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Abstract

Background: Although dynamic models are increasingly used by decision makers as a source of insight to guide interventions
in order to control communicable disease outbreaks, such models have long suffered from a risk of rapid obsolescence due to
failure to keep updated with emerging epidemiological evidence. The application of statistical filtering algorithms to high-velocity
data streams has recently demonstrated effectiveness in allowing such models to be automatically regrounded by each new set
of incoming observations. The attractiveness of such techniques has been enhanced by the emergence of a new generation of
geospatially specific, high-velocity data sources, including daily counts of relevant searches and social media posts. The information
available in such electronic data sources complements that of traditional epidemiological data sources.

Objective: This study aims to evaluate the degree to which the predictive accuracy of pandemic projection models regrounded
via machine learning in daily clinical data can be enhanced by extending such methods to leverage daily search counts.

Methods: We combined a previously published influenza A (H1N1) pandemic projection model with the sequential Monte
Carlo technique of particle filtering, to reground the model bu using confirmed incident case counts and search volumes. The
effectiveness of particle filtering was evaluated using a norm discrepancy metric via predictive and dataset-specific cross-validation.

Results: Our results suggested that despite the data quality limitations of daily search volume data, the predictive accuracy of
dynamic models can be strongly elevated by inclusion of such data in filtering methods.

Conclusions: The predictive accuracy of dynamic models can be notably enhanced by tapping a readily accessible, publicly
available, high-velocity data source. This work highlights a low-cost, low-burden avenue for strengthening model-based outbreak
intervention response planning using low-cost public electronic datasets.

(JMIR Public Health Surveill 2019;5(2):e11615) doi: 10.2196/11615
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Introduction

The capacity to accurately project communicable disease
outbreak evolution is of great value in public health planning
for prevention and control strategies. Use of such information
can inform resource allocation, including surge-capacity
planning and planning of the timing of outbreak response
immunization campaigns, and, when applied across distinct
scenarios, provide a basis for evaluating tradeoffs between
intervention strategies. Although dynamic models are

increasingly widely used to conduct such scenario projection,
the construction of such models for new and rapidly evolving
pathogens commonly faces significant barriers due to
uncertainties regarding important factors governing the natural
history of the disease, such as duration of latent, incubation,
and infectious phases; the probability of asymptomatic carriage;
rates of waning immunity; contact rates; and
per-discordant-contact transmission probabilities. Moreover,
even the most intricate models face strict limitations in their
ability to project evolution of factors treated as stochastic, such
as weather-related variables and the timing of arrival of
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exogenous infections due to global travel. Using computational
statistical estimation methods such as sequential Monte Carlo
techniques, in recent years, researchers have contributed
approaches to elevate the predictive accuracy of dynamic
transmission models by updating their state estimates at the
time of appearance of each new observation. The predictive
accuracy of methods has thus far been evaluated purely in the
context of models that make use of traditional surveillance data
sets, such as laboratory and clinically confirmed case reports
[1-6].

Although such traditional surveillance data sets offer
high-quality, rich information about individuals who present
for medical care, they suffer from notable shortcomings,
including delayed reporting and a failure to include counts of
infective individuals who choose not to present for care. In a
separate stream of work from the dynamic modeling work noted
above, in recent years, researchers have sought to compensate
for the limitations of traditional epidemiological data sources
more generally by exploiting information related to online
communicational behavior, particularly, the growing tendency
of many users to search, post, and tweet about their illnesses.
Specifically, such researchers have assessed the health insights
that can be gained from public health surveillance applications
employing a variety of online sources of information.

A prominent line of this work has focused on time sequences
of search query volumes, such as those previously captured in
Google Flu Trends (GFT) [7] and (on a more generic and
continuing basis) Google Trends [8]. Within this sphere, a wide
variety of investigations have used statistical and machine
learning methods to perform classification and analysis on such
Google search volume data and volumes of social media
postings, including those for communicable illnesses [9-12].
Many researchers have investigated biomedical and
health-related knowledge obtained from the Twitter platform,
suggesting opportunities and limitations associated with different
machine learning classifiers and training models for tweet
mining [13-15]. Other case studies have reported a significant
correlation between Tweets and clinical reports and concluded
that social media text mining can improve public health
communication efforts by providing insight into major themes
of public concerns in the health sphere [16,17].

