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Abstract

Background: Overuse and misuse of prescription opioids have become significant public health burdens in the United States.
About 11.5 million people are estimated to have misused prescription opioids for nonmedical purposes in 2016. This has led to
a significant number of drug overdose deaths in the United States. Previous studies have examined spatiotemporal clusters of
opioid misuse, but they have been restricted to circular shaped regions.

Objective: The goal of this study was to identify spatiotemporal hot spots of opioid users and opioid prescription claims using
Medicare data.

Methods: We examined spatiotemporal clusters with significantly higher number of beneficiaries and rate of prescriptions for
opioids using Medicare payment data from the Centers for Medicare & Medicaid Services. We used network scan statistics to
detect significant clusters with arbitrary shapes, the Kulldorff scan statistic to examine the significant clusters for each year (2013,
2014, and 2015) and an expectation-based version to examine the significant clusters relative to past years. Regression analysis
was used to characterize the demographics of the counties that are a part of any significant cluster, and data mining techniques
were used to discover the specialties of the anomalous providers.

Results: We examined anomalous spatial clusters with respect to opioid prescription claims and beneficiary counts and found
some common patterns across states: the counties in the most anomalous clusters were fairly stable in 2014 and 2015, but they
have shrunk from 2013. In Virginia, a higher percentage of African Americans in a county lower the odds of the county being
anomalous in terms of opioid beneficiary counts to about 0.96 in 2015. For opioid prescription claim counts, the odds were 0.92.
This pattern was consistent across the 3 states and across the 3 years. A higher number of people in the county with access to
Medicaid increased the odds of the county being in the anomalous cluster to 1.16 in both types of counts in Virginia. A higher
number of people with access to direct purchase of insurance plans decreased the odds of a county being in an anomalous cluster
to 0.85. The expectation-based scan statistic, which captures change over time, revealed different clusters than the Kulldorff
statistic. Providers with an unusually high number of opioid beneficiaries and opioid claims include specialties such as physician’s
assistant, nurse practitioner, and family practice.

Conclusions: Our analysis of the Medicare claims data provides characteristics of the counties and provider specialties that
have higher odds of being anomalous. The empirical analysis identifies highly refined spatial hot spots that are likely to encounter
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prescription opioid misuse and overdose. The methodology is generic and can be applied to monitor providers and their prescription
behaviors in regions that are at a high risk of abuse.

(JMIR Public Health Surveill 2019;5(2):e12110) doi: 10.2196/12110
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Introduction

Background
Overuse and misuse of prescription opioids have become
significant public health burdens in the United States [1]. More
than one thirds of the US civilian population is reported to have
used prescription opioids in 2016, as per estimates from the
National Survey on Drug Use and Health (NSDUH) [2]. One
third of Medicare Part D beneficiaries received prescription
opioids in 2017 [3]. Furthermore, about 11.5 million people are
estimated to have used prescription opioids for nonmedical
purposes in 2016 [1,2]. Pharmaceutical opioids are now among
the most popular drugs for nonmedical use in the United States,
second only to marijuana [4]. This has led to problems of drug
overdose and deaths. According to the Centers for Disease
Control and Prevention (CDC), there were more than 63,600
drug overdose deaths in the United States in 2016 [5], and there
were over 70,000 deaths in 2017.

One of the major factors driving the opioid crisis is the misuse
of prescription opioids; about 40.6% of people reported
obtaining them from family or friends [1]. According to the
International Narcotics Control Board, in 2009, the United States
consumed 99% of the world’s hydrocodone, 60% of the world’s
hydromorphone, and 81% of the world’s oxycodone. The
number of prescriptions written for opioids increased by 300%
between 1991 and 2009 [6], and research by Wisneiwski et al
(2008) [7] shows high correlations among admissions to
addiction treatment facilities, overdose deaths, and the volume
of opioids prescribed in the United States.

