
Original Paper

Improved Real-Time Influenza Surveillance: Using Internet Search
Data in Eight Latin American Countries

Leonardo Clemente1,2*, BSc; Fred Lu2*, BA; Mauricio Santillana2,3, MSc, PhD
1School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
2Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, United States
3Department of Pediatrics, Harvard Medical School, Boston, MA, United States
*these authors contributed equally

Corresponding Author:
Mauricio Santillana, MSc, PhD
Computational Health Informatics Program
Boston Children's Hospital
1 Autumn St
Boston, MA, 02215
United States
Phone: 1 617 919 1795
Email: msantill@g.harvard.edu

Abstract

Background: Novel influenza surveillance systems that leverage Internet-based real-time data sources including Internet search
frequencies, social-network information, and crowd-sourced flu surveillance tools have shown improved accuracy over the past
few years in data-rich countries like the United States. These systems not only track flu activity accurately, but they also report
flu estimates a week or more ahead of the publication of reports produced by healthcare-based systems, such as those implemented
and managed by the Centers for Disease Control and Prevention. Previous work has shown that the predictive capabilities of
novel flu surveillance systems, like Google Flu Trends (GFT), in developing countries in Latin America have not yet delivered
acceptable flu estimates.

Objective: The aim of this study was to show that recent methodological improvements on the use of Internet search engine
information to track diseases can lead to improved retrospective flu estimates in multiple countries in Latin America.

Methods: A machine learning-based methodology that uses flu-related Internet search activity and historical information to
monitor flu activity, named ARGO (AutoRegression with Google search), was extended to generate flu predictions for 8 Latin
American countries (Argentina, Bolivia, Brazil, Chile, Mexico, Paraguay, Peru, and Uruguay) for the time period: January 2012
to December of 2016. These retrospective (out-of-sample) Influenza activity predictions were compared with historically observed
flu suspected cases in each country, as reported by Flunet, an influenza surveillance database maintained by the World Health
Organization. For a baseline comparison, retrospective (out-of-sample) flu estimates were produced for the same time period
using autoregressive models that only leverage historical flu activity information.

Results: Our results show that ARGO-like models’ predictive power outperform autoregressive models in 6 out of 8 countries
in the 2012-2016 time period. Moreover, ARGO significantly improves on historical flu estimates produced by the now discontinued
GFT for the time period of 2012-2015, where GFT information is publicly available.

Conclusions: We demonstrate here that a self-correcting machine learning method, leveraging Internet-based disease-related
search activity and historical flu trends, has the potential to produce reliable and timely flu estimates in multiple Latin American
countries. This methodology may prove helpful to local public health officials who design and implement interventions aimed
at mitigating the effects of influenza outbreaks. Our methodology generally outperforms both the now-discontinued tool GFT,
and autoregressive methodologies that exploit only historical flu activity to produce future disease estimates.
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Introduction

Background
With the highest mortality of any respiratory infectious disease
in the young and elderly in Latin America, influenza poses
significant health and economic challenges to low- and
middle-income countries in the region [1]. The World Health
Organization (WHO) maintains a health care–based disease
surveillance system that collects information on flu activity
from local ministries of health around the world. Unfortunately,
these reports have a common delay of at least a week in Latin
America, limiting the ability for a timely response to unexpected
epidemic outbreaks. Reliable surveillance systems that monitor
flu activity in real time in this region would help public health
institutions deploy timely vaccination campaigns and optimally
allocate resources during epidemic outbreaks. Multiple research
teams have proposed complementary methods to estimate and
forecast flu activity in real time in data-rich countries such as
the United States, using techniques ranging from statistical [2,3]
to mechanistic [4,5] and incorporating a variety of data sources,
such as internet search information, flu-related Twitter
microblogs [6,7], crowdsourced flu surveillance [8,9], clinician
search activity [10], electronic health records [11], and
Wikipedia access [12,13], as summarized in a study by
Santillana [14]. However, a reliable system that leverages
internet search activity to monitor flu activity in multiple
developing nations is not yet available.

An early large-scale implementation of real-time disease
surveillance started in 2008 with Google Flu Trends (GFT), a
Web-based tool that used Google search activity to produce flu
activity estimates in multiple locations around the world [15].
Although GFT was initially perceived as a technological
innovation, its large prediction errors during the 2009 H1N1
flu pandemic and the 2013 flu season in the United States raised
methodological concerns from multiple researchers [16-18]. A
recent study by Pollet et al showed that GFT’s flu estimates in
Latin America had yielded poor results [19].

Objectives
The discontinuation of GFT in 2015 led many to believe that
internet search trends were too noisy to track disease activity,
a problem exacerbated in developing countries with limited
internet access. However, recent research has shown that robust
and dynamically self-correcting machine learning methodologies
can extract meaningful signals from real-time search activity
to track Zika and Dengue activity in low- to middle-income
countries around the world [11,20,21]. We apply lessons learned
from these studies and successfully extend a state-of-the-art
modeling approach for flu surveillance to 8 Latin American
countries.