An important subset of research in this area has leveraged data
obtained from Google to develop statistical forecast models and
evaluated the degree to which GFT data in combination with
statistical models can support accurate predictions [18-20] and
correlations with real-time empirical data [21]. Some
investigators jointly used multiple data sources, including GFT
and Twitter, and compared the performance of statistical
prediction models using each data source and in scenarios where
different data sources complement one another [22,23].

The prediction of epidemic outbreaks by dynamic models often
involves significant error and generally needs to consider both
underlying dynamics and noise related to both measurement
and process evolution. Although older techniques based on
Kalman Filtering and variants [24] have long provided a
computationally frugal means of filtering stochastic dynamic
models, such maximum likelihood estimation–based approaches

are impaired by strong distributional assumptions concerning
measurement and process noise and limited accommodation for
nonlinearity in characterization of the system. This challenge
in handling nonlinearity is experienced most in terms of an
inability to capture the effects of probability distributions across
multiple basins of attraction and a requirement for model
linearization that is problematic for important modeling
formalisms, such as agent-based models. For these and other
reasons, recent research has increasingly turned to stronger
filtering methods. Several authors have applied the sequential
Monte Carlo technique of particle filtering as an effective tool
in support of both model estimation and predictions from
real-world data. Ong et al established a real-time surveillance
system in Singapore to feed data into a stochastic model of
influenza-like disease dynamics, which was refitted daily using
particle filtering [1]. Osgood and Liu used a synthetic ground
truth model to evaluate the effectiveness of particle filtering for
an H1N1-like infection in the presence of noisy data and
systematic model simplifications [2]. Safarishahrbijari et al
evaluated the effectiveness of particle filtering subject to
specifics of the configuration, such as frequency of data
sampling and representation of behavior change in the form of
an evolving contact rate for H1N1 [3,5]. Oraji et al developed
a system dynamics model for studying the tuberculosis
transmission and applied particle filtering to estimate the latent
state of the system, including many epidemiological quantities
that are not directly measured. Their results suggested an
improvement in model accuracy using particle filtering and high
additional value extending from consideration of additional
epidemiological quantities in the probabilistic model [4]. Li et
al applied particle filtering to a measles compartmental model
using reported measles incidence for Saskatchewan. They also
performed particle filtering on an age-structured adaptation of
their model by dividing the population into age groups for
children and adults. According to their results, particle filtering
can offer high predictive capacity for measles outbreak dynamics
in a low-vaccination context [6].

Epstein et al explored the effect of adaptive behaviors such as
social distancing based on fear and contact behavior in models
of epidemic dynamics. They used nonlinear dynamic systems
and agent-based computation and integrated disease and fear
of the disease contagion processes. Based on their models,
individuals anxious (“scared”) about or infected by a pathogen
can transfer fear through contact with other individuals who are
not scared, and scared individuals may isolate themselves,
thereby influencing the contact rate dynamic, which is a key
parameter in governing outbreak evolution. The authors studied
flight as a behavioral response and concluded that even small
levels of fear-inspired flight can have a dramatic impact on
spatiotemporal epidemic dynamics [25].

Despite the fact that both high-velocity search volume and social
media data and transmission models share a temporal
perspective, data drawn from such internet series has not, to our
knowledge, been previously used as a source of information for
filtering (via recurrent regrounding) compartmental transmission
models with the arrival of new data.

In this work, we sought to address that gap by combining the
transmission model from the study by Epstein et al [25] with
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the sequential Monte Carlo method of particle filtering,
considering the interaction between disease and fear of disease
contagion processes for the 2009-2010 H1N1 influenza
pandemic. The particle filtered model used time series of both
clinically observed data and daily Google search query volumes
to automatically and recurrently reground the model as
successive data points became available. Based on lessons
learned from previous studies [3,5] about the importance of
incorporating higher-velocity data rather than time-averaged
data, we made use of daily data. In contrast to past particle
filtering work on grounding transmission models, which have
used empirical data purely as a comparison with model results
reflecting the natural history of infection, the model presented
here engaged in such comparisons for the clinical data and
further compared the search query volume data with
ideation-related model state (individuals with fear).