Public and private health insurance plans have been criticized
for lacking consistency in treating chronic pain conditions and
in providing viable alternative medical treatments. For example,
an extensive study by Lin et al (2018) [8], which considers 15
Medicaid plans, 15 Medicare Advantage plans, and 20
commercial insurers in 2017, which covers half the US
population, finds that their health insurance policies offer
inconsistent policy terms for nondrug treatments for chronic
lower back pain, and they provide little or no coverage for
alternative treatments that have scientific backing.

It has also been shown from NSDUH reports that there are
significant racial and demographic patterns associated with
opioid misuse, for example, white males and lower
socioeconomic characteristics [9]. These findings motivate a
careful spatiotemporal analysis of prescription rates for opioids
to (1) discover regions with unusually high opioid prescription
rates and (2) understand what distinct factors in these regions
could be associated with higher usage.

To this end, spatial scan statistics [10-12] are among the most
common techniques used for analyzing metrics related with

opioid use. Linton et al [13] analyze spatial patterns of
emergency and nonemergency calls (911 and 311) related to
narcotics in Baltimore, Maryland. They identify clusters of calls
in some neighborhoods, coinciding with urban redevelopment.
Brownstein et al [14] use patient data from New Mexico at the
level of zip codes to identify locations of clusters. They
characterize the structure and locations of significant clusters
within the state. Cordes [4] analyzes mortality because of
prescription opioids, using the North Carolina State Center for
Health Statistics’ Injury Free North Carolina database.

There has also been some analysis of prescription data at
different spatial resolutions. CDC reports prescription rates for
different states and demographics [15]. Prescription rates at a
county level are reported using the QuintilesIMS Transactional
Data Warehouse data [16]. However, these reports only provide
visualizations of the spatial data, but they do not identify clusters
that are different from the rest of the state or that might have
changed over time.

Objectives
This study aimed to fill this gap by identifying spatiotemporal
hot spots of opioid users and opioid prescription claims using
Medicare Part D data. It applies network scan statistics to detect
significant clusters with arbitrary shapes and an
expectation-based version to examine the significant clusters
relative to past years. Even though this analysis is focused on
Virginia, West Virginia, and North Carolina, the methodology
is generic and can be applied to other regions and in other
contexts for anomaly detection. Its application to spatial
epidemiology can help detect unimmunized or underimmunized
clusters of individuals in an otherwise well-vaccinated
population [17]. Other possible application areas are detection
of suicide clusters, teenage pregnancies, and criminal activity
[18,19].

Once the clusters are identified, the census data from those
spatial regions are analyzed to characterize the demographic
attributes of the counties that are a part of the anomalous
clusters.

Methods

Ethical Considerations
This study did not require Institutional Review Board approval,
as only publicly available, open source, data were used.

Datasets

Centers for Medicare & Medicaid Services Data
We used the Medicare Provider Utilization and Payment Data:
Part D Prescriber Public Use File (PUF), made available by the
Centers for Medicare & Medicaid Services (CMS) [20]. The
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Part D Prescriber PUF contains data on all prescription drugs
prescribed by individual physicians and other health care
providers and paid for under the Medicare Part D Prescription
Drug Program. Each provider is identified by a National
Provider Identifier, along with the provider’s name and address,
which are used to map them to counties in the United States.
For each provider, the dataset gives information on the number
of beneficiaries seen and the number of prescriptions dispensed
at the provider’s direction. The dataset also separately lists the
number of prescriptions for opioids and the corresponding
number of beneficiaries for such prescriptions. These data are
available for 2013, 2014, and 2015.

Demographic Data
We used American Community Survey (ACS) census datasets
from the US Census Bureau website [21] to analyze the
demographic properties of clusters discovered by network scan
statistics. Statistics on race, sex, origin, and number of housing
units in the counties were covered by the ACS datasets
PEPANNHU and PEPSR6H, respectively. Economic
characteristics of the population were covered by the DP03
dataset, which gives information on employment status by type
of employment, health insurance coverage, subtypes of income
characteristics of the population, and some other economic
variables. Income distribution for each county were obtained
from the S1901 dataset. Table B27019 in ACS provides health
insurance coverage characteristics by 2 age groups, that is, ages
25 to 64 and 65 and above; it further breaks down each group
by educational attainment. B27002-3 and C27004-7 datasets
provide health insurance coverage by age groups, sex, and the
kind of health insurance, that is, (1) public or private, (2)
Medicare or Medicaid, and (3) in case of private health
insurance, whether the plan is employer supported or directly
purchased from a private company or exchange. Each one of
these datasets is available at different geographic resolutions,
starting with the county-level data. Data are available for the
years 2013, 2014, and 2015. Different combinations of variables
were extracted from these datasets, and the details of the
variables used are also mentioned in the Characterization of
Demographics in Clusters section.