Methods

Data Acquisition
We built a predictive methodology aimed at estimating
suspected flu activity, as reported by FluNet, an online
surveillance tool maintained by the WHO. FluNet collects and
aggregates multiple indicators of flu activity at the country level.

For this study, we selected the number of processed specimens
(NPSs) as the ground truth. As these specimens were taken from
patients with flu-like symptoms and then sent to a laboratory
for testing, we interpreted them as an indicator of suspected flu
activity in the population. Weekly aggregated NPS reports were
collected from January 5, 2009, to December 25, 2016, for
Argentina, Bolivia, Brazil, Chile, Mexico, Paraguay, Peru, and
Uruguay.

Given their near real-time availability via the online tool, Google
Trends, we selected influenza-related internet search activity
to be used in our models as proxies or predictors for flu activity.
Where available and based on country-specific historical flu
indicators (during the training time period of our models), we
used the online tool, Google Correlate, to identify flu-related
search term trends, leading to a total of 285 Spanish terms and
96 Portuguese terms. See Multimedia Appendix 1 for further
description of this process.

Models and Benchmarks
We extended AutoRegression with Google search information
(ARGO), a methodology originally conceived and tested to
track flu activity in the United States in multiple spatial scales
as a way to produce retrospective and strictly out-of-sample flu
estimates individually for each country [20,22]. This
methodology is based on a multivariable regularized linear
model that is dynamically recalibrated every week as new flu
activity information becomes available. Besides online search
information, ARGO incorporates short-term and seasonal
historical flu information to improve the accuracy of predictions
and mitigate the undesired effect of spikes in search activity
(induced perhaps by overreaction in the population during
potential health threats reported by the news). More details on
this approach can be found in a study by Yang et al [22].

Given a weekly as-yet-unseen NPS report to estimate, we used
historical NPS and Google Trends information from the previous
most recent 2 years (104 weeks) of data to calibrate ARGO and
predict the given week’s NPS report. To assess ARGO’s
predictive power, we built autoregressive models separately for
each country (named AR52 throughout this paper) that only use
historical flu activity from the 52 weeks before predictions and
generated retrospective out-of-sample estimates over the same
time period. All models were built using the glmnet package
on MATLAB (MathWorks) version 2014a [3,23].

Metrics
To compare the predictive ability of ARGO and AR52, we
calculated Pearson correlations and the root mean square error
between model predictions and the subsequently observed
suspected flu cases. The added value of using Google search
activity as a predictor was tested via an efficiency metric [22]
that quantifies the improvement of ARGO over a simple
autoregressive model. This efficiency metric is calculated as
the ratio between the mean square errors of AR52 and ARGO.
For the efficiency metric, 90% CIs were generated using the
stationary block bootstrap method [24]. We report 2 additional
metrics aimed at evaluating our method’s ability to correctly
identify the timing of peaks and timing of the onset of epidemic
outbreaks. These metrics are referred to as ∆P and ∆O,
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respectively, and measure the distance, in weeks, between the
observed peak (or onsets) and the predicted one. See Multimedia
Appendix 1 for further explanation.

Results

AutoRegression With Google Search Models
Outperform AR52 and Google Flu Trends
Retrospective out-of-sample estimates of flu activity were
produced, for each of the 8 countries, from January 1, 2012, to
December 25, 2016, and compared with the FluNet reported
suspected cases (NPSs). Brazil’s NPS data were only available
until October 9, 2016. Note that because of FluNet’s reporting
delays, our models, which rely on past available values of
FluNet and current internet search activity, estimate current flu
activity at least 1 week ahead of official reports.

In Figure 1, we show our real-time flu estimates and the
subsequently observed suspected flu cases for each country.
Contextually, historical GFT values (scaled to be displayed
alongside with NPS values) and autoregressive estimates are
also shown. Our models (ARGO and AR52) accurately predict
NPS values in each country. GFT shows consistently large
discrepancies when compared with the observed values,
consistent with the findings reported by Pollett et al [19].

ARGO displays improvement in 6 countries in terms of the
efficiency metric (Figure 2), reaching significant error reductions
compared with AR52 in Brazil (155 to 104 or 33%), Mexico
(243 to 184 or 24%), Peru (48 to 40 or 16%), and Chile (131 to
119 or 9%). ARGO consistently outperforms GFT on Pearson
correlations during the time period when GFT was active in
every country and improves upon AR52 in all countries except
Bolivia and Uruguay, over the whole study period, reaching
significant correlation increases in Brazil (from 0.891 to 0.957),
Mexico (from 0.86 to 0.92), and Peru (from 0.84 to 0.89).