Methods

Particle Filtered Model
In the first stage of characterization of the particle filtered model,
we present the formulation of the existing Epstein
compartmental model from a previous study [25], which
characterizes the population into states according to both their
natural history of infection and presence of anxiety regarding
influenza. The state variables of the model are as follows:
Susceptible to pathogen and fear (S), Infected with fear (IF),
Infected with pathogen (IP), Infected with pathogen and fear
(IFP), Removed due to fear (RF), Removed due to fear and
pathogen (RFP), and Recovered (R). We used an adaptation of
the model that included an Exposed (E) state variable (Figure
1). In this model, λF is the (hazard) rate of removal due to
self-isolation of those in fear only, λP refers to the rate of
recovery from infection with pathogen, λFP represents the rate
of removal due to self-isolation of the infected who are also
afraid, and H is the rate of recovery from fear (alone) and return
to circulation [25]. The parameters α and β denote
transmissibility of fear and pathogen, respectively. Specifically,
α represents the probability that a contact between an individual
A who is currently without fear but who is susceptible or infected
purely with the pathogen and an individual B with either fear
or the pathogen will cause individual A to become afraid. In
contrast, β denotes the probability that a contact between an

individual A who has never been infected with the pathogen
and an individual B who is specifically infected with the
pathogen will infect individual A with the pathogen. Given that
α and β are probabilities (and are thus of unit dimension), it
bears emphasis that simple dimensional analysis demonstrates
that the original authors assume an effective per-person-per-unit
time mixing rate with a value of unity. Although not considered
within the scope of the original article, this mixing rate can itself
be characterized in accordance with long-time mathematical
epidemiology practice as the product of a per-unit-time contact
rate c and disease transmissibility divided by the (constant) total
population N. Because we consider changes to the value of c
within this work, this quantity is shown explicitly in the
equations below. To explain this term, which is required for
dimensional consistency, we note that each transmission term,
such as:

can be considered to characterize the rate of transmission (in
terms of persons per unit time) from possible transmitters in
category Y (here, IFP) to persons in at-risk category X (here, S).
Each such at-risk person X is assumed to engage in an average
of c contacts per unit time. Those overall contacts are then
assumed to be spread proportionally among the compartments
in the population, with the fraction taking place with those in a
category Y of possible transmitters, which is the count of people
in Y divided by the total population N. The probability in the
prefix of the term (here, βα) indicates the probability that each
such potentially transmitting contacts leads to the type of
transmission being considered in that term (either fear, pathogen,
or, as in this example, both).

When adapting the model, we took advantage of the previously
demonstrated [3,5] capacity of particle filtering to support
stochastic evolution of designated parameters (captured as state
variables). One of the stochastic parameters included in this
model represents the fraction of reported incidents (fP), which
is the fraction of people who are reported to public health
authorities when emerging from the latent state and is both
uncertain and evolving over time. Likewise, the fraction of
people becoming afraid who search Google upon infection,
named the fraction of Google search incidents (fF), is further
treated as a dynamic uncertain parameter.
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Figure 1. System dynamics model.

Other parameters also treated as stochastic are the contact rate
(c), removal rate from those with fear to self-isolation (λF), and
removal rate from those with fear who are also infected (λFP).
To support this, such dynamic parameters are associated with
state variables evolving over time according to stochastic
differential equations. Because variable c is a nonnegative
quantity, we performed a log-transform on this variable
according to the Brownian Motion, so that it varied over the
real numbers. The stochastic differential equation of contact
rate c is described as:

(1), where dWt is a standard Wiener process following a normal
distribution with mean of 0 and variance of 1. Thus,

follows a normal distribution with mean of 0 and variance of

sc
2. We also performed a log-transform on λF; the stochastic

differential equation of λF is formulated as:

The initial values of c and λF are drawn uniformly from the
interval between 0 and 100 per day and between 0.4 and 1 per
day, respectively. The SDs of sc and sλF were both selected to
be 1.

