal
severity for each year. An example of the scoring method is
shown in Table 2 for model 1 (the reference model). Final scores
for models 2 to 5 are presented in Multimedia Appendices 1-4.

The outputs from the five proposed alternative models provided
a reasonable estimation of influenza severity. All models except
model 3 predicted well for the severe seasons of 2007 and 2012,
as well as 2017 in Australia. All five models identified the 2009
pandemic year as a very severe season. There were some
variations across the models in predicting moderate and mild
seasons.

Table 2. Scoring method for model 1 (from Australian Influenza Surveillance Reports [7] and NNDSS [5]).

Severity

indexb, %

Total score
(max=20)

ParametersaActual impact
of season

Year

Early season
deaths (score)

Vaccine mismatch in
the season (score)

Dominant strain
(score)

Relative magnitude
of influenza activity
(score)

Timing of
seasonal
onset
(score)

601218c (3)All strains (4)A/H3N2 (3)1.3 (1)1.1 (1)Severe2007

50103c (1)1 strain (2)B (1)2.8 (4)1.7 (2)Moderate2008

1002061 (4)All strains (4)Novel/pandemic
strain or
A/H1N1pdm09 (4)

19.3 (4)13.7 (4)Very severe
(pandemic)

2009

2552 (1)None (1)A/H1N1pdm09 (2)0.3 (0)1.2 (1)Mild2010

35710 (2)None (1)A/H1N1pdm09 (2)1.4 (1)1.1 (1)Moderate2011

651323 (3)>1 but not all strains (3)A/H3N2 (3)1.4 (1)2.5 (3)Severe2012

35711 (2)1 strain (2)A/H1N1pdm09 (2)0.8 (0)1.1 (1)Moderate2013

45922 (3)1 strain (2)A/H1N1pdm09 (2)1.2 (1)1.1 (1)Moderate2014

551146 (4)None (1)B (1)2.9 (4)1.5 (1)Moderate2015

35717 (3)None (1)A/H1N1pdm09 (2)1.5 (1)1.0 (0)Moderate2016

651343 (4)1 strain (2)A/H3N2 (3)2.1 (3)1.3 (1)Severe2017

30635 (3)None (1)A/H1N1pdm09 (2)1.0 (0)0.6 (0)Moderate2018d

aTiming of seasonal onset: ratio of laboratory-confirmed influenza notifications in May/January to April average [5]; relative magnitude of influenza
activity: ratio of laboratory-confirmed influenza notifications in May compared to last 5 years’average [5]; dominant strain: dominant strain in circulation
[7]; vaccine mismatch in season: vaccine mismatch with dominant strain(s) [7]; early season deaths: rate per 100,000 population of notified
influenza-associated deaths at the end of July in the season [7].
cSeverity index=total score/maximum score.
dInfluenza-associated deaths in 2007 and 2008 were estimated by calculating the proportion (total number of notifications at the end of July/total
notifications in the year) multiplied by total deaths reported by the Australian Bureau of Statistics for 2007 and 2008, accordingly.
eProspective year, real-time data.

In our study, we used a simple method of scoring variables and
parameters to estimate the severity of the influenza season.

There were not many differences between the models; however,
it indicated that the removal of notified influenza-associated
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deaths (model 3) gave the lowest predicted accuracy among the
five models. Model 1 estimated well for all seasons
retrospectively for the past 11 years and predicted the
prospective 2018 season correctly when the results were
validated against the actual impact of the influenza season in
Australia. Thus, from the five tested models, model 1 showed
the best fit for all years, accurate for 11 of 11 seasons, so it was
chosen as the best-fit model for the Flucast tool. It was followed
by model 2, then models 4, 5, and 3. The severity indexes and
predicted seasonal activities by the models are described in
Table 3. In validating the impact of actual seasons with predicted
estimates, the reported data may be underestimated [27];
however, these data did show a seasonal trend for the years
studied. Using the Flucast tool for real-time assessment in 2018,
the tool predicted the season as moderate (severity index score
of 30%) by late July. The seasonal peak occurred in late August
in 2018, and a low level of seasonal activity was reported for
2018 in general [28].