Detecting Clusters Using Network Scan Statistics
Spatial scan statistics are some of the most commonly used
approaches for detecting anomalous clusters from spatial data
[10-12], and they have been applied in a number of public health
problems, including detection of opioid activity and related
metrics [4,13,14,22].

We briefly described the Poisson version of the Kulldorff scan
statistic [10], which we use in our analysis. Let ζ denote the set
of counties in the state. For each county i∈ζ and time t (which,
in our case, is the year), we consider 2 kinds of counts: (1)
totb(i,t) and totp(i,t), which are the total number of beneficiaries
and prescriptions, respectively, in county i—these are the
baseline counts for time t—(2) opioidb(i,t) and opioidp(i,t),
which are the total number of beneficiaries and prescriptions
for any kind of opioid drug, respectively, for county i—these
are the event counts for the county at time t. For a cluster C⊂ζ,
we define totp(C,t) = ∑i∈C totp(i,t) and opioidp(C,t) = ∑i∈C

opioidp(i,t). Similarly, totb(C,t) and opioidb(C,t) are defined.
We will drop the dependence on time t from the notation, when
it is clear from the context.

The Kulldorff scan statistic is based on hypothesis testing. The
null hypothesis H0 is that the event counts for all counties i are
proportional to their baseline counts:

H0: opioidp(i) ~ Poisson(µ·totp(i))

Where µ is the statewide rate for opioid prescriptions:
opioidp(ζ)/totp(ζ). Under the alternative hypothesis H1(C) for
a cluster C⊂ζ, the prescription event counts for counties within
C are generated proportionally to some rate η, whereas event
counts for counties outside C are generated with some rate µ<η:

H1(C) = opioidp(i) ~ Poisson(η·totp(i)), i∈C;

opioidp(i) ~ Poisson(µ·totp(i)), i∉C

The Kulldorff scan statistic F(C) is defined as a generalized
likelihood ratio,

F(C) = Pr[data|H1(C)]/Pr[data|H0(C)]

and the objective is to find clusters C with maximum F(C) value,
as these clusters are likely to have a significantly higher rate
than the statewide average.

One of the popular tools for finding such clusters is the SaTScan
software (Martin Kulldorff, SaTScan) [23], which considers
clusters with circular or elliptical shapes and returns those with
the maximum statistic score.

We also searched for clusters where the number of beneficiaries
or prescriptions have changed significantly from 1 year to the
next. Due to the temporal aspect of this task, we considered the
expectation-based Poisson Scan Statistic [24], which compares
event counts observed at the present and the past. Under the
null hypothesis, the event counts in year t come from the same
model as the counts in the year t–1 for each county:
opioidp(i,t)~Poisson(opioidp(i,t–1)). Under the alternative, there
is a cluster C⊂ζ, where the counts are generated at a higher rate
than expected: opioidp(i,t)~Poisson(µ·opioidp(i,t–1)), for some
µ>1.

For both functions, statistical significance of the clusters was
assessed via Monte Carlo sampling. We followed the approach
from the study by Kulldorff [10] and generated replicates of the
data under the null hypothesis, conditioned on the total event
counts. The score of any cluster in the original data is compared
with the distribution of the optimal solutions on the replicates
to get its P value. For example, a P value of .05 indicates that
the F(C) score of the cluster we report is in the top 5% of scores
obtained in the null replicates; we used 1000 replicates in our
experiments.