In contrast, reflecting the fact that fP and fF represent fractions,
such parameters were logit-transformed, with the initial value
for each varying between 0 and 0.2. We described the stochastic
differential equations of fractions fP and fF according to
Brownian Motion as:

Within the model, the parameter fP is multiplied by inflows to
state variables Infective (I) and Scared Infective (IFP) to account
for fractional actual reporting. Similarly, the parameter fF is
multiplied by inflows to state variables Scared (IF), Scared
Infective (IFP), Removed due to Fear and Infection (RFP), and
Removed due to Fear (RF) and accounts for the fractional of the
actual scared population.

We treated λFP as:

and then considered λ'FP as a fraction and performed a
logit-transform on it. This parameter varies over the range from
0 to 1 and the dynamic process for λ'FP is similar to fP and fF,
specifically,

The SDs sfP, sfF, and sλ'FP are selected to be 5, 5 and 1,
respectively. The initial values of fP, fF, and λ'FP are set on the
intervals [0, 0.2), [0, 0.2) and [0, 0.5), respectively.

By applying random walks to these parameters, a more accurate
estimate was achieved during model simulation. As such, in
our model, each particle at each point in time is associated with
all state variables and state variables associated with stochastic
parameters (S, E, IF, IP, IFP, RF, RFP, R, c, fP, fF, λF, and λ'FP)
(Table 1).
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Table 1. Parameters used in the model.

UnitValue for ManitobaValue for QuebecNotationParameter name

Unit0.040.04βProbability of infection transmission given exposure

Unit0.020.02αProbability of fear transmission given exposure

Day33τMean latent time

Day77μMean time to recovery

Person12144037843475NTotal population of province

One per day0.20.2HRate of recovery from fear

One per dayDynamicDynamicλFRate of removal to self-isolation from fear

UnitDynamicDynamicλ'FPFraction of mean time to recovery of going from “Scared
Infected” to “Recovered” via “Removed Due to Fear &
Infection”

One per dayλFPRate of removal to self-isolation from fear and pathogen

One per dayλPRate of recovery from infection with pathogen

One per dayλ'PRate of recovery from removal due to fear and infection

Description of Data Sources
We evaluated the prediction of the above-described dynamic
model assisted by particle filtering against two publicly available
empirical datasets. The first was from Manitoba Health - Healthy
Living and Seniors and included daily laboratory-confirmed
case counts of pandemic H1N1 influenza for the period of
October 6, 2009, through January 18, 2010, for the province of
Manitoba [26]. The second dataset was from the Institut National
de Santé Publique du Québec, a public health expertise and
reference center in Quebec, and included daily confirmed case
counts of pandemic H1N1 influenza between October 6, 2009,
and December 19, 2010 [27].

In addition to the daily clinical case count data noted above, we
obtained normalized daily Google search counts from Google
trends and weekly normalized data from GFT for Manitoba and
Quebec during the second pandemic wave. Reflecting the
linguistic differences between the two provinces, the search
terms used for each were distinct. In Manitoba, we used search
terms “flu” and “H1N1,” while for Quebec, we used “flu,”

“Influenza A virus sub-type H1N1,” “h1n1 vaccination,”
“ah1n1,” “ah1n1 vaccin,” “grippe,” and “grippe ah1n1,” which
are the most frequent search queries related to this topic
suggested by Google during that period.

Particle Values and Parameter Values
When defining the likelihood function for observing empirical
data, given the state of a given particle, the exact variant of the
likelihood used varied across three different scenarios examined.
The first scenario evaluated the impact of assuming a likelihood
formulation that considered purely clinical data, termed Linfection

with pathogen. The likelihood being used in the second scenario
considered only the likelihood of observing the empirical data
regarding Google search counts for the appropriate province in
light of the count of individuals posited to be currently in fear
within the model, a likelihood denoted as Linfection with fear.