Sensitivity analysis of the Flucast tool was conducted as a post
hoc analysis in the study. In predicting moderate versus mild
seasons using fewer parameters (less than five parameters), the
results were less accurate. The sensitivity was reduced to

approximately 17% in predicting moderate seasons. Also, we
found that the models were 33% less sensitive in predicting a
severe versus moderate season when using only four parameters
(data not shown). As a result, we did not test further for mild
seasons, and we concluded that the tool might not provide an
accurate estimation of seasonal activity with fewer parameters.
In addition, the impact of a pandemic year in the model
prediction was also determined in the study. Sensitivity was
tested in model 1 from 2010 to 2014 for scoring of parameter
2 in calculating the last 5 years’ average with inclusion and
exclusion of 2009 to see the overall impact on seasonal
prediction by the model. It was shown that seasonal predictions
were almost the same, except for 2010 (data not shown).

The online form of the Flucast tool and an example of the tool
image (as predicted seasonal severity for 2019) is shown in
Figure 1 [29]. The Flucast tool was tested using real-time data
for the 2019 emerging influenza season as data became
available, and the tool predicted the upcoming season to be
severe. In addition, the Flucast tool was modified and adapted
for southern and northern hemisphere countries with regular
seasonal patterns, and these are presented in Multimedia
Appendices 5 and 6.
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Table 3. Comparison of the five models and their corresponding seasonal influenza predictions.

Prediction of seasonal impact by scoring criteriaActual impact of seasonYear

Model 5Model 4Model 3Model 2Model 1

Severe2007

7560566960Severity index

SevereSevereModerateSevereSevereSeason prediction

YesYesNoYesYesCorrect prediction

Moderate2008

3555565050Severity index

ModerateModerateModerateModerateModerateSeason prediction

YesYesYesYesYesCorrect prediction

Very severe (pandemic)2009

100100100100100Severity index

PandemicPandemicPandemicPandemicPandemicSeason prediction

YesYesYesYesYesCorrect prediction

Mild2010

3030252525Severity index

ModerateModerateMildMildMildSeason prediction

NoNoYesYesYesCorrect prediction

Moderate2011

4540313835Severity index

ModerateModerateModerateModerateModerateSeason prediction

YesYesYesYesYesCorrect prediction

Severe2012

7565636365Severity index

SevereSevereSevereSevereSevereSeason prediction

YesYesYesYesYesCorrect prediction

Moderate2013

3540313835Severity index

ModerateModerateModerateModerateModerateSeason prediction

YesYesYesYesYesCorrect prediction

Moderate2014

4550385045Severity index

ModerateModerateModerateModerateModerateSeason prediction

YesYesYesYesYesCorrect prediction

Moderate2015

6560446355Severity index

SevereSevereModerateSevereModerateSeason prediction

NoNoYesNoYesCorrect prediction

Moderate2016

3540254435Severity index

ModerateModerateMildModerateModerateSeason prediction

YesYesNoYesYesCorrect prediction

Severe2017
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Prediction of seasonal impact by scoring criteriaActual impact of seasonYear

Model 5Model 4Model 3Model 2Model 1

8065567565Severity index

SevereSevereModerateSevereSevereSeason prediction

YesYesNoYesYesCorrect prediction

9/119/118/1110/1111/11Predicted accuracy of past influenza seasons

Figure 1. The Flucast tool (online form).

Discussion

The Flucast tool provides early prediction of seasonal severity
of influenza using real-time data. In our prediction tool, we
found that five parameters were optimal and that using more or
fewer parameters reduced the predictive ability of the Flucast
tool. The value of Flucast is in allowing real-time prediction of
seasonal severity of an upcoming season with a simple tool to
inform surge capacity planning. Also, the development of the
tool using 11 years of historical influenza data and validation
against the 2018 influenza season prospectively adds strength
to the predictive value of the tool.