Network Scan Statistics
We used an extension of scan statistics that is applied to
networks. We defined a graph G=(ζ,E) on the set of counties,
where 2 counties i,j∈ζ are connected by an edge (i,j)∈E if they
share a boundary. We focused on clusters C⊂ζ that induce a
connected subgraph in G—this allows us to consider clusters
that might be arbitrarily shaped, instead of being restricted to
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disks or ellipses. We searched for a connected cluster that
maximizes the Kulldorff scan statistic. Computationally, this
turns out to be much harder, and we used the approach
developed in the study by Cadena et al [25] for optimizing
different kinds of scan statistics on networks. This method
provably gives clusters that are connected subgraphs, with a
bounded size, with the maximum likelihood score. We say that
a cluster is significant if it has a P value of .05, as computed
using the Monte Carlo method described above. We first find
clusters with the highest score F(C), computed using the method
in the study by Cadena et al [25], and then consider them only
if they are also significant.

Regression Method for Characterizing Counties
Contained in Opioid Clusters
We performed a logistic regression analysis to identify
demographic factors that could help characterize the composition
of counties that are identified as anomalous. Separate regressions
were run for each of the years, for each of the 3 states, and for
both types of clusters, that is, clusters with higher than normal
opioid-beneficiary counts and opioid-prescription claim counts.

In each case, the response variable is constructed from the
network scan statistics–based clusters that are found to be
anomalous in terms of counts. All counties in the state were
labeled 1 if they belonged to an anomalous cluster; otherwise,
they were labeled 0. The independent variables were extracted
from the US Census data for each state. We started with 30
independent variables that included information on race, income,
access to private, public, and employer-based insurance, direct
purchase insurance, access to Medicare and Medicaid, education
level, number of housing units, number of disabled, employment
rate, different levels of income-to-poverty ratios, and distribution
of male and females in the county.

We measured cross correlations among these variables and
removed variables that had 60% or higher correlation among
them. If multiple variables are correlated, only one of them is
selected. Removing correlated variables addresses the problem
of multicollinearity, which results in standard errors of the
coefficients to be large [26-28]. After removing all the correlated
variables, only 8 independent variables remained.

These 8 variables are the following: (1) percentage of African
Americans in the county, (2) percentage of American Indians
in the county, (3) percentage of males in the county, (4) number
of housing units in the county, (5) percentage of people with
access to Medicaid, (6) percentage of people with access to
Medicare, (7) percentage of access to direct purchase insurance,
and (8) percentage of households with income-to-poverty ratio
less than 0.5. Income-to-poverty ratio measures a family’s
income with respect to the poverty threshold. If it is less than
1, it implies that the household income is below poverty line.
Variable (8) represents the percentage of households in the
county that have income-to-poverty ratio less than 0.5; it
represents the households who live in extreme poverty.

The regression analysis started with these 8 variables. We use
the stepAIC function given in R software (The R Foundation)
to apply the forward selection and backward elimination method
to find the most relevant subset of predictors for the regression

[29,30]. This method finds the model that minimizes the
information loss, as measured by the Akaike Information
Criterion (AIC). The stepAIC function begins with a full or null
model, and method for stepwise regression can be specified in
the direction argument with values forward, backward, or both.
Our method used both. For each state, each year, and for each
type of counts, we separately trained the model. In each case,
a subset of the original 8 independent variables was selected,
on the basis of the AIC. The selected variables in each case are
shown in the tables with regression results. If a variable is
missing altogether, it implies it was not selected in the final
model in any of the years for the state. If it is used in only some
of the 3 years, the coefficient is shown as ‘-’ in the years the
variable is not selected. For a variable to be considered
significant, the P value should be less than .1.

Results

Overview
The empirical analysis has been performed on 3 states, namely
Virginia, North Carolina, and West Virginia. The results for the
state of Virginia are described in detail, but for West Virginia
and North Carolina, only a brief summary is provided to avoid
repetitive discussion. Interested readers can find detailed results
on West Virginia and North Carolina in the Multimedia
Appendix 1.