Following several past contributions [2-4,28], we assume that
each epidemiological quantity follows a Pascal distribution
function. Thus, yt and it represent observed individuals per day
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and particle-posited daily rate (count per day) of new cases,
respectively:

In the formulation for the likelihood function, r is a dispersion
parameter

and

where yPt and yFt represent number of laboratory-confirmed
incident cases reported for day t and number of Google search
incidents for that day, respectively. The probabilities pP and pF

follow

and

respectively, where iPt is a fraction of the flow of new cases of
infection and iFt is a fraction of the flow of new cases of scared.
The dispersion parameter Linfection with pathogen (rP) was considered
as 40, while Linfection with fear (rF) was considered as 25. This
reflects the larger noise that we believed to be associated with
Google search data, in light of the fact that a larger dispersion
parameter leads to a more narrowly dispersed distribution.

The third scenario considered a total likelihood function LT

consisting of a combination of Linfection with pathogen and Linfection

with fear. For defining the total likelihood function, the simplifying
assumption was made that deviations with respect to one
measure were independent of the other, and thus, the total
multivariate likelihood function could be treated as a
multiplication of two univariate likelihood functions, given as
LT=Linfection with pathogen×Linfection with fear>

The purpose of running this third scenario was to compare the
effectiveness of a univariate likelihood function with that of the
multivariate likelihood function, when evaluated in terms of a
calculated discrepancy of model predictions against the
epidemiologically confirmed case count.

The three scenarios noted above were conducted using particle
filtering, employing 1000 particles. For each such scenario,
reflective of the need to make decisions in light of uncertainty
about the evolution of an unfolding outbreak, in which only
information about time points up to the present is available, we

sought to examine the impact of right censoring the empirical
data at certain time point T*, representing the current time (ie,
the time from which the model is forecasting outbreak
evolution). Thus, as the model ran, particle weights were
updated based on observations from day one until and including
day T*; after day T*, particle filtering ceased, particle weights
were no longer updated using historic data, and no further
particles were resampled. Each scenario included a sequence
of subscenarios that employed the following distinct values of
T*: {25, 30, 35, 40, 45, 50}.

To judge the accuracy of particle filter – informed projections
for future times against the standard of the reported case counts
for those times, we defined a discrepancy metric as the expected

value of the L2 norm of the difference between sampled particles
(reporting rate coefficient × [infected state+scared infected
state]) and reported case count observations calculated after
time T*. We sampled n particles (n=700) according to their
weights and obtained the discrepancy value using the following
equation:

where

is the value associated with sampled particle j at observation i
and

is the respective reported clinical cases at observation i. Tf is
the final observation time, and T* indicates the time from which
the projection is being made (ie, the time up to which the
particles’ weights were updated based on observation, where 0
≤ t ≤ T*). Using this formulation, we evaluated how well
projections forward predicted the empirical data after T*, the
time at which particle filtering was completed.

Results

In this work, for each scenario (each associated with a particular
likelihood function), we plotted the graphs associated with
T*=30 for Manitoba and Quebec. We characterize the results
below according to the scenario.

Particle Filtering Using Two Likelihood Functions
Figures 2 and 3 depict the empirical data (red and magenta
points) superimposed on samples (blue and green) from the
model-generated distribution of particles for the model output
of the number of reported cases (left panel) and number of
searches (right panel) for Manitoba (Figure 2) and Quebec
(Figure 3). For T*=30, the high posterior density for the
projection period is quite localized for the cases of pathogen
and the number of searches.
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Figure 2. Empirical data (red and magenta points) superimposed on samples (blue and green) from the model-generated distribution of particles for
the model output of the count of reported cases (left panel) and number of searches (right panel) using two likelihood functions, T*=30 for Manitoba.

Figure 3. Empirical data (red and magenta points) superimposed on samples (blue and green) from the model-generated distribution of particles for
the model output of the count of reported cases (left panel) and number of searches (right panel) using two likelihood functions, T*=30 for Quebec.