Routinely collected data from influenza surveillance schemes
are regularly used by public health sectors to monitor
epidemiological trends and to inform the burden of
influenza-related illnesses for the planning of public health
intervention programs in many countries. These may differ from
country to country depending on health care resources, policy,
and regulations adopted within the local context. Similar to
Australian Influenza Surveillance Reports, the CDC in the
United States, the European Centre for Disease Control and
Prevention, and WHO regularly publish updated influenza
surveillance data to inform current trends of influenza seasonal

activity, circulating viral strains, disease impact on the health
care system, and information regarding available vaccines and
vaccination during the season and beyond. Although these data
are descriptive and useful, they are not predictive. In this study,
we have shown that it is possible to use the same data, combined
with other parameters, to predict the seasonal severity of
influenza. We understand that there are trade-offs between the
use of sophisticated modeling techniques and a simple method
in generating outputs for forecasting of influenza epidemics and
outbreaks. Although studies have shown the potential benefits
of using advanced modeling statistics in this area, most public
health practitioners do not use such methods and rely on
descriptive data [21]. There are many reasons for this, and some
may be due to the lack of proper training or knowledge in
modeling and uncertainty about modeling, which may hinder
the efficient use of such tools [21]. There is also a need to
engage health system stakeholders involved in operational
response and to improve uptake of such tools for decision
support.

There are some limitations to this study. First, the Flucast tool
was developed using Australian data, and its application in other
countries or settings was not evaluated. For example, in
developing countries with limited surveillance capacity, all
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parameters may not be available. In some countries such as
Thailand or Hong Kong, clear winter seasonality of influenza
is not present, and there may be two peaks in the influenza
seasons. These may have an impact on the predictivity of the
Flucast tool. Secondly, there are variations in the influenza
surveillance scheme and availability of country-specific data;
thus not all parameters may be applicable in the Flucast tool.
Thirdly, qualitative assessments of virulence and vaccine
mismatch were made using reports from the surveillance system,
and changes in these data during the season might influence the
accuracy of output by the tool. Fourthly, inconsistency and
variations in reporting and surveillance practices, as well as
regional variation in influenza activity between jurisdictions,
could limit the regional validity of the tool. Increased
notifications over time may be due to wider availability and
uptake of influenza tests, and they may not necessarily reflect
the high incidence of infection, which can also vary
subnationally. To overcome this problem in our study, we

calibrated the input variables (that used laboratory-confirmed
influenza notifications) based on the last 5 years’average rather
than using the prior years. In addition, we used the crude
population death rate attributable to influenza reported per year
to adjust for testing or reporting practices in the administrative
data. Lastly, due to the unpredictable nature of influenza
infections, predicting seasonal influenza activity can be
complicated. It is driven by many factors, such as the viral strain
in the season, vaccine mismatch with the circulating strain,
vaccination coverage in the population, as well as environmental
factors such as temperature and humidity. Therefore, care should
be taken in interpreting the results. These should be continually
revised using new data as it becomes available.

To conclude, Flucast is a simple tool and is intended to provide
simple outputs for routine practice by public health officials in
a real-time setting with minimal supervision. The tool can be
used to plan for health care services and resources during the
influenza season.

Acknowledgments
We acknowledge the following data sources—the Australian Government: the National Notifiable Diseases Surveillance System,
Department of Health, the National Influenza Surveillance Scheme and the Australian Influenza Surveillance Reports, Department
of Health, the Australian Bureau of Statistics, and the Australian Institute of Health and Welfare. AM received funding support
from the Australian Government Research Training Program Scholarship for her PhD. CRM is supported by a NHMRC Principal
Research Fellowship, grant number 1137582. This study was supported by Integrated Systems for Epidemic Response grant
#APP1107393 (NHMRC Centre for Research Excellence), and project grant #APP1082524, National Health and Medical Research
Council, the Australian Government.

Authors' Contributions
CRM conceived and oversaw the study, provided the concept for the overall study design, and contributed to manuscript review
and writing; AMM designed the study, tested and developed the models, and wrote the first draft of the manuscript; DJM, AAC,
and XC contributed to manuscript review and writing.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Model 2, with removal of a seasonal onset column from model 1.