Significant Clusters in Virginia

Location and Characteristics Based on Opioid
Beneficiary Counts
Figure 1 shows the clusters for different years, discovered using
the network-based approach (left) and SaTScan (Martin
Kulldorff, SaTScan; right). The clusters are ranked in
nonincreasing order of scan statistic score, F(C), mentioned
earlier. We observed changes in the number and composition
of clusters over time: there is a large cluster of 30 counties in
southwest Virginia in 2013, which shrank in 2014 and 2015.
On the other hand, significant clusters in other parts of the state
emerged in 2015.

Figure 2 shows the clusters with respect to opioid prescription
counts for each year, using the network-based approach. The
sizes and composition of these clusters are reported in the
Multimedia Appendix 1. For 2013 and 2014, the clusters
computed using SaTScan (Martin Kulldorff, SaTScan) cover a
large part of the state. For 2014 and 2015, SaTScan (Martin
Kulldorff, SaTScan) returned more clusters than the
network-based approach. However, the likelihood scores of the
clusters from SaTScan (Martin Kulldorff, SaTScan) were lower
than those using network scan statistics, as the former only
considers circular shapes.

We observed a similar layout in 2013 and 2014, as for
beneficiary counts (Figure 1), the most significant cluster is in
southwestern Virginia, with a few clusters in other parts.
However, in 2015, the most significant cluster in the southwest
part has shrunk and become concentrated in the western part.
Furthermore, we find more significant clusters with respect to
prescription counts. We also find the top clusters exhibit very
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similar characteristics with respect to different demographic properties, as reported above for the beneficiary counts.

Figure 1. Clusters discovered in Virginia for 2013 (top), 2014 (middle), and 2015 (bottom), using network-based approach (left) and SaTScan (Martin
Kulldorff, SaTScan; right) on opioid beneficiary counts.

Figure 2. Clusters discovered in Virginia for 2013 (top), 2014 (middle), and 2015 (bottom), using network-based approach (left) and SaTScan (Martin
Kulldorff, SaTScan; right) on opioid prescription counts.
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Significant Temporal Changes Using the
Expectation-Based Scan Statistic
Figure 3 shows the significant clusters using the
expectation-based scan statistics for 2015, using an average of
counts from 2013 and 2014 for H0. We noted that these are quite
different from the clusters computed using the Kulldorff
statistics in Figure 1, especially for opioid beneficiary counts.
In particular, there is no significant cluster in southwest Virginia
in Figure 3, which is consistent with the limited change over
time in Figure 1. Table 1 lists the size and composition of the
top 2 clusters. As mentioned above, these are quite different
from those reported by the network scan statistic in Figure 1
(left column); the most significant cluster is in central Virginia.

We then focused on the top 10 percentile of the top cluster for
years 2013, 2014, and 2015. We selected providers who are in
the top 10 percentile of the opioid beneficiary cluster and in the
top 10 percentile of the top opioid prescription claims cluster.
The scatter plot of Virginia in Figure 4 highlights the specialties
of these top providers and plots their 4 attributes, that is, total

beneficiaries, percentage of opioid claims, percentage of opioid
beneficiaries, and medical specialties. The points that occur
close together share common profiles.

Characterizations of Demographics in Clusters
We now provide results from a regression-based analysis, which
aims at characterizing all the counties that are a part of the
anomalous clusters. Table 2 shows logistic regression–based
results for Virginia for the opioid beneficiary data, and Table
3 shows a similar table for opioid prescription claims data. The
coefficients represent the odds ratio. The detailed regression
results for North Carolina and West Virginia are provided in
the Multimedia Appendix 1.

The results show that a high percentage of African Americans
in a county lowers the odds of the county being anomalous in
terms of high opioid beneficiary count and high prescription
count. The odds are fairly stable for opioid prescription claim
counts across the 3 years at 0.94, but the odds change from 0.90
in 2013 to 0.96 in 2015 for opioid beneficiary count.

Figure 3. Clusters computed using the expectation-based scan statistic for 2015 using the county-level opioid beneficiary counts (left) and opioid
prescription counts (right) in Virginia.