Particle Filtering Using the Likelihood Function
Associated With Clinical Data Alone
In this configuration, particle filtering was performed using
Linfection with pathogen as the sole likelihood function. Figures 4 and
5 depict empirical data (red and magenta points) superimposed
on samples (blue and green) from the model-generated
distribution of particles for the model output of the number of
reported cases (left panel) and number of searches (right panel)

for Manitoba (Figure 4) and Quebec (Figure 5). Despite the fact
that the particle filtering employs reasonably high-resolution
clinical data, the system exhibits great difficulty both in
accurately projecting the number of clinical case reports forward
from the point where particle filtering ceases (T*) and in doing
so in a fashion where the high posterior density region is
localized. Unsurprisingly, the model informed by the reported
clinical case counts alone is unable to accurately characterize
the search volume within the population.

Figure 4. Empirical data (red and magenta points) superimposed on samples (blue and green) from the model-generated distribution of particles for
the model output of the count of reported cases (left panel) and count of searches (right panel) using the likelihood function associated with clinical
data alone, T*=30 for Manitoba.
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Figure 5. Empirical data (red and magenta points) superimposed on samples (blue and green) from the model-generated distribution of particles for
the model output of the count of reported cases (left panel) and count of searches (right panel) using the likelihood function associated with clinical
data alone, T*=30 for Quebec.

Particle Filtering Using the Likelihood Function
Associated With Search Volume Data Alone
In this configuration, particle filtering was performed using
Linfection with fear as the sole likelihood function. Figures 6 and 7
depict empirical data (red and magenta points) superimposed
on samples (blue and green) from the model-generated
distribution of particles for the model output of the number of

reported cases (left panel) and number of searches (right panel)
for Manitoba (Figure 6) and Quebec (Figure 7). Although the
results for both jurisdictions show some localization in the
projections of the prevalent case count of those living in fear,
the failure to consider the clinical case count in particle filtering
(and to accordingly update the model estimates for the current
number of infectives, susceptibles, and the contact rate) leads
to poor projection accuracy for the reported clinical case count.

Figure 6. Empirical data (red and magenta points) superimposed on samples (blue and green) from the model-generated distribution of particles for
the model output of the count of reported cases (left panel) and count of searches (right panel) when using the likelihood function associated with search
volume data alone, T*=30 for Manitoba.

Figure 7. Empirical data (red and magenta points) superimposed on samples (blue and green) from the model-generated distribution of particles for
the model output of the count of reported cases (left panel) and count of searches (right panel) when using the likelihood function associated with search
volume data alone, T*=30 for Quebec.
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Table 2. Discrepancies associated with different scenarios and T* values for Manitoba and Quebec.

T*Scenario

504540353025

Manitoba

13,569192,819695,3301,941,9982,896,0927,846,178Google Likelihood 

3275106,307469,159564,651604,749956,021Clinical Likelihood 

1260158174361545Two Likelihoods 

Quebec

9,179,79129,645,905108,993,972290,486,216437,577,329577,919,468Google Likelihood 

751486255,938461,8043,544,61131,571,941Clinical Likelihood 

33610713322833817,386535,927Two Likelihoods 

Comparison of Results Associated With Different
Scenarios
Table 2 depicts the discrepancies between model clinical case
predictions and empirical data for different check times (T*)
for Manitoba and Quebec. Unsurprisingly, given the results
above, the discrepancy associated with particle filtering
informed by both clinical and search volume data sets (in
Particle Filtering Using Two Likelihood Functions) is smaller
than the discrepancy associated with either data set in isolation.
In addition, the discrepancy when using particle filtering
informed by the (higher-quality) clinical case count data alone
is lower than that informed purely by search volume. However,
there is a marked difference between Manitoba and Quebec in
the levels of discrepancy seen when using clinical case data
alone as compared to using search volume data. For Manitoba,
there is consistently less than an order of magnitude of
difference in discrepancies between these two results. In
contrast, for Quebec, using the clinical data alone within particle
filtering yields a level of discrepancy several orders of
magnitude below that resulting from search volume data.
Intriguingly, for Manitoba, combining both data yields a
reduction of discrepancy many orders of magnitude below either,
despite the fact that discrepancy is calculated with respect to
clinical case reports. This advantage of adding information from
the search volume data to that from clinical case counts
presumably reflects the fact that the added search volume
information supports particle filtering in more accurately
localizing the model state estimates than was the case using
purely the reported clinical case counts—a factor manifested
in the projections for both clinical case counts. In contrast, for
Quebec, using both sources of information reduces the
discrepancy significantly, typically by at least one order of
magnitude, with the exception of time points T*=45 and T*=50.