[DOCX File, 17KB-Multimedia Appendix 1]

Multimedia Appendix 2
Model 3, removal of an influenza-associated deaths column from model 1.

[DOCX File, 17KB-Multimedia Appendix 2]

Multimedia Appendix 3
Model 4, using different scoring method for dominant circulating strain in model 1.

[DOCX File, 18KB-Multimedia Appendix 3]

Multimedia Appendix 4
Model 5, using the number of influenza notifications in June instead of May in model 1.

[DOCX File, 18KB-Multimedia Appendix 4]

JMIR Public Health Surveill 2019 | vol. 5 | iss. 3 | e11780 | p. 9http://publichealth.jmir.org/2019/3/e11780/
(page number not for citation purposes)

Moa et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app1.docx&filename=18326c23987b66745bfb6647cdfa5318.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app1.docx&filename=18326c23987b66745bfb6647cdfa5318.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app2.docx&filename=dbfb229d777b69c725cb52bafe5348b3.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app2.docx&filename=dbfb229d777b69c725cb52bafe5348b3.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app3.docx&filename=78df4fd3c73cf6e2b2a0aabf125b6254.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app3.docx&filename=78df4fd3c73cf6e2b2a0aabf125b6254.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app4.docx&filename=c3dbd3f5aea2a26e9627201eea4a56cd.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app4.docx&filename=c3dbd3f5aea2a26e9627201eea4a56cd.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 5
The Flucast tool: parameters and scoring criteria for southern hemisphere countries.

[DOCX File, 15KB-Multimedia Appendix 5]

Multimedia Appendix 6
The Flucast tool: parameters and scoring criteria for northern hemisphere countries.

[DOCX File, 15KB-Multimedia Appendix 6]

References

1. World Health Organization. 2018 Nov 06. Influenza (seasonal)-fact sheet URL: http://www.who.int/mediacentre/factsheets/
fs211/en/ [accessed 2017-02-07] [WebCite Cache ID 71LRPQE0O]

2. Chunara R, Goldstein E, Patterson-Lomba O, Brownstein JS. Estimating influenza attack rates in the United States using
a participatory cohort. Sci Rep 2015 Apr 02;5:9540 [FREE Full text] [doi: 10.1038/srep09540] [Medline: 25835538]

3. Rainwater-Lovett K, Chun K, Lessler J. Influenza outbreak control practices and the effectiveness of interventions in
long-term care facilities: a systematic review. Influenza Other Respir Viruses 2014 Jan;8(1):74-82 [FREE Full text] [doi:
10.1111/irv.12203] [Medline: 24373292]

4. Dalton C, Durrheim D, Fejsa J, Francis L, Carlson S, d'Espaignet ET, et al. Flutracking: a weekly Australian community
online survey of influenza-like illness in 2006, 2007 and 2008. Commun Dis Intell Q Rep 2009 Sep;33(3):316-322 [FREE
Full text] [Medline: 20043602]

5. Australian Government, Department of Health. National Notifiable Diseases Surveillance System URL: http://www9.
health.gov.au/cda/source/cda-index.cfm [accessed 2017-07-03] [WebCite Cache ID 71LS3VfRM]

6. Australian Government, Australian Institute of Health and Welfare. Principal diagnosis data cubes URL: http://www.
aihw.gov.au/hospitals-data/principal-diagnosis-data-cubes/ [accessed 2017-01-18] [WebCite Cache ID 71LSLYeiN]

7. Australian Government, Department of Health. Australian Influenza Surveillance Report and Activity Updates URL: http:/
/www.health.gov.au/flureport [accessed 2017-02-02] [WebCite Cache ID 71LeINYk2]

8. Matias G, Haguinet F, Lustig RL, Edelman L, Chowell G, Taylor RJ. Model estimates of the burden of outpatient visits
attributable to influenza in the United States. BMC Infect Dis 2016 Dec 07;16(1):641 [FREE Full text] [doi:
10.1186/s12879-016-1939-7] [Medline: 27821091]