Table 1. Properties of the top 2 significant clusters (P<.05) in Virginia for opioid prescription counts and opioid beneficiary counts for the
expectation-based scan statistic, for 2015, based on 2013 and 2014.

Prescription claim counts clustersBeneficiary counts clusters

1 (Loudon)27 (Harrisonburg city, Rockingham, Albemarle, Nelson, Gloucester,
Buckingham, Charles City, Goochland, Henrico, James City, Chesterfield,
Isle of Wight, Suffolk city, Newport News city, Prince George, Petersburg
city, Brunswick, Nottoway, Dinwiddie, Colonial Heights city, Sussex,
Prince Edward, Roanoke city, Roanoke, Bedford, Salem city, and Amherst)

15 (Mathews, Chesterfield, Northampton, Suffolk city, Norfolk city,
Newport News city, Portsmouth city, Prince George, Petersburg city,
Brunswick, Nottoway, Dinwiddie, Surry, Prince Edward, and Lunenburg)

13 (Loudoun, Prince William, Manassas city, Fairfax, Clarke, Falls Church
city, Arlington, Fredericksburg city, Stafford, Spotsylvania, Caroline,
Essex, and King William)
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Figure 4. Scatter Plots for Virginia (VA) for years 2013, 2014, and 2015, showing the distribution of the provider specialties with respect to the mean
of the percentage of opioid beneficiaries and prescriptions served by providers who are in the top 10 percentile of the providers in the anomalous clusters.

Table 2. Logistic regression results for Virginia opioid beneficiary data. The response variable takes value 1 if the county belongs to an anomalous
cluster-based on the opioid beneficiary counts and it takes value 0 if it does not. Empty cells refer to cases when a variable was not selected in the year
by AIC.

201520142013Variables

P valueCoefficientP valueCoefficientP valueCoefficient

.470.47.1619.10.220.32Intercept

.005b0.96.001a0.93<.001a0.90%African American

.201.55.01b0.004.150.13%American Indian

——.009b0.14.003b1.16%AccessToMedicaid

.03c1.08————%AccessToMedicare

.06c1.09——.131.09IncomePoverty <0.5

.07c0.89.05c0.83——%AccessToDirCare

aSignificance code ≤.001.
bSignificance code ≤.01.
cSignificance code ≤.10.

Table 3. Logistic regression results for Virginia opioid prescription claims data. The response variable takes value 1 if the county belongs to an
anomalous cluster based on the opioid prescription claim counts, and it takes value 0 if it does not. Empty cells refer to cases when a variable was not
selected in the year by AIC.

201520142013Variables

P valueCoefficientP valueCoefficientP valueCoefficient

.383.19.220.34.120.27Intercept

.002b0.94<.001a0.92.001a0.94%AfricanAmerican

.170.18.06c0.06.140.13%AmericanIndian

.009b1.15<.001a1.19.001a1.15%AccessToMedicaid

.04c0.88————%AccessToMedicare

————.121.0NumHousingUnits

aSignificance code ≤.001.
bSignificance code ≤.01.
cSignificance code ≤.10.
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Results also show that a higher number of people in the county
with access to Medicaid increases the odds of the county being
anomalous to about 1.16 in terms of high opioid beneficiary
count and high prescription count in Virginia. This relationship
is persistent across years.

Similar to Medicaid, access to Medicare also positively
correlates with the odds of a county having a higher number of
opioid beneficiaries in Virginia, but it lowers the odds of a
county being anomalous in opioid prescription claim count.
This relationship only holds in 2015; in 2013 and 2014, there
is no relationship between access to Medicare and the 2 types
of counts.

Income-to-poverty ratio <0.5 is positively correlated with the
odds of higher opioid beneficiary counts in Virginia, in 2015.
In rest of the years, it does not show any relationship. Individuals
with income-to-poverty ratio <0.5 and those who receive
Medicaid are extremely poor, and both these variables have a
positive relationship with the opioid beneficiary count.