Discussion

Principal Findings
In this contribution, we investigated the predictive accuracy
gains from applying particle filtering using both traditional and
search volume data to estimate latent states of a compartmental
transmission model (including time evolution of stochastic
parameters involved in that model). The capacity to perform

this estimation then provides support for projection and scenario
evolution using the model.

To be able to use search data effectively when particle filtering
a transmission model, we found it helpful to move beyond the
traditional scope of compartmental transmission models and to
adopt a more articulated model of the outbreak, reflecting the
fact that causal drivers promoting Web searches are not
restricted to stages in the natural history of infection, but are
additionally driven by factors with distinct but coupled
dynamics, such as fluctuations in perceived risk on the part of
the population. Responsive to this consideration, we have
adapted a previously published model with an explicit
consideration of the coupled dynamics of fear and pathogen.
Although there are challenges associated with assessing
perceived risk and anxiety on the part of the population during
an outbreak, we found here that projection of outbreak dynamics
can be materially enhanced through inclusion of a surprisingly
accessible source of data: Daily relative search query volumes
for defined geographic regions on the widely used Google search
engine. The reliable and timely public availability of such data
across many areas of the world raises the prospects for
significantly enhancing effective outbreak projection using
combinations of dynamic modeling and machine learning
techniques such as the particle filter.

Limitations
The work presented here has significant limitations. Although
search trend data provide some indication of topic-specific
interest over time in a defined spatial region, from the standpoint
of “big data,” it is often available only with modest (daily)
temporal resolution and frequently coarse geographic resolution.
It is also affected by many unobserved confounders. Such search
trend data are further limited by providing little sense of count
of distinct users and no sense of longitudinal progression of a
single user. In this regard, the Google search query volume time
series compare unfavorably to the richness of information
present in other publicly available types of online data, such as
region-specific Twitter feeds.

In addition to the shortcomings in the data sources employed,
there are notable methodological limitations of our study. The
likelihood function employing two distinct data sources was
simplistic in its design, merely serving to multiply each of the
dataset-specific likelihood functions. The use of a random walk
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during particle filtering for no fewer than five distinct parameters
likely contributes to a rapid divergence in the model’s estimates,
compared to the behavior observed in previous particle filtered
models of influenza [1,3]. Further experimentation is required
with the parameters governing such random walks. A more
significant yet large gain in accuracy, given the limited volatility
likely for some of such parameters, may result from treating
such parameters as unknown constants to be sampled for a given
simulation from a posterior distribution within Particle Markov
Chain Monte Carlo (PMCMC) techniques [29].

Such limitations point to natural avenues for future work. We
expect that the prospects for the sorts of projections explored
here will be significantly elevated by combining such data with
other public data sources containing distinct sources of
information, such as daily or finer resolution time series from
Twitter and Tumblr. We further expect the accuracy of the
projections to be improved by more powerful machine learning
techniques, such as through the use of PMCMC techniques,
ensemble techniques supporting inclusion of multiple models,
and potential PMCMC techniques employing multiple models
using reverse-jump MCMC strategies.

Conclusions
Pandemic forecasting is important for public health policy
making due to its support for judicious planning involving
resource allocation. Official statistics typically capture only
subsets of the epidemiological burden (eg, the subset of
individuals who engage in care seeking). Prospects for rapid
use of such data to understand outbreak evolution are often
further handicapped by reporting delays and a lack of capacity
to project epidemiological case count time series forward.
Traditional outbreak data have been complemented in recent
years by high-resolution data sets from public social media such
as Twitter, Tumblr, and time series provided by the Google
search application programming interface via Google trends
and Google flu, which can be retrieved programmatically and
analyzed over time. The results presented in this work suggest
that, when combined with traditional epidemiological data
sources, social media–driven data sets, machine learning, and
dynamic modeling can offer powerful tools for anticipating
future evolution of and assessing intervention tradeoffs with
respect to infectious disease outbreaks, particularly for emerging
pathogens.
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