9. Schanzer DL, McGeer A, Morris K. Statistical estimates of respiratory admissions attributable to seasonal and pandemic
influenza for Canada. Influenza Other Respir Viruses 2013 Sep;7(5):799-808 [FREE Full text] [doi: 10.1111/irv.12011]
[Medline: 23122189]

10. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, et al. Influenza-associated hospitalizations in
the United States. JAMA 2004 Sep 15;292(11):1333-1340. [doi: 10.1001/jama.292.11.1333] [Medline: 15367555]

11. Muscatello DJ, Bein KJ, Dinh MM. Influenza-associated delays in patient throughput and premature patient departure in
emergency departments in New South Wales, Australia: A time series analysis. Emerg Med Australas 2018 Feb;30(1):77-80.
[doi: 10.1111/1742-6723.12808] [Medline: 28544364]

12. Muscatello DJ, Bein KJ, Dinh MM. Emergency Department demand associated with seasonal influenza, 2010 through
2014, New South Wales, Australia. Western Pac Surveill Response J 2017;8(3):11-20 [FREE Full text] [doi:
10.5365/wpsar.2017.8.2.002] [Medline: 29051837]

13. Schanzer DL, Schwartz B. Impact of seasonal and pandemic influenza on emergency department visits, 2003-2010, Ontario,
Canada. Acad Emerg Med 2013 Apr;20(4):388-397 [FREE Full text] [doi: 10.1111/acem.12111] [Medline: 23701347]

14. Yang W, Cowling BJ, Lau EH, Shaman J. Forecasting Influenza Epidemics in Hong Kong. PLoS Comput Biol 2015
Jul;11(7):e1004383 [FREE Full text] [doi: 10.1371/journal.pcbi.1004383] [Medline: 26226185]

15. Nsoesie E, Mararthe M, Brownstein J. Forecasting peaks of seasonal influenza epidemics. PLoS Curr 2013 Jun 21;5:1
[FREE Full text] [doi: 10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc] [Medline: 23873050]

16. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci U S A 2012 Dec
11;109(50):20425-20430 [FREE Full text] [doi: 10.1073/pnas.1208772109] [Medline: 23184969]

17. Centers for Disease Control and Prevention. 2017. Influenza: CDC pandemic tools URL: https://www.cdc.gov/flu/
pandemic-resources/tools/fluaid.htm [accessed 2017-07-25] [WebCite Cache ID 71LekEKQD]

18. Centers for Disease Control and Prevention. 2016 Dec 09. New flu activity forecasts available for 2016-17 season; CDC
names most accurate forecaster for 2015-16 URL: https://www.cdc.gov/flu/spotlights/flu-activity-forecasts-2016-2017.htm
[accessed 2017-06-30] [WebCite Cache ID 71LeqRkeU]

19. Centers for Disease Control and Prevention. FluSight: Flu Forecasting URL: https://www.cdc.gov/flu/weekly/flusight/
index.html [accessed 2017-06-30]

20. Lum ME, McMillan AJ, Brook CW, Lester R, Piers LS. Impact of pandemic (H1N1) 2009 influenza on critical care capacity
in Victoria. Med J Aust 2009 Nov 02;191(9):502-506. [Medline: 19883346]

JMIR Public Health Surveill 2019 | vol. 5 | iss. 3 | e11780 | p. 10http://publichealth.jmir.org/2019/3/e11780/
(page number not for citation purposes)

Moa et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app5.docx&filename=62b0a68381a9ec265b65e2504dcfa5d6.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app5.docx&filename=62b0a68381a9ec265b65e2504dcfa5d6.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app6.docx&filename=cfbe579efb5e9a50318832059d7626b4.docx
https://jmir.org/api/download?alt_name=publichealth_v5i3e11780_app6.docx&filename=cfbe579efb5e9a50318832059d7626b4.docx
http://www.who.int/mediacentre/factsheets/fs211/en/
http://www.who.int/mediacentre/factsheets/fs211/en/
http://www.webcitation.org/