The number of housing units in a county is not a significant
factor in impacting the odds of opioid beneficiary or opioid
prescription claims count in that county in Virginia. A higher
percentage of people with access to direct purchase of insurance
plans decreases the odds of a county having high opioid
beneficiary count. Between 2014 and 2015, these odds change
from 0.83 to 0.89.

A similar regression analysis of the expectation-based clusters
in 2015 did not find any significant demographic variables that
were correlated with the odds of a county being anomalous for
both types of counts in all 3 states.

Discussion

Principal Findings
Our analysis highlights several similarities and differences
among the spatial clusters in Virginia, North Carolina, and West
Virginia, with respect to county-level opioid prescription and
beneficiary counts. Some of our key observations were the
following: (1) in all 3 states, the top cluster with respect to
beneficiary counts was fairly stable in 2014 and 2015, and it
has shrunk from 2013; (2) the clusters discovered using the
Kulldorff scan statistic are different from the expectation-based
statistic, partly because of this reason; (3) the top clusters in
these states have similarities in terms of demographic
characteristics, such as racial features (predominantly white,
except in North Carolina), income and employment levels (lower
than statewide levels), number of housing units (significantly
lower than statewide levels), and health care coverage (generally
more people have public insurance, including Medicare and
Medicaid, fewer have private insurance, and fewer people have
employee paid plans).

The regression analysis, which considers all significantly
anomalous clusters in the state, identifies factors that are
common among counties that belong to these clusters. The
regression results for Virginia show that the percentage of
African Americans in each county are negatively correlated
with the odds of that county being anomalous in both types of

counts. As there is over 95% negative correlation between the
percentage of whites in the county and percentage of African
Americans in each county, these results also suggest that a
higher percentage of whites is positively correlated with the
odds of the county being anomalous. These results are consistent
with the findings of the President’s commission report on opioid
crisis [1], the CDC, and NSDUH [2,9], which show that the
prevalence of opioid-use disorder (OUD) is the highest among
whites (72.29%) and only 9.23% among blacks. Other factors
overrepresented among those reporting OUDs are males
(57.39%) and low-income individuals (<50,000, 67.12%) [9].
Finally, we observe that some of the predictors exhibit
significant changes from 2013 to 2015 in Table 2. For instance,
the variable %AmericanIndian is significant only in year 2014.
The coefficient of %AccessToMedicaid is stable and significant
across all years in Table 3, but in Table 2, the odds drop from
1.16 in 2013 to 0.14 in 2014. The reasons for this are not clear,
and there might be other factors at play, which are not evident
in the datasets used in this study.

In Virginia, there is a persistent correlation between a higher
number of people in the county with access to Medicaid and
the increase in the odds of the county being anomalous in both
types of counts. As more people in a county depend on Medicaid
services, the odds of having higher counts of opioid beneficiaries
and prescriptions claim count go up. This may not be surprising
as many of the government-run Medicaid programs have often
come under fire for various types of waste, fraud, and abuse
[31]. These are often because of improper payments to an
ineligible beneficiary or an ineligible service or an ineligible
provider. States have little incentive to dedicate their limited
resources to track and recover these payments as states only get
to keep their share of funding which is less than half. In 2017,
US Department of Health and Human Services made $64 billion
in improper payments [32].

The public health insurance programs may be more at risk of
prescribing opioids because of lack of consistent policies toward
utilization management such as step-therapy and quantity limits
[8]. These utilization management rules require that the
treatment start with a less risky drug that may be available over
the counter and restrict the number of pills that can be prescribed
at any given time. This is also consistent with the findings from
previous research that low-income individuals are at a much
higher risk of OUDs, as many of the Medicaid recipients are
extremely poor [1,9].