Figure 1. Graphical representation of the number of processed specimens (NPSs) as reported by WHO’s FluNet (black), along with the NPS estimates
generated by ARGO (red), AR (light blue), and Google Flu Trends (GFT; blue), over the whole study period of January 1, 2012 to December 25, 2016.
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Figure 2. Set of bar graphs that show our performance metrics to assess the predictive power of AutoRegression with Google search (ARGO). (a)
Efficiency metric values (salmon color) for each individual country with their respective 90% CI (solid black line). (b) Root mean square error (RMSE)
values for ARGO (red) and AR52 (light blue) during the whole study period. Each country’s RMSE value is normalized by their respective average
number of processed specimen (NPS) over the whole study period to avoid scale differences in visualization. c) Pearson correlation scores of ARGO
and AR during the full period. d) Pearson correlation values for ARGO (red), AR (gray), and Google Flu Trends (GFT; blue) during the period in our
study where GFT was active.

Peaks and Onsets
Multimedia Appendix 1 shows our method’s ability to identify
the timing of peaks and timing of the onset as captured by the
metrics ∆P and ∆O, respectively. Out of a total of 39 peaks,
ARGO predicts 10 on the observed week, 5 ahead of time, and
24 with a lag. In contrast, AR52 predicted 7 peaks exactly, 2
ahead of time, and 30 with a lag. Out of 39 measured onsets,
ARGO predicted 11 at the exact date, 12 ahead of time, and 13
with a lag, with the rest of the onsets incorrectly estimated with
more than a month’s distance. AR52 predicted 8 onsets at the
exact time, 8 ahead of time, 20 with a lag, and the rest were
estimated with more than a month’s distance. As expected, the
baseline autoregressive model, AR52, predicted more outbreak
peaks late, with a lag of at least a week. ARGO, in contrast, is
slightly more responsive and predicts outbreak peaks on time
or weeks before the observed peak. Furthermore, even when
ARGO’s peak timing is not accurate, the magnitude of the peak
is captured better than its AR52 counterpart. For more detailed
information, see Multimedia Appendix 1.

Discussion

Combining Historical Flu Activity and Google Search
Data
ARGO’s prediction performance shows that internet search
volumes and historical flu activity, when combined with
dynamic machine learning techniques, can effectively detect
real-time suspected flu cases in several Latin American
countries. Our results considerably outperform the historical
predictive performance of GFT highlighting (1) the importance

of moving away from one-size-fits-all approaches such as those
used by GFT and (b) the value of combining local flu
epidemiological information with influenza-related internet
search trends. The overall improvement of ARGO over the
baseline autoregressive model indicates that internet search
engine data, even in middle-income countries, provide increased
responsiveness to changing disease trends. This improvement
is clear in Brazil, Chile, Mexico, Peru, Paraguay, and Argentina,
whereas in Uruguay and Bolivia, the inclusion of Google search
data does not seem to improve the baseline model.

The availability of an online tool to select relevant flu-related
terms (Google Correlate) that track historical flu activity was
found to be a critical element for ARGO to improve performance
over the autoregressive benchmark (Argentina, Chile, Mexico,
Peru, and Brazil), suggesting that the most meaningful
flu-related search queries are country-specific. In countries,
such as Uruguay, where many weekly data points were missing
on FluNet, ARGO’s predictive ability was reduced. Our best
performance was seen in Brazil, Mexico, and Peru, where flu
data were collected consistently every week during this study’s
time period (see Multimedia Appendix 1).

Number of Processed Specimens as Our Gold Standard
On the basis of our previous research findings monitoring
Dengue and Zika activity in Latin America [20,21], we chose
the number of suspected influenza cases (as captured by the
FluNet’s NPSs) as our gold standard for our prediction tasks.
Our choice was based on the intuitive fact that flu-related
Google search activity is higher when more people “suspect”
they may be affected by flu-like symptoms, regardless of the
outcome of any lab test. As such, our models may prove useful
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to improve the timely allocation of resources in health care
facilities in situations when increased numbers of people, with
flu-like symptoms and respiratory needs, may need to be seen.
It is relevant to point out that using NPS case counts as a gold
standard implies that our models are not directly estimating
confirmed influenza case counts but suspected Influenza-like
Illness activity trends. Our choice of gold standard is meaningful
as it may help health care providers prepare for traffic
fluctuations of patients presenting with symptoms of influenza.
However, from an epidemiological perspective, more standard
test-positive influenza proportions reported on previous Latin
America studies [19,25] should also be considered in future
studies.

Limitations and Future Work
Combining internet search volumes and historical flu activity
via ARGO shows strong potential for the development of timely

flu surveillance in low- or middle-income countries. However,
flu estimates at the national level may not be reflective of
outbreak conditions at the local level, especially in countries
with significant geographical heterogeneity. At present, FluNet
only provides national-level flu data. In the future, as more
fine-grained epidemiological information becomes available in
developing countries, studies should evaluate the feasibility of
deploying disease surveillance platforms at finer spatial scales.
Successful extensions of our methodologies at the city and state
levels in data-rich environments such as the United States
[26,27] indicate that ARGO-like methodologies can accurately
monitor influenza at these spatial resolutions. Moreover, there
is strong evidence that internet access is rapidly increasing in
many Latin American countries [28], leading us to hypothesize
that the performance of methodologies using internet-based
data will increase over time following an increase of the quality
of Google search data.
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