                                            71LRPQE0O
http://dx.doi.org/10.1038/srep09540
http://dx.doi.org/10.1038/srep09540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25835538&dopt=Abstract
http://dx.doi.org/10.1111/irv.12203
http://dx.doi.org/10.1111/irv.12203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24373292&dopt=Abstract
http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi3303g.htm
http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi3303g.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20043602&dopt=Abstract
http://www9.health.gov.au/cda/source/cda-index.cfm
http://www9.health.gov.au/cda/source/cda-index.cfm
http://www.webcitation.org/

                                            71LS3VfRM
http://www.aihw.gov.au/hospitals-data/principal-diagnosis-data-cubes/
http://www.aihw.gov.au/hospitals-data/principal-diagnosis-data-cubes/
http://www.webcitation.org/

                                            71LSLYeiN
http://www.health.gov.au/flureport
http://www.health.gov.au/flureport
http://www.webcitation.org/

                                            71LeINYk2
https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1939-7
http://dx.doi.org/10.1186/s12879-016-1939-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27821091&dopt=Abstract
https://dx.doi.org/10.1111/irv.12011
http://dx.doi.org/10.1111/irv.12011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23122189&dopt=Abstract
http://dx.doi.org/10.1001/jama.292.11.1333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15367555&dopt=Abstract
http://dx.doi.org/10.1111/1742-6723.12808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28544364&dopt=Abstract
http://europepmc.org/abstract/MED/29051837
http://dx.doi.org/10.5365/wpsar.2017.8.2.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29051837&dopt=Abstract
https://dx.doi.org/10.1111/acem.12111
http://dx.doi.org/10.1111/acem.12111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23701347&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1004383
http://dx.doi.org/10.1371/journal.pcbi.1004383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26226185&dopt=Abstract
https://dx.doi.org/10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc
http://dx.doi.org/10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23873050&dopt=Abstract
http://www.pnas.org/cgi/pmidlookup?view=long&pmid=23184969
http://dx.doi.org/10.1073/pnas.1208772109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23184969&dopt=Abstract
https://www.cdc.gov/flu/pandemic-resources/tools/fluaid.htm
https://www.cdc.gov/flu/pandemic-resources/tools/fluaid.htm
http://www.webcitation.org/

                                            71LekEKQD
https://www.cdc.gov/flu/spotlights/flu-activity-forecasts-2016-2017.htm
http://www.webcitation.org/

                                            71LeqRkeU
https://www.cdc.gov/flu/weekly/flusight/index.html
https://www.cdc.gov/flu/weekly/flusight/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19883346&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Muscatello DJ, Chughtai AA, Heywood A, Gardner LM, Heslop DJ, MacIntyre CR. Translation of real-time infectious
disease modeling into routine public health practice. Emerg Infect Dis 2017 Dec;23(5):1 [FREE Full text] [doi:
10.3201/eid2305.161720] [Medline: 28418309]

22. Australian Government, Department of Health. Australian influenza activity update URL: http://www.health.gov.au/internet/
main/publishing.nsf/Content/ozflu-surveil-no08-17.htm [accessed 2017-10-13] [WebCite Cache ID 71LfE1Rsy]

23. Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M, GLaMOR Collaborating Teams. Global
mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a modeling study. PLoS Med 2013
Nov;10(11):e1001558 [FREE Full text] [doi: 10.1371/journal.pmed.1001558] [Medline: 24302890]

24. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, et al. Mortality associated with influenza and
respiratory syncytial virus in the United States. JAMA 2003 Jan 8;289(2):179-186. [Medline: 12517228]

25. Australian Bureau of Statistics. 3101.0-Australian demographic statistics, Mar 2017 URL: http://www.abs.gov.au/ausstats/
abs@.nsf/mf/3101.0 [accessed 2017-10-06] [WebCite Cache ID 71LfKqG9H]