Our results also show that network-based scan statistics [25]
can give new insights into spatiotemporal hot spots of
prescription opioids. The clusters we found were at a higher
resolution than the circular clusters computed using SaTScan
(Martin Kulldorff, SaTScan), and they have a higher likelihood
score; thus, combining our approach with SaTScan (Martin
Kulldorff, SaTScan) can be useful in practice. Finally, the
Kulldorff and expectation-based scan statistics give different
insights. In particular, the expectation-based approach can help
identify clusters with significant change over time, which is not
easy to determine from the Kulldorff clusters, which seem to
be fairly stable in 2014 and 2015.
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An analysis of the top 10 percentile of the top cluster in Virginia
for years 2013, 2014, and 2015 shows some unusual patterns.
We focus on the specialties of the providers who are in the top
10 percentile of the opioid beneficiary cluster and in the top 10
percentile of the top opioid claims cluster. The scatter plot of
Virginia in Figure 4 shows that the points that occur close
together share common profiles. For example, in years 2013
and 2014, physician assistants’ and physical medicine and
rehabilitation specialists’profiles were very similar. This seems
unusual as these professions attend to very different sets of
patients [33,34]. Physical medicine and rehabilitation specialists
often treat patients with disabilities affecting the brain, spinal
cord, nerves, bones, joints, ligaments, muscles, and tendons,
whereas physician assistants have more comprehensive
responsibilities, which include preventive health care, primary
health care, and counseling of patients, etc. Similarly, in 2015,
physician assistants and dental oral surgeons had a very similar
profile, which is also unexpected as oral surgeons often deal
with tooth extraction, implants, oral cancer, jaw surgery,
etc—conditions that require significant pain management on
the surgeon’s part [35].

Finally, a word cloud–based analysis (not shown here) found
that a majority of the opioid beneficiaries in the most anomalous
cluster are being served by physician assistants, nurse
practitioners, and family practitioners. This holds true across
the 3 years. We found this to be curious, as provider services
in these specialties are often not focused on pain management,
although they may be treating chronic pain [36,37]. High
occurrences of these medical specialties in the top cluster may
require further investigation by domain experts.

This research provides a generic methodology for identifying
highly refined spatial hot spots that are likely to encounter
prescription opioid misuse and overdose. This information can
be used to monitor providers and their prescription behaviors
in regions that are at a high risk of abuse. The anomalous regions
can be targeted for better public health surveillance, access to
treatment and recovery services, and availability and distribution
of overdose-reversing drugs.

Limitations
The Medicare Part D Prescription Drug data
(Methods/Datasets/CMS Data section) has several limitations

in the context of revealing hot spots of prescription opioid
overdose. These data only comprise prescriptions paid by
Medicare; only about 39.5 million people (a little over 10% of
the total population) were covered in 2015 [38]. Furthermore,
Medicare only covers a specific part of the population, namely
people over 65 and those with certain disabilities. Finally, our
analysis only considers counts of prescriptions and beneficiaries
associated with opioids—the clusters we find are not necessarily
hot spots of opioid overdose.

However, the demographics of people covered by Medicare are
often associated with use of prescription opioids (though not
necessarily their misuse); furthermore, about 40.6% of people
reported obtaining prescription opioids from family or friends
[1]. Therefore, we believe such an analysis using the CMS data
is still valuable.

Another limitation of this study is that it does not account for
spatial correlations of observations, which may exist at spatial
boundaries and may impact the estimates of the standard errors.

Conclusions
Though misuse of prescription opioids has been recognized as
one of the significant factors driving the opioid overdose crisis,
there has been limited understanding of the spatiotemporal
characteristics of opioid prescription rates. All previous
spatiotemporal analysis of metrics directly or indirectly related
to opioid prescription rates and overdose has been restricted to
a single state [4,13,14,22]. Our analysis using Medicare
prescription rates is the first multistate spatiotemporal analysis
of prescription rates for opioids. Even though this does not
directly contain opioid overdose data, the clusters are likely to
be relevant, as people represented in Medicare are associated
with greater use of prescription opioids.

The regression analysis characterizes the demographics of the
significant clusters associated with high opioid beneficiaries
and prescription claims. Scan statistics is a useful technique for
spatiotemporal analysis, but the network-based approach gives
higher resolution clusters than SaTScan (Martin Kulldorff,
SaTScan); the clusters we found have higher likelihood scores.
Furthermore, the expectation-based statistic reveals different
clusters than the Kulldorff scan statistic.
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