26. Li-Kim-Moy J, Yin JK, Patel C, Beard FH, Chiu C, Macartney KK, et al. Australian vaccine preventable disease
epidemiological review series: influenza 2006 to 2015. Commun Dis Intell Q Rep 2016 Dec 24;40(4):E482-E495 [FREE
Full text] [Medline: 28043223]

27. Muscatello DJ, Amin J, MacIntyre CR, Newall AT, Rawlinson WD, Sintchenko V, et al. Inaccurate ascertainment of
morbidity and mortality due to influenza in administrative databases: a population-based record linkage study. PLoS One
2014;9(5):e98446 [FREE Full text] [doi: 10.1371/journal.pone.0098446] [Medline: 24875306]

28. Australian Government, Department of Health. Australian Influenza Surveillance Report-2018 national influenza season
summary URL: https://www.health.gov.au/internet/main/publishing.nsf/Content/cda-ozflu-2018.htm [accessed 2019-05-08]
[WebCite Cache ID 71LfnrF7L]

29. NHMRC Centre for Research Excellence Integrated Systems for Epidemic Response. Flucast URL: https://iser.
med.unsw.edu.au/australian-influenza-seasonal-severity-forecast-indicator [accessed 2019-05-10] [WebCite Cache ID
78loWKEPo]

Abbreviations
CDC: Centers for Disease Control and Prevention
NNDSS: National Notifiable Diseases Surveillance System
WHO: World Health Organization

Edited by G Eysenbach; submitted 02.08.18; peer-reviewed by S Ghosh, E Lau; comments to author 25.03.19; revised version received
31.05.19; accepted 18.06.19; published 23.07.19

Please cite as:
Moa A, Muscatello D, Chughtai A, Chen X, MacIntyre CR
Flucast: A Real-Time Tool to Predict Severity of an Influenza Season
JMIR Public Health Surveill 2019;5(3):e11780
URL: http://publichealth.jmir.org/2019/3/e11780/
doi: 10.2196/11780
PMID: 31339102

©Aye Moa, David Muscatello, Abrar Chughtai, Xin Chen, C Raina MacIntyre. Originally published in JMIR Public Health and
Surveillance (http://publichealth.jmir.org), 23.07.2019. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly
cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this
copyright and license information must be included.

JMIR Public Health Surveill 2019 | vol. 5 | iss. 3 | e11780 | p. 11http://publichealth.jmir.org/2019/3/e11780/
(page number not for citation purposes)

Moa et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://dx.doi.org/10.3201/eid2305.161720
http://dx.doi.org/10.3201/eid2305.161720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28418309&dopt=Abstract
http://www.health.gov.au/internet/main/publishing.nsf/Content/ozflu-surveil-no08-17.htm
http://www.health.gov.au/internet/main/publishing.nsf/Content/ozflu-surveil-no08-17.htm
http://www.webcitation.org/

                                            71LfE1Rsy
http://dx.plos.org/10.1371/journal.pmed.1001558
http://dx.doi.org/10.1371/journal.pmed.1001558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24302890&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12517228&dopt=Abstract
http://www.abs.gov.au/ausstats/abs@.nsf/mf/3101.0
http://www.abs.gov.au/ausstats/abs@.nsf/mf/3101.0
http://www.webcitation.org/

                                            71LfKqG9H
http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi4004f.htm
http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi4004f.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28043223&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0098446
http://dx.doi.org/10.1371/journal.pone.0098446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24875306&dopt=Abstract
https://www.health.gov.au/internet/main/publishing.nsf/Content/cda-ozflu-2018.htm
http://www.webcitation.org/

                                            71LfnrF7L
https://iser.med.unsw.edu.au/australian-influenza-seasonal-severity-forecast-indicator
https://iser.med.unsw.edu.au/australian-influenza-seasonal-severity-forecast-indicator
http://www.webcitation.org/

                                            78loWKEPo
http://www.webcitation.org/

                                            78loWKEPo
http://publichealth.jmir.org/2019/3/e11780/
http://dx.doi.org/10.2196/11780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31339102